aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/scheduler/sched-tune.txt413
-rw-r--r--include/linux/cgroup_subsys.h4
-rw-r--r--init/Kconfig23
-rw-r--r--kernel/sched/Makefile1
-rw-r--r--kernel/sched/cpufreq_schedutil.c2
-rw-r--r--kernel/sched/fair.c118
-rw-r--r--kernel/sched/sched.h2
-rw-r--r--kernel/sched/tune.c622
-rw-r--r--kernel/sched/tune.h37
9 files changed, 1221 insertions, 1 deletions
diff --git a/Documentation/scheduler/sched-tune.txt b/Documentation/scheduler/sched-tune.txt
new file mode 100644
index 000000000000..5df0ea361311
--- /dev/null
+++ b/Documentation/scheduler/sched-tune.txt
@@ -0,0 +1,413 @@
+ Central, scheduler-driven, power-performance control
+ (EXPERIMENTAL)
+
+Abstract
+========
+
+The topic of a single simple power-performance tunable, that is wholly
+scheduler centric, and has well defined and predictable properties has come up
+on several occasions in the past [1,2]. With techniques such as a scheduler
+driven DVFS [3], we now have a good framework for implementing such a tunable.
+This document describes the overall ideas behind its design and implementation.
+
+
+Table of Contents
+=================
+
+1. Motivation
+2. Introduction
+3. Signal Boosting Strategy
+4. OPP selection using boosted CPU utilization
+5. Per task group boosting
+6. Per-task wakeup-placement-strategy Selection
+7. Question and Answers
+ - What about "auto" mode?
+ - What about boosting on a congested system?
+ - How CPUs are boosted when we have tasks with multiple boost values?
+8. References
+
+
+1. Motivation
+=============
+
+Sched-DVFS [3] was a new event-driven cpufreq governor which allows the
+scheduler to select the optimal DVFS operating point (OPP) for running a task
+allocated to a CPU. Later, the cpufreq maintainers introduced a similar
+governor, schedutil. The introduction of schedutil also enables running
+workloads at the most energy efficient OPPs.
+
+However, sometimes it may be desired to intentionally boost the performance of
+a workload even if that could imply a reasonable increase in energy
+consumption. For example, in order to reduce the response time of a task, we
+may want to run the task at a higher OPP than the one that is actually required
+by it's CPU bandwidth demand.
+
+This last requirement is especially important if we consider that one of the
+main goals of the utilization-driven governor component is to replace all
+currently available CPUFreq policies. Since sched-DVFS and schedutil are event
+based, as opposed to the sampling driven governors we currently have, they are
+already more responsive at selecting the optimal OPP to run tasks allocated to
+a CPU. However, just tracking the actual task load demand may not be enough
+from a performance standpoint. For example, it is not possible to get
+behaviors similar to those provided by the "performance" and "interactive"
+CPUFreq governors.
+
+This document describes an implementation of a tunable, stacked on top of the
+utilization-driven governors which extends their functionality to support task
+performance boosting.
+
+By "performance boosting" we mean the reduction of the time required to
+complete a task activation, i.e. the time elapsed from a task wakeup to its
+next deactivation (e.g. because it goes back to sleep or it terminates). For
+example, if we consider a simple periodic task which executes the same workload
+for 5[s] every 20[s] while running at a certain OPP, a boosted execution of
+that task must complete each of its activations in less than 5[s].
+
+A previous attempt [5] to introduce such a boosting feature has not been
+successful mainly because of the complexity of the proposed solution. Previous
+versions of the approach described in this document exposed a single simple
+interface to user-space. This single tunable knob allowed the tuning of
+system wide scheduler behaviours ranging from energy efficiency at one end
+through to incremental performance boosting at the other end. This first
+tunable affects all tasks. However, that is not useful for Android products
+so in this version only a more advanced extension of the concept is provided
+which uses CGroups to boost the performance of only selected tasks while using
+the energy efficient default for all others.
+
+The rest of this document introduces in more details the proposed solution
+which has been named SchedTune.
+
+
+2. Introduction
+===============
+
+SchedTune exposes a simple user-space interface provided through a new
+CGroup controller 'stune' which provides two power-performance tunables
+per group:
+
+ /<stune cgroup mount point>/schedtune.prefer_idle
+ /<stune cgroup mount point>/schedtune.boost
+
+The CGroup implementation permits arbitrary user-space defined task
+classification to tune the scheduler for different goals depending on the
+specific nature of the task, e.g. background vs interactive vs low-priority.
+
+More details are given in section 5.
+
+2.1 Boosting
+============
+
+The boost value is expressed as an integer in the range [-100..0..100].
+
+A value of 0 (default) configures the CFS scheduler for maximum energy
+efficiency. This means that sched-DVFS runs the tasks at the minimum OPP
+required to satisfy their workload demand.
+
+A value of 100 configures scheduler for maximum performance, which translates
+to the selection of the maximum OPP on that CPU.
+
+A value of -100 configures scheduler for minimum performance, which translates
+to the selection of the minimum OPP on that CPU.
+
+The range between -100, 0 and 100 can be set to satisfy other scenarios suitably.
+For example to satisfy interactive response or depending on other system events
+(battery level etc).
