summaryrefslogtreecommitdiff
path: root/firmware/os/algos/calibration/sphere_fit/sphere_fit_calibration.c
blob: 4b3eb4aa5d1362e340a34600233db8a2f062b0c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "calibration/sphere_fit/sphere_fit_calibration.h"

#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>

#ifdef SPHERE_FIT_DBG_ENABLED
#include "calibration/util/cal_log.h"
#endif  // SPHERE_FIT_DBG_ENABLED

#include "common/math/mat.h"
#include "common/math/vec.h"
#include "chre/util/nanoapp/assert.h"

// FORWARD DECLARATIONS
///////////////////////////////////////////////////////////////////////////////
// Utility for converting solver state to a calibration data structure.
static void convertStateToCalStruct(const float x[SF_STATE_DIM],
                                    struct ThreeAxisCalData *calstruct);

static bool runCalibration(struct SphereFitCal *sphere_cal,
                           const struct SphereFitData *data,
                           uint64_t timestamp_nanos);

#define MIN_VALID_DATA_NORM (1e-4f)

// FUNCTION IMPLEMENTATIONS
//////////////////////////////////////////////////////////////////////////////
void sphereFitInit(struct SphereFitCal *sphere_cal,
                   const struct LmParams *lm_params,
                   const size_t min_num_points_for_cal) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);
  CHRE_ASSERT_NOT_NULL(lm_params);

  // Initialize LM solver.
  lmSolverInit(&sphere_cal->lm_solver, lm_params,
               &sphereFitResidAndJacobianFunc);

  // Reset other parameters.
  sphereFitReset(sphere_cal);

  // Set num points for calibration, checking that it is above min.
  if (min_num_points_for_cal < MIN_NUM_SPHERE_FIT_POINTS) {
    sphere_cal->min_points_for_cal = MIN_NUM_SPHERE_FIT_POINTS;
  } else {
    sphere_cal->min_points_for_cal = min_num_points_for_cal;
  }
}

void sphereFitReset(struct SphereFitCal *sphere_cal) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);

  // Set state to default (diagonal scale matrix and zero offset).
  memset(&sphere_cal->x0[0], 0, sizeof(float) * SF_STATE_DIM);
  sphere_cal->x0[eParamScaleMatrix11] = 1.f;
  sphere_cal->x0[eParamScaleMatrix22] = 1.f;
  sphere_cal->x0[eParamScaleMatrix33] = 1.f;
  memcpy(sphere_cal->x, sphere_cal->x0, sizeof(sphere_cal->x));

  // Reset time.
  sphere_cal->estimate_time_nanos = 0;
}

void sphereFitSetSolverData(struct SphereFitCal *sphere_cal,
                            struct LmData *lm_data) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);
  CHRE_ASSERT_NOT_NULL(lm_data);

  // Set solver data.
  lmSolverSetData(&sphere_cal->lm_solver, lm_data);
}

bool sphereFitRunCal(struct SphereFitCal *sphere_cal,
                     const struct SphereFitData *data,
                     uint64_t timestamp_nanos) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);
  CHRE_ASSERT_NOT_NULL(data);

  // Run calibration if have enough points.
  if (data->num_fit_points >= sphere_cal->min_points_for_cal) {
    return runCalibration(sphere_cal, data, timestamp_nanos);
  }

  return false;
}

void sphereFitSetInitialBias(struct SphereFitCal *sphere_cal,
                             const float initial_bias[THREE_AXIS_DIM]) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);
  sphere_cal->x0[eParamOffset1] = initial_bias[0];
  sphere_cal->x0[eParamOffset2] = initial_bias[1];
  sphere_cal->x0[eParamOffset3] = initial_bias[2];
}

void sphereFitGetLatestCal(const struct SphereFitCal *sphere_cal,
                           struct ThreeAxisCalData *cal_data) {
  CHRE_ASSERT_NOT_NULL(sphere_cal);
  CHRE_ASSERT_NOT_NULL(cal_data);
  convertStateToCalStruct(sphere_cal->x, cal_data);
  cal_data->calibration_time_nanos = sphere_cal->estimate_time_nanos;
}

void sphereFitResidAndJacobianFunc(const float *state, const void *f_data,
                                   float *residual, float *jacobian) {
  CHRE_ASSERT_NOT_NULL(state);
  CHRE_ASSERT_NOT_NULL(f_data);
  CHRE_ASSERT_NOT_NULL(residual);

  const struct SphereFitData *data = (const struct SphereFitData *)f_data;