+
+The overall design of the SchedTune module is built on top of "Per-Entity Load
+Tracking" (PELT) signals and sched-DVFS by introducing a bias on the Operating
+Performance Point (OPP) selection.
+
+Each time a task is allocated on a CPU, cpufreq is given the opportunity to tune
+the operating frequency of that CPU to better match the workload demand. The
+selection of the actual OPP being activated is influenced by the boost value
+for the task CGroup.
+
+This simple biasing approach leverages existing frameworks, which means minimal
+modifications to the scheduler, and yet it allows to achieve a range of
+different behaviours all from a single simple tunable knob.
+
+In EAS schedulers, we use boosted task and CPU utilization for energy
+calculation and energy-aware task placement.
+
+2.2 prefer_idle
+===============
+
+This is a flag which indicates to the scheduler that userspace would like
+the scheduler to focus on energy or to focus on performance.
+
+A value of 0 (default) signals to the CFS scheduler that tasks in this group
+can be placed according to the energy-aware wakeup strategy.
+
+A value of 1 signals to the CFS scheduler that tasks in this group should be
+placed to minimise wakeup latency.
+
+The value is combined with the boost value - task placement will not be
+boost aware however CPU OPP selection is still boost aware.
+
+Android platforms typically use this flag for application tasks which the
+user is currently interacting with.
+
+
+3. Signal Boosting Strategy
+===========================
+
+The whole PELT machinery works based on the value of a few load tracking signals
+which basically track the CPU bandwidth requirements for tasks and the capacity
+of CPUs. The basic idea behind the SchedTune knob is to artificially inflate
+some of these load tracking signals to make a task or RQ appears more demanding
+that it actually is.
+
+Which signals have to be inflated depends on the specific "consumer". However,
+independently from the specific (signal, consumer) pair, it is important to
+define a simple and possibly consistent strategy for the concept of boosting a
+signal.
+
+A boosting strategy defines how the "abstract" user-space defined
+sched_cfs_boost value is translated into an internal "margin" value to be added
+to a signal to get its inflated value:
+
+ margin := boosting_strategy(sched_cfs_boost, signal)
+ boosted_signal := signal + margin
+
+Different boosting strategies were identified and analyzed before selecting the
+one found to be most effective.
+
+Signal Proportional Compensation (SPC)
+--------------------------------------
+
+In this boosting strategy the sched_cfs_boost value is used to compute a
+margin which is proportional to the complement of the original signal.
+When a signal has a maximum possible value, its complement is defined as
+the delta from the actual value and its possible maximum.
+
+Since the tunable implementation uses signals which have SCHED_LOAD_SCALE as
+the maximum possible value, the margin becomes:
+
+ margin := sched_cfs_boost * (SCHED_LOAD_SCALE - signal)
+
+Using this boosting strategy:
+- a 100% sched_cfs_boost means that the signal is scaled to the maximum value
+- each value in the range of sched_cfs_boost effectively inflates the signal in
+ question by a quantity which is proportional to the maximum value.
+
+For example, by applying the SPC boosting strategy to the selection of the OPP
+to run a task it is possible to achieve these behaviors:
+
+- 0% boosting: run the task at the minimum OPP required by its workload
+- 100% boosting: run the task at the maximum OPP available for the CPU
+- 50% boosting: run at the half-way OPP between minimum and maximum
+
+Which means that, at 50% boosting, a task will be scheduled to run at half of
+the maximum theoretically achievable performance on the specific target
+platform.
+
+A graphical representation of an SPC boosted signal is represented in the
+following figure where:
+ a) "-" represents the original signal
+ b) "b" represents a 50% boosted signal
+ c) "p" represents a 100% boosted signal
+
+
+ ^
+ | SCHED_LOAD_SCALE
+ +-----------------------------------------------------------------+
+ |pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
+ |
+ | boosted_signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb
+ |
+ | original signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb+----------------------+
+ | |
+ |bbbbbbbbbbbbbbbbbb |
+ | |
+ | |
+ | |
+ | +-----------------------+
+ | |
+ | |
+ | |
+ |------------------+
+ |
+ |
+ +----------------------------------------------------------------------->
+
+The plot above shows a ramped load signal (titled 'original_signal') and it's
+boosted equivalent. For each step of the original signal the boosted signal
+corresponding to a 50% boost is midway from the original signal and the upper
+bound. Boosting by 100% generates a boosted signal which is always saturated to
+the upper bound.
+
+
+4. OPP selection using boosted CPU utilization
+==============================================
+
+It is worth calling out that the implementation does not introduce any new load
+signals. Instead, it provides an API to tune existing signals. This tuning is
+done on demand and only in scheduler code paths where it is sensible to do so.
+The new API calls are defined to return either the default signal or a boosted
+one, depending on the value of sched_cfs_boost. This is a clean an non invasive
+modification of the existing existing code paths.
+
+The signal representing a CPU's utilization is boosted according to the
+previously described SPC boosting strategy. To sched-DVFS, this allows a CPU
+(ie CFS run-queue) to appear more used then it actually is.
+
+Thus, with the sched_cfs_boost enabled we have the following main functions to
+get the current utilization of a CPU:
+
+ cpu_util()
+ boosted_cpu_util()
+
+The new boosted_cpu_util() is similar to the first but returns a boosted
+utilization signal which is a function of the sched_cfs_boost value.