  // Verify that expected norm is non-zero, else use default of 1.0.
  float expected_norm = 1.0;
  CHRE_ASSERT(data->expected_norm > MIN_VALID_DATA_NORM);
  if (data->expected_norm > MIN_VALID_DATA_NORM) {
    expected_norm = data->expected_norm;
  }

  // Convert parameters to calibration structure.
  struct ThreeAxisCalData calstruct;
  convertStateToCalStruct(state, &calstruct);

  // Compute Jacobian helper matrix if Jacobian requested.
  //
  // J = d(||M(x_data - bias)|| - expected_norm)/dstate
  //   = (M(x_data - bias) / ||M(x_data - bias)||) * d(M(x_data - bias))/dstate
  //   = x_corr / ||x_corr|| * A
  // A = d(M(x_data - bias))/dstate
  //   = [dy/dM11, dy/dM21, dy/dM22, dy/dM31, dy/dM32, dy/dM3,...
  //      dy/db1, dy/db2, dy/db3]'
  // where:
  // dy/dM11 = [x_data[0] - bias[0], 0, 0]
  // dy/dM21 = [0, x_data[0] - bias[0], 0]
  // dy/dM22 = [0, x_data[1] - bias[1], 0]
  // dy/dM31 = [0, 0, x_data[0] - bias[0]]
  // dy/dM32 = [0, 0, x_data[1] - bias[1]]
  // dy/dM33 = [0, 0, x_data[2] - bias[2]]
  // dy/db1 = [-scale_factor_x, 0, 0]
  // dy/db2 = [0, -scale_factor_y, 0]
  // dy/db3 = [0, 0, -scale_factor_z]
  float A[SF_STATE_DIM * THREE_AXIS_DIM];
  if (jacobian) {
    memset(jacobian, 0, sizeof(float) * SF_STATE_DIM * data->num_fit_points);
    memset(A, 0, sizeof(A));
    A[0 * SF_STATE_DIM + eParamOffset1] = -calstruct.scale_factor_x;
    A[1 * SF_STATE_DIM + eParamOffset2] = -calstruct.scale_factor_y;
    A[2 * SF_STATE_DIM + eParamOffset3] = -calstruct.scale_factor_z;
  }

  // Loop over all data points to compute residual and Jacobian.
  // TODO(dvitus): Use fit_data_std when available to weight residuals.
  float x_corr[THREE_AXIS_DIM];
  float x_bias_corr[THREE_AXIS_DIM];
  size_t i;
  for (i = 0; i < data->num_fit_points; ++i) {
    const float *x_data = &data->fit_data[i * THREE_AXIS_DIM];

    // Compute corrected sensor data
    calDataCorrectData(&calstruct, x_data, x_corr);

    // Compute norm of x_corr.
    const float norm = vecNorm(x_corr, THREE_AXIS_DIM);

    // Compute residual error: f_x = norm - exp_norm
    residual[i] = norm - data->expected_norm;

    // Compute Jacobian if valid pointer.
    if (jacobian) {
      if (norm < MIN_VALID_DATA_NORM) {
        return;
      }
      const float scale = 1.f / norm;

      // Compute bias corrected data.
      vecSub(x_bias_corr, x_data, calstruct.bias, THREE_AXIS_DIM);

      // Populate non-bias terms for A
      A[0 + eParamScaleMatrix11] = x_bias_corr[0];
      A[1 * SF_STATE_DIM + eParamScaleMatrix21] = x_bias_corr[0];
      A[1 * SF_STATE_DIM + eParamScaleMatrix22] = x_bias_corr[1];
      A[2 * SF_STATE_DIM + eParamScaleMatrix31] = x_bias_corr[0];
      A[2 * SF_STATE_DIM + eParamScaleMatrix32] = x_bias_corr[1];
      A[2 * SF_STATE_DIM + eParamScaleMatrix33] = x_bias_corr[2];