+
+This function is used in the CFS scheduler code paths where sched-DVFS needs to
+decide the OPP to run a CPU at.
+For example, this allows selecting the highest OPP for a CPU which has
+the boost value set to 100%.
+
+
+5. Per task group boosting
+==========================
+
+On battery powered devices there usually are many background services which are
+long running and need energy efficient scheduling. On the other hand, some
+applications are more performance sensitive and require an interactive
+response and/or maximum performance, regardless of the energy cost.
+
+To better service such scenarios, the SchedTune implementation has an extension
+that provides a more fine grained boosting interface.
+
+A new CGroup controller, namely "schedtune", can be enabled which allows to
+defined and configure task groups with different boosting values.
+Tasks that require special performance can be put into separate CGroups.
+The value of the boost associated with the tasks in this group can be specified
+using a single knob exposed by the CGroup controller:
+
+ schedtune.boost
+
+This knob allows the definition of a boost value that is to be used for
+SPC boosting of all tasks attached to this group.
+
+The current schedtune controller implementation is really simple and has these
+main characteristics:
+
+ 1) It is only possible to create 1 level depth hierarchies
+
+ The root control groups define the system-wide boost value to be applied
+ by default to all tasks. Its direct subgroups are named "boost groups" and
+ they define the boost value for specific set of tasks.
+ Further nested subgroups are not allowed since they do not have a sensible
+ meaning from a user-space standpoint.
+
+ 2) It is possible to define only a limited number of "boost groups"
+
+ This number is defined at compile time and by default configured to 16.
+ This is a design decision motivated by two main reasons:
+ a) In a real system we do not expect utilization scenarios with more then few
+ boost groups. For example, a reasonable collection of groups could be
+ just "background", "interactive" and "performance".
+ b) It simplifies the implementation considerably, especially for the code
+ which has to compute the per CPU boosting once there are multiple
+ RUNNABLE tasks with different boost values.
+
+Such a simple design should allow servicing the main utilization scenarios identified
+so far. It provides a simple interface which can be used to manage the
+power-performance of all tasks or only selected tasks.
+Moreover, this interface can be easily integrated by user-space run-times (e.g.
+Android, ChromeOS) to implement a QoS solution for task boosting based on tasks
+classification, which has been a long standing requirement.
+
+Setup and usage
+---------------
+
+0. Use a kernel with CONFIG_SCHED_TUNE support enabled
+
+1. Check that the "schedtune" CGroup controller is available:
+
+ root@linaro-nano:~# cat /proc/cgroups
+ #subsys_name hierarchy num_cgroups enabled
+ cpuset 0 1 1
+ cpu 0 1 1
+ schedtune 0 1 1
+
+2. Mount a tmpfs to create the CGroups mount point (Optional)
+
+ root@linaro-nano:~# sudo mount -t tmpfs cgroups /sys/fs/cgroup
+
+3. Mount the "schedtune" controller
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune
+ root@linaro-nano:~# sudo mount -t cgroup -o schedtune stune /sys/fs/cgroup/stune
+
+4. Create task groups and configure their specific boost value (Optional)
+
+ For example here we create a "performance" boost group configure to boost
+ all its tasks to 100%
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune/performance
+ root@linaro-nano:~# echo 100 > /sys/fs/cgroup/stune/performance/schedtune.boost
+
+5. Move tasks into the boost group
+
+ For example, the following moves the tasks with PID $TASKPID (and all its
+ threads) into the "performance" boost group.
+
+ root@linaro-nano:~# echo "TASKPID > /sys/fs/cgroup/stune/performance/cgroup.procs
+
+This simple configuration allows only the threads of the $TASKPID task to run,
+when needed, at the highest OPP in the most capable CPU of the system.
+
+
+6. Per-task wakeup-placement-strategy Selection
+===============================================
+
+Many devices have a number of CFS tasks in use which require an absolute
+minimum wakeup latency, and many tasks for which wakeup latency is not
+important.
+
+For touch-driven environments, removing additional wakeup latency can be
+critical.
+
+When you use the Schedtume CGroup controller, you have access to a second
+parameter which allows a group to be marked such that energy_aware task
+placement is bypassed for tasks belonging to that group.
+
+prefer_idle=0 (default - use energy-aware task placement if available)
+prefer_idle=1 (never use energy-aware task placement for these tasks)
+
+Since the regular wakeup task placement algorithm in CFS is biased for
+performance, this has the effect of restoring minimum wakeup latency
+for the desired tasks whilst still allowing energy-aware wakeup placement
+to save energy for other tasks.
+
+
+7. Question and Answers
+=======================
+
+What about "auto" mode?
+-----------------------
+
+The 'auto' mode as described in [5] can be implemented by interfacing SchedTune
+with some suitable user-space element. This element could use the exposed
+system-wide or cgroup based interface.
+
+How are multiple groups of tasks with different boost values managed?
+---------------------------------------------------------------------
+
+The current SchedTune implementation keeps track of the boosted RUNNABLE tasks
+on a CPU. The CPU utilization seen by the scheduler-driven cpufreq governors
+(and used to select an appropriate OPP) is boosted with a value which is the
+maximum of the boost values of the currently RUNNABLE tasks in its RQ.