      // Compute J = x_corr / ||x_corr|| * A
      matTransposeMultiplyVec(&jacobian[i * SF_STATE_DIM], A, x_corr,
                              THREE_AXIS_DIM, SF_STATE_DIM);
      vecScalarMulInPlace(&jacobian[i * SF_STATE_DIM], scale, SF_STATE_DIM);
    }
  }
}

void convertStateToCalStruct(const float x[SF_STATE_DIM],
                             struct ThreeAxisCalData *calstruct) {
  memcpy(&calstruct->bias[0], &x[eParamOffset1],
         sizeof(float) * THREE_AXIS_DIM);
  calstruct->scale_factor_x = x[eParamScaleMatrix11];
  calstruct->skew_yx = x[eParamScaleMatrix21];
  calstruct->scale_factor_y = x[eParamScaleMatrix22];
  calstruct->skew_zx = x[eParamScaleMatrix31];
  calstruct->skew_zy = x[eParamScaleMatrix32];
  calstruct->scale_factor_z = x[eParamScaleMatrix33];
}

bool runCalibration(struct SphereFitCal *sphere_cal,
                    const struct SphereFitData *data,
                    uint64_t timestamp_nanos) {
  float x_sol[SF_STATE_DIM];

  // Run calibration
  const enum LmStatus status =
      lmSolverSolve(&sphere_cal->lm_solver, sphere_cal->x0, (void *)data,
                    SF_STATE_DIM, data->num_fit_points, x_sol);

  // Check if solver was successful
  if (status == RELATIVE_STEP_SUFFICIENTLY_SMALL ||
      status == GRADIENT_SUFFICIENTLY_SMALL) {
    // TODO(dvitus): Check quality of new fit before using.
    // Store new fit.
#ifdef SPHERE_FIT_DBG_ENABLED
    CAL_DEBUG_LOG("[SPHERE CAL]",
                  "Solution found in %d iterations with status %d.\n",
                  sphere_cal->lm_solver.num_iter, status);
    CAL_DEBUG_LOG("[SPHERE CAL]", "Solution:\n {"
                  CAL_FORMAT_6DIGITS " [M(1,1)], "
                  CAL_FORMAT_6DIGITS " [M(2,1)], "
                  CAL_FORMAT_6DIGITS " [M(2,2)], \n"
                  CAL_FORMAT_6DIGITS " [M(3,1)], "
                  CAL_FORMAT_6DIGITS " [M(3,2)], "
                  CAL_FORMAT_6DIGITS " [M(3,3)], \n"
                  CAL_FORMAT_6DIGITS " [b(1)], "
                  CAL_FORMAT_6DIGITS " [b(2)], "
                  CAL_FORMAT_6DIGITS " [b(3)]}.",
                  CAL_ENCODE_FLOAT(x_sol[0], 6), CAL_ENCODE_FLOAT(x_sol[1], 6),
                  CAL_ENCODE_FLOAT(x_sol[2], 6), CAL_ENCODE_FLOAT(x_sol[3], 6),
                  CAL_ENCODE_FLOAT(x_sol[4], 6), CAL_ENCODE_FLOAT(x_sol[5], 6),
                  CAL_ENCODE_FLOAT(x_sol[6], 6), CAL_ENCODE_FLOAT(x_sol[7], 6),
                  CAL_ENCODE_FLOAT(x_sol[8], 6));
#endif  // SPHERE_FIT_DBG_ENABLED
    memcpy(sphere_cal->x, x_sol, sizeof(x_sol));
    sphere_cal->estimate_time_nanos = timestamp_nanos;
    return true;
  } else {
#ifdef SPHERE_FIT_DBG_ENABLED
    CAL_DEBUG_LOG("[SPHERE CAL]",
                  "Solution failed in %d iterations with status %d.\n",
                  sphere_cal->lm_solver.num_iter, status);
#endif  // SPHERE_FIT_DBG_ENABLED
  }

  return false;
}