+
+This allows cpufreq to boost a CPU only while there are boosted tasks ready
+to run and switch back to the energy efficient mode as soon as the last boosted
+task is dequeued.
+
+
+8. References
+=============
+[1] http://lwn.net/Articles/552889
+[2] http://lkml.org/lkml/2012/5/18/91
+[3] http://lkml.org/lkml/2015/6/26/620
diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h
index acb77dcff3b4..8996c092568b 100644
--- a/include/linux/cgroup_subsys.h
+++ b/include/linux/cgroup_subsys.h
@@ -21,6 +21,10 @@ SUBSYS(cpu)
SUBSYS(cpuacct)
#endif
+#if IS_ENABLED(CONFIG_SCHED_TUNE)
+SUBSYS(schedtune)
+#endif
+
#if IS_ENABLED(CONFIG_BLK_CGROUP)
SUBSYS(io)
#endif
diff --git a/init/Kconfig b/init/Kconfig
index 01cad95346df..2a9efce3f75d 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -991,6 +991,29 @@ config SCHED_AUTOGROUP
desktop applications. Task group autogeneration is currently based
upon task session.
+config SCHED_TUNE
+ bool "Boosting for CFS tasks (EXPERIMENTAL)"
+ depends on SMP
+ help
+ This option enables support for task classification using a new
+ cgroup controller, schedtune. Schedtune allows tasks to be given
+ a boost value and marked as latency-sensitive or not. This option
+ provides the "schedtune" controller.
+
+ This new controller:
+ 1. allows only a two layers hierarchy, where the root defines the
+ system-wide boost value and its direct childrens define each one a
+ different "class of tasks" to be boosted with a different value
+ 2. supports up to 16 different task classes, each one which could be
+ configured with a different boost value
+
+ Latency-sensitive tasks are not subject to energy-aware wakeup
+ task placement. The boost value assigned to tasks is used to
+ influence task placement and CPU frequency selection (if
+ utilization-driven frequency selection is in use).
+
+ If unsure, say N.
+
config SYSFS_DEPRECATED
bool "Enable deprecated sysfs features to support old userspace tools"
depends on SYSFS
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 7fe183404c38..2389350a8268 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -24,6 +24,7 @@ obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o pelt.o
obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
+obj-$(CONFIG_SCHED_TUNE) += tune.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index d2236d1166f4..645f54a0c2dc 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -286,7 +286,7 @@ unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
{
struct rq *rq = cpu_rq(sg_cpu->cpu);
- unsigned long util = cpu_util_cfs(rq);
+ unsigned long util = boosted_cpu_util(sg_cpu->cpu);
sg_cpu->max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
sg_cpu->bw_dl = cpu_bw_dl(rq);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 172b17a2b2e9..8a0cd1e9da15 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -5117,6 +5117,24 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
util_est_enqueue(&rq->cfs, p);
/*
+ * The code below (indirectly) updates schedutil which looks at
+ * the cfs_rq utilization to select a frequency.
+ * Let's update schedtune here to ensure the boost value of the
+ * current task is accounted for in the selection of the OPP.
+ *
+ * We do it also in the case where we enqueue a throttled task;
+ * we could argue that a throttled task should not boost a CPU,
+ * however:
+ * a) properly implementing CPU boosting considering throttled
+ * tasks will increase a lot the complexity of the solution
+ * b) it's not easy to quantify the benefits introduced by
+ * such a more complex solution.
+ * Thus, for the time being we go for the simple solution and boost
+ * also for throttled RQs.
+ */
+ schedtune_enqueue_task(p, cpu_of(rq));
+
+ /*
* If in_iowait is set, the code below may not trigger any cpufreq
* utilization updates, so do it here explicitly with the IOWAIT flag
* passed.
@@ -5191,6 +5209,14 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
struct sched_entity *se = &p->se;
int task_sleep = flags & DEQUEUE_SLEEP;
+ /*
+ * The code below (indirectly) updates schedutil which looks at
+ * the cfs_rq utilization to select a frequency.
+ * Let's update schedtune here to ensure the boost value of the
+ * current task is not more accounted for in the selection of the OPP.
+ */
+ schedtune_dequeue_task(p, cpu_of(rq));
+
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
@@ -5717,6 +5743,98 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
return target;
}
+#ifdef CONFIG_SCHED_TUNE
+struct reciprocal_value schedtune_spc_rdiv;
+
+static long
+schedtune_margin(unsigned long signal, long boost)
+{
+ long long margin = 0;
+
+ /*
+ * Signal proportional compensation (SPC)
+ *
+ * The Boost (B) value is used to compute a Margin (M) which is
+ * proportional to the complement of the original Signal (S):
+ * M = B * (SCHED_CAPACITY_SCALE - S)
+ * The obtained M could be used by the caller to "boost" S.
+ */
+ if (boost >= 0) {
+ margin = SCHED_CAPACITY_SCALE - signal;
+ margin *= boost;
+ } else
+ margin = -signal * boost;
+
+ margin = reciprocal_divide(margin, schedtune_spc_rdiv);
+
+ if (boost < 0)
+ margin *= -1;
+ return margin;
+}
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+ int boost = schedtune_cpu_boost(cpu);
+
+ if (boost == 0)
+ return 0;
+
+ return schedtune_margin(util, boost);
+}
+
+static inline long
+schedtune_task_margin(struct task_struct *task)
+{
+ int boost = schedtune_task_boost(task);
+ unsigned long util;
+ long margin;
+
+ if (boost == 0)
+ return 0;
+
+ util = task_util_est(task);
+ margin = schedtune_margin(util, boost);
+
+ return margin;
+}
+
+unsigned long
+boosted_cpu_util(int cpu)
+{
+ unsigned long util = cpu_util_cfs(cpu_rq(cpu));
+ long margin = schedtune_cpu_margin(util, cpu);
+
+ return util + margin;
+}
+
+#else /* CONFIG_SCHED_TUNE */
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+ return 0;
+}
+
+static inline int
+schedtune_task_margin(struct task_struct *task)
+{
+ return 0;
+}
+
+#endif /* CONFIG_SCHED_TUNE */
+
+
+
+static inline unsigned long
+boosted_task_util(struct task_struct *task)
+{
+ unsigned long util = task_util_est(task);
+ long margin = schedtune_task_margin(task);
+
+ return util + margin;
+}
+
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index dadb63db5a3d..c6898fa67cba 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -80,6 +80,8 @@
# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
#endif
+#include "tune.h"
+
struct rq;
struct cpuidle_state;
diff --git a/kernel/sched/tune.c b/kernel/sched/tune.c
new file mode 100644
index 000000000000..af6de6d3df6d
--- /dev/null
+++ b/kernel/sched/tune.c
@@ -0,0 +1,622 @@
+#include <linux/cgroup.h>
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/rcupdate.h>
+#include <linux/slab.h>
+
+#include <trace/events/sched.h>
+
+#include "sched.h"
+
+bool schedtune_initialized = false;
+extern struct reciprocal_value schedtune_spc_rdiv;
+
+/*
+ * EAS scheduler tunables for task groups.
+ *
+ * When CGroup support is enabled, we have to synchronize two different
+ * paths:
+ * - slow path: where CGroups are created/updated/removed
+ * - fast path: where tasks in a CGroups are accounted
+ *
+ * The slow path tracks (a limited number of) CGroups and maps each on a
+ * "boost_group" index. The fastpath accounts tasks currently RUNNABLE on each
+ * "boost_group".
+ *
+ * Once a new CGroup is created, a boost group idx is assigned and the
+ * corresponding "boost_group" marked as valid on each CPU.
+ * Once a CGroup is release, the corresponding "boost_group" is marked as
+ * invalid on each CPU. The CPU boost value (boost_max) is aggregated by
+ * considering only valid boost_groups with a non null tasks counter.
+ *
+ * .:: Locking strategy
+ *
+ * The fast path uses a spin lock for each CPU boost_group which protects the
+ * tasks counter.
+ *
+ * The "valid" and "boost" values of each CPU boost_group is instead
+ * protected by the RCU lock provided by the CGroups callbacks. Thus, only the
+ * slow path can access and modify the boost_group attribtues of each CPU.
+ * The fast path will catch up the most updated values at the next scheduling
+ * event (i.e. enqueue/dequeue).
+ *
+ * |
+ * SLOW PATH | FAST PATH
+ * CGroup add/update/remove | Scheduler enqueue/dequeue events
+ * |
+ * |
+ * | DEFINE_PER_CPU(struct boost_groups)
+ * | +--------------+----+---+----+----+
+ * | | idle | | | | |
+ * | | boost_max | | | | |
+ * | +---->lock | | | | |
+ * struct schedtune allocated_groups | | | group[ ] | | | | |
+ * +------------------------------+ +-------+ | | +--+---------+-+----+---+----+----+
+ * | idx | | | | | | valid |
+ * | boots / prefer_idle | | | | | | boost |
+ * | perf_{boost/constraints}_idx | <---------+(*) | | | | tasks | <------------+
+ * | css | +-------+ | | +---------+ |
+ * +-+----------------------------+ | | | | | | |
+ * ^ | | | | | | |
+ * | +-------+ | | +---------+ |
+ * | | | | | | | |
+ * | | | | | | | |
+ * | +-------+ | | +---------+ |
+ * | zmalloc | | | | | | |
+ * | | | | | | | |
+ * | +-------+ | | +---------+ |
+ * + BOOSTGROUPS_COUNT | | BOOSTGROUPS_COUNT |
+ * schedtune_boostgroup_init() | + |
+ * | schedtune_{en,de}queue_task() |
+ * | +
+ * | schedtune_tasks_update()
+ * |
+ */
+
+/* SchdTune tunables for a group of tasks */
+struct schedtune {
+ /* SchedTune CGroup subsystem */
+ struct cgroup_subsys_state css;
+
+ /* Boost group allocated ID */
+ int idx;
+
+ /* Boost value for tasks on that SchedTune CGroup */
+ int boost;
+
+ /* Hint to bias scheduling of tasks on that SchedTune CGroup
+ * towards idle CPUs */
+ int prefer_idle;
+};
+
+static inline struct schedtune *css_st(struct cgroup_subsys_state *css)
+{
+ return css ? container_of(css, struct schedtune, css) : NULL;
+}
+
+static inline struct schedtune *task_schedtune(struct task_struct *tsk)
+{
+ return css_st(task_css(tsk, schedtune_cgrp_id));
+}
+
+static inline struct schedtune *parent_st(struct schedtune *st)
+{
+ return css_st(st->css.parent);
+}
+
+/*
+ * SchedTune root control group
+ * The root control group is used to defined a system-wide boosting tuning,
+ * which is applied to all tasks in the system.
+ * Task specific boost tuning could be specified by creating and
+ * configuring a child control group under the root one.
+ * By default, system-wide boosting is disabled, i.e. no boosting is applied
+ * to tasks which are not into a child control group.
+ */
+static struct schedtune
+root_schedtune = {
+ .boost = 0,
+ .prefer_idle = 0,
+};
+
+/*
+ * Maximum number of boost groups to support
+ * When per-task boosting is used we still allow only limited number of
+ * boost groups for two main reasons:
+ * 1. on a real system we usually have only few classes of workloads which
+ * make sense to boost with different values (e.g. background vs foreground
+ * tasks, interactive vs low-priority tasks)
+ * 2. a limited number allows for a simpler and more memory/time efficient
+ * implementation especially for the computation of the per-CPU boost
+ * value
+ */
+#define BOOSTGROUPS_COUNT 5
+
+/* Array of configured boostgroups */
+static struct schedtune *allocated_group[BOOSTGROUPS_COUNT] = {
+ &root_schedtune,
+ NULL,
+};
+
+/* SchedTune boost groups
+ * Keep track of all the boost groups which impact on CPU, for example when a
+ * CPU has two RUNNABLE tasks belonging to two different boost groups and thus
+ * likely with different boost values.
+ * Since on each system we expect only a limited number of boost groups, here
+ * we use a simple array to keep track of the metrics required to compute the
+ * maximum per-CPU boosting value.
+ */
+struct boost_groups {
+ /* Maximum boost value for all RUNNABLE tasks on a CPU */
+ int boost_max;
+ struct {
+ /* True when this boost group maps an actual cgroup */
+ bool valid;
+ /* The boost for tasks on that boost group */
+ int boost;
+ /* Count of RUNNABLE tasks on that boost group */
+ unsigned tasks;
+ } group[BOOSTGROUPS_COUNT];
+ /* CPU's boost group locking */
+ raw_spinlock_t lock;
+};
+
+/* Boost groups affecting each CPU in the system */
+DEFINE_PER_CPU(struct boost_groups, cpu_boost_groups);
+
+static void
+schedtune_cpu_update(int cpu)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ int boost_max;
+ int idx;
+
+ /* The root boost group is always active */
+ boost_max = bg->group[0].boost;
+ for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) {
+
+ /* Ignore non boostgroups not mapping a cgroup */
+ if (!bg->group[idx].valid)
+ continue;
+
+ /*
+ * A boost group affects a CPU only if it has
+ * RUNNABLE tasks on that CPU
+ */
+ if (bg->group[idx].tasks == 0)
+ continue;
+
+ boost_max = max(boost_max, bg->group[idx].boost);
+ }
+
+ /* Ensures boost_max is non-negative when all cgroup boost values
+ * are neagtive. Avoids under-accounting of cpu capacity which may cause
+ * task stacking and frequency spikes.*/
+ boost_max = max(boost_max, 0);
+ bg->boost_max = boost_max;
+}
+
+static int
+schedtune_boostgroup_update(int idx, int boost)
+{
+ struct boost_groups *bg;
+ int cur_boost_max;
+ int old_boost;
+ int cpu;
+
+ /* Update per CPU boost groups */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+
+ /* CGroups are never associated to non active cgroups */
+ BUG_ON(!bg->group[idx].valid);
+
+ /*
+ * Keep track of current boost values to compute the per CPU
+ * maximum only when it has been affected by the new value of
+ * the updated boost group
+ */
+ cur_boost_max = bg->boost_max;
+ old_boost = bg->group[idx].boost;
+
+ /* Update the boost value of this boost group */
+ bg->group[idx].boost = boost;
+
+ /* Check if this update increase current max */
+ if (boost > cur_boost_max && bg->group[idx].tasks) {
+ bg->boost_max = boost;
+ continue;
+ }
+
+ /* Check if this update has decreased current max */
+ if (cur_boost_max == old_boost && old_boost > boost) {
+ schedtune_cpu_update(cpu);
+ continue;
+ }
+ }
+
+ return 0;
+}
+
+#define ENQUEUE_TASK 1
+#define DEQUEUE_TASK -1
+
+static inline void
+schedtune_tasks_update(struct task_struct *p, int cpu, int idx, int task_count)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ int tasks = bg->group[idx].tasks + task_count;
+
+ /* Update boosted tasks count while avoiding to make it negative */
+ bg->group[idx].tasks = max(0, tasks);
+
+ /* Boost group activation or deactivation on that RQ */
+ if (tasks == 1 || tasks == 0)
+ schedtune_cpu_update(cpu);
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_enqueue_task(struct task_struct *p, int cpu)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ unsigned long irq_flags;
+ struct schedtune *st;
+ int idx;
+
+ if (unlikely(!schedtune_initialized))
+ return;
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions for example on
+ * do_exit()::cgroup_exit() and task migration.
+ */
+ raw_spin_lock_irqsave(&bg->lock, irq_flags);
+ rcu_read_lock();
+
+ st = task_schedtune(p);
+ idx = st->idx;
+
+ schedtune_tasks_update(p, cpu, idx, ENQUEUE_TASK);
+
+ rcu_read_unlock();
+ raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+int schedtune_can_attach(struct cgroup_taskset *tset)
+{
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
+ struct boost_groups *bg;
+ struct rq_flags rq_flags;
+ unsigned int cpu;
+ struct rq *rq;
+ int src_bg; /* Source boost group index */
+ int dst_bg; /* Destination boost group index */
+ int tasks;
+
+ if (unlikely(!schedtune_initialized))
+ return 0;
+
+
+ cgroup_taskset_for_each(task, css, tset) {
+
+ /*
+ * Lock the CPU's RQ the task is enqueued to avoid race
+ * conditions with migration code while the task is being
+ * accounted
+ */
+ rq = task_rq_lock(task, &rq_flags);
+
+ if (!task->on_rq) {
+ task_rq_unlock(rq, task, &rq_flags);
+ continue;
+ }
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions on...
+ */
+ cpu = cpu_of(rq);
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ raw_spin_lock(&bg->lock);
+
+ dst_bg = css_st(css)->idx;
+ src_bg = task_schedtune(task)->idx;
+
+ /*
+ * Current task is not changing boostgroup, which can
+ * happen when the new hierarchy is in use.
+ */
+ if (unlikely(dst_bg == src_bg)) {
+ raw_spin_unlock(&bg->lock);
+ task_rq_unlock(rq, task, &rq_flags);
+ continue;
+ }
+
+ /*
+ * This is the case of a RUNNABLE task which is switching its
+ * current boost group.
+ */
+
+ /* Move task from src to dst boost group */
+ tasks = bg->group[src_bg].tasks - 1;
+ bg->group[src_bg].tasks = max(0, tasks);
+ bg->group[dst_bg].tasks += 1;
+
+ raw_spin_unlock(&bg->lock);
+ task_rq_unlock(rq, task, &rq_flags);
+
+ /* Update CPU boost group */
+ if (bg->group[src_bg].tasks == 0 || bg->group[dst_bg].tasks == 1)
+ schedtune_cpu_update(task_cpu(task));
+
+ }
+
+ return 0;
+}
+
+void schedtune_cancel_attach(struct cgroup_taskset *tset)
+{
+ /* This can happen only if SchedTune controller is mounted with
+ * other hierarchies ane one of them fails. Since usually SchedTune is
+ * mouted on its own hierarcy, for the time being we do not implement
+ * a proper rollback mechanism */
+ WARN(1, "SchedTune cancel attach not implemented");
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_dequeue_task(struct task_struct *p, int cpu)
+{
+ struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+ unsigned long irq_flags;
+ struct schedtune *st;
+ int idx;
+
+ if (unlikely(!schedtune_initialized))
+ return;
+
+ /*
+ * Boost group accouting is protected by a per-cpu lock and requires
+ * interrupt to be disabled to avoid race conditions on...
+ */
+ raw_spin_lock_irqsave(&bg->lock, irq_flags);
+ rcu_read_lock();
+
+ st = task_schedtune(p);
+ idx = st->idx;
+
+ schedtune_tasks_update(p, cpu, idx, DEQUEUE_TASK);
+
+ rcu_read_unlock();
+ raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+int schedtune_cpu_boost(int cpu)
+{
+ struct boost_groups *bg;
+
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ return bg->boost_max;
+}
+
+int schedtune_task_boost(struct task_struct *p)
+{
+ struct schedtune *st;
+ int task_boost;
+
+ if (unlikely(!schedtune_initialized))
+ return 0;
+
+ /* Get task boost value */
+ rcu_read_lock();
+ st = task_schedtune(p);
+ task_boost = st->boost;
+ rcu_read_unlock();
+
+ return task_boost;
+}
+
+int schedtune_prefer_idle(struct task_struct *p)
+{
+ struct schedtune *st;
+ int prefer_idle;
+
+ if (unlikely(!schedtune_initialized))
+ return 0;
+
+ /* Get prefer_idle value */
+ rcu_read_lock();
+ st = task_schedtune(p);
+ prefer_idle = st->prefer_idle;
+ rcu_read_unlock();
+
+ return prefer_idle;
+}
+
+static u64
+prefer_idle_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+ struct schedtune *st = css_st(css);
+
+ return st->prefer_idle;
+}
+
+static int
+prefer_idle_write(struct cgroup_subsys_state *css, struct cftype *cft,
+ u64 prefer_idle)
+{
+ struct schedtune *st = css_st(css);
+ st->prefer_idle = !!prefer_idle;
+
+ return 0;
+}
+
+static s64
+boost_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+ struct schedtune *st = css_st(css);
+
+ return st->boost;
+}
+
+static int
+boost_write(struct cgroup_subsys_state *css, struct cftype *cft,
+ s64 boost)
+{
+ struct schedtune *st = css_st(css);
+
+ if (boost < 0 || boost > 100)
+ return -EINVAL;
+
+ st->boost = boost;
+
+ /* Update CPU boost */
+ schedtune_boostgroup_update(st->idx, st->boost);
+
+ return 0;
+}
+
+static struct cftype files[] = {
+ {
+ .name = "boost",
+ .read_s64 = boost_read,
+ .write_s64 = boost_write,
+ },
+ {
+ .name = "prefer_idle",
+ .read_u64 = prefer_idle_read,
+ .write_u64 = prefer_idle_write,
+ },
+ { } /* terminate */
+};
+
+static void
+schedtune_boostgroup_init(struct schedtune *st, int idx)
+{
+ struct boost_groups *bg;
+ int cpu;
+
+ /* Initialize per CPUs boost group support */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ bg->group[idx].boost = 0;
+ bg->group[idx].valid = true;
+ }
+
+ /* Keep track of allocated boost groups */
+ allocated_group[idx] = st;
+ st->idx = idx;
+}
+
+static struct cgroup_subsys_state *
+schedtune_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct schedtune *st;
+ int idx;
+
+ if (!parent_css)
+ return &root_schedtune.css;
+
+ /* Allow only single level hierachies */
+ if (parent_css != &root_schedtune.css) {
+ pr_err("Nested SchedTune boosting groups not allowed\n");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /* Allow only a limited number of boosting groups */
+ for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx)
+ if (!allocated_group[idx])
+ break;
+ if (idx == BOOSTGROUPS_COUNT) {
+ pr_err("Trying to create more than %d SchedTune boosting groups\n",
+ BOOSTGROUPS_COUNT);
+ return ERR_PTR(-ENOSPC);
+ }
+
+ st = kzalloc(sizeof(*st), GFP_KERNEL);
+ if (!st)
+ goto out;
+
+ /* Initialize per CPUs boost group support */
+ schedtune_boostgroup_init(st, idx);
+
+ return &st->css;
+
+out:
+ return ERR_PTR(-ENOMEM);
+}
+
+static void
+schedtune_boostgroup_release(struct schedtune *st)
+{
+ struct boost_groups *bg;
+ int cpu;
+
+ /* Reset per CPUs boost group support */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ bg->group[st->idx].valid = false;
+ bg->group[st->idx].boost = 0;
+ }
+
+ /* Keep track of allocated boost groups */
+ allocated_group[st->idx] = NULL;
+}
+
+static void
+schedtune_css_free(struct cgroup_subsys_state *css)
+{
+ struct schedtune *st = css_st(css);
+
+ /* Release per CPUs boost group support */
+ schedtune_boostgroup_release(st);
+ kfree(st);
+}
+
+struct cgroup_subsys schedtune_cgrp_subsys = {
+ .css_alloc = schedtune_css_alloc,
+ .css_free = schedtune_css_free,
+ .can_attach = schedtune_can_attach,
+ .cancel_attach = schedtune_cancel_attach,
+ .legacy_cftypes = files,
+ .early_init = 1,
+};
+
+static inline void
+schedtune_init_cgroups(void)
+{
+ struct boost_groups *bg;
+ int cpu;
+
+ /* Initialize the per CPU boost groups */
+ for_each_possible_cpu(cpu) {
+ bg = &per_cpu(cpu_boost_groups, cpu);
+ memset(bg, 0, sizeof(struct boost_groups));
+ bg->group[0].valid = true;
+ raw_spin_lock_init(&bg->lock);
+ }
+
+ pr_info("schedtune: configured to support %d boost groups\n",
+ BOOSTGROUPS_COUNT);
+
+ schedtune_initialized = true;
+}
+
+/*
+ * Initialize the cgroup structures
+ */
+static int
+schedtune_init(void)
+{
+ schedtune_spc_rdiv = reciprocal_value(100);
+ schedtune_init_cgroups();
+ return 0;
+}
+postcore_initcall(schedtune_init);
diff --git a/kernel/sched/tune.h b/kernel/sched/tune.h
new file mode 100644
index 000000000000..bb187c6112a7
--- /dev/null
+++ b/kernel/sched/tune.h
@@ -0,0 +1,37 @@
+
+#ifdef CONFIG_SCHED_TUNE
+
+#include <linux/reciprocal_div.h>
+
+/*
+ * System energy normalization constants
+ */
+struct target_nrg {
+ unsigned long min_power;
+ unsigned long max_power;
+ struct reciprocal_value rdiv;
+};
+
+int schedtune_cpu_boost(int cpu);
+int schedtune_task_boost(struct task_struct *tsk);
+
+int schedtune_prefer_idle(struct task_struct *tsk);
+
+void schedtune_enqueue_task(struct task_struct *p, int cpu);
+void schedtune_dequeue_task(struct task_struct *p, int cpu);
+
+unsigned long boosted_cpu_util(int cpu);
+
+#else /* CONFIG_SCHED_TUNE */
+
+#define schedtune_cpu_boost(cpu) 0
+#define schedtune_task_boost(tsk) 0
+
+#define schedtune_prefer_idle(tsk) 0
+
+#define schedtune_enqueue_task(task, cpu) do { } while (0)
+#define schedtune_dequeue_task(task, cpu) do { } while (0)
+
+#define boosted_cpu_util(cpu) cpu_util_cfs(cpu_rq(cpu))
+
+#endif /* CONFIG_SCHED_TUNE */