summaryrefslogtreecommitdiff
path: root/firmware/os/drivers/st_lsm6dsm/st_lsm6dsm.c
blob: 0c9930c8ce341db03cfacdb9f3a107afacdf192f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
/*
 * Copyright (C) 2016-2017 STMicroelectronics
 *
 * Author: Denis Ciocca <denis.ciocca@st.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdlib.h>
#include <string.h>
#include <sensors.h>
#include <slab.h>
#include <heap.h>
#include <halIntf.h>
#include <spi.h>
#include <gpio.h>
#include <atomic.h>
#include <timer.h>
#include <printf.h>
#include <isr.h>
#include <hostIntf.h>
#include <nanohubPacket.h>
#include <cpu/cpuMath.h>
#include <variant/sensType.h>
#include <plat/gpio.h>
#include <plat/syscfg.h>
#include <plat/exti.h>
#include <plat/rtc.h>
#include <calibration/accelerometer/accel_cal.h>
#include <calibration/gyroscope/gyro_cal.h>
#include <calibration/magnetometer/mag_cal/mag_cal.h>
#include <calibration/over_temp/over_temp_cal.h>
#include <algos/time_sync.h>

#include "st_lsm6dsm_lis3mdl_slave.h"
#include "st_lsm6dsm_lsm303agr_slave.h"
#include "st_lsm6dsm_ak09916_slave.h"
#include "st_lsm6dsm_lps22hb_slave.h"

#define LSM6DSM_APP_VERSION 2

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) || defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
#define LSM6DSM_I2C_MASTER_ENABLED                      1
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

#if defined(LSM6DSM_MAGN_CALIB_ENABLED) && !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
#pragma message("LSM6DSM_MAGN_CALIB_ENABLED can not be used if no magnetometer sensors are enabled on I2C master. Disabling it!")
#undef LSM6DSM_MAGN_CALIB_ENABLED
#endif /* LSM6DSM_MAGN_CALIB_ENABLED, LSM6DSM_I2C_MASTER_ENABLED */

#if defined(LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP) && !defined(LSM6DSM_I2C_MASTER_ENABLED)
#pragma message("LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP has no meaning if no sensors are enabled on I2C master. Discarding it!")
#endif /* LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP, LSM6DSM_I2C_MASTER_ENABLED */

#if defined(LSM6DSM_OVERTEMP_CALIB_ENABLED) && !defined(LSM6DSM_GYRO_CALIB_ENABLED)
#pragma message("LSM6DSM_OVERTEMP_CALIB_ENABLED has no meaning if gyro calibration is not enabled. Discarding it!")
#undef LSM6DSM_OVERTEMP_CALIB_ENABLED
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED, LSM6DSM_GYRO_CALIB_ENABLED */

#if !defined(LSM6DSM_SPI_SLAVE_BUS_ID) || !defined(LSM6DSM_SPI_SLAVE_FREQUENCY_HZ) || !defined(LSM6DSM_SPI_SLAVE_CS_GPIO)
#error "SPI macros not fully defined. Please check README file"
#endif /* LSM6DSM_SPI_SLAVE_BUS_ID, LSM6DSM_SPI_SLAVE_FREQUENCY_HZ, LSM6DSM_SPI_SLAVE_CS_GPIO */

#if !defined(LSM6DSM_INT_IRQ) || !defined(LSM6DSM_INT1_GPIO)
#error "Interrupts macros not fully defined. Please check README file"
#endif /* LSM6DSM_INT_IRQ, LSM6DSM_INT1_GPIO */

#if !defined(LSM6DSM_ACCEL_GYRO_ROT_MATRIX)
#error "Accel/gyro rotation matrix macro not defined. Please check README file"
#endif /* LSM6DSM_ACCEL_GYRO_ROT_MATRIX */

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
#if !defined(LSM6DSM_MAGN_ROT_MATRIX)
#error "Magn rotation matrix macro not defined. Please check README file"
#endif /* LSM6DSM_MAGN_ROT_MATRIX */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#define LSM6DSM_APP_ID                                  APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 0)

#define LSM6DSM_WAI_VALUE                               (0x6a)
#define LSM6DSM_RETRY_CNT_WAI                           5               /* Retry #n times if WAI value is wrong. Maybe HW is not ready after power on */
#define LSM6DSM_ACCEL_KSCALE                            0.00239364f     /* Accel scale @8g in (m/s^2)/LSB */
#define LSM6DSM_GYRO_KSCALE                             0.00122173f     /* Gyro scale @2000dps in (rad/sec)/LSB */
#define LSM6DSM_ONE_SAMPLE_BYTE                         6               /* One sample of triaxial sensor is expressed on 6 byte */
#define LSM6DSM_TEMP_SAMPLE_BYTE                        2               /* One sample of temperature sensor is expressed on 2 byte */
#define LSM6DSM_TIMESTAMP_SAMPLE_BYTE                   3               /* One sample of timestamp is expressed on 3 byte */
#define LSM6DSM_TEMP_OFFSET                             (25.0f)
#define LSM6DSM_SC_DELTA_TIME_PERIOD_SEC                (1.6384f)       /* Step counter deltatime resolution */
#define LSM6DSM_MAX_NUM_COMMS_EVENT_SAMPLE              15
#define LSM6DSM_MAX_WATERMARK_VALUE                     600             /* 4096byte = 682 samples, use 600 to avoid overflow */
#define LSM6DSM_TIME_RESOLUTION                         25000UL         /* 25us [ns] */
#define LSM6DSM_MASK_24BIT_TIMESTAMP                    0x00ffffff      /* mask to select 24bit data from 32bit storage data type */
#define LSM6DSM_TIMEDIFF_OVERFLOW_LSB                   8388608LL       /* If deltatime is bigger than 2^23 it means timer is overflowed */
#define LSM6DSM_SYNC_DELTA_INTERVAL                     100000000ULL    /* Sensor timestamp is synced with MCU every #n deltatime [ns] */
#define LSM6DSM_TRIAXIAL_NUM_AXIS                       3

/* SPI buffers */
#define LSM6DSM_SPI_PACKET_SIZE                         75
#define LSM6DSM_SPI_FIFO_SIZE                           1024
#define LSM6DSM_BUF_MARGIN                              100
#define SPI_BUF_SIZE                                    (LSM6DSM_SPI_FIFO_SIZE + LSM6DSM_BUF_MARGIN)

/* LSM6DSM status check registers */
#define LSM6DSM_FUNC_SRC_STEP_DETECTED                  (0x10)
#define LSM6DSM_FUNC_SRC_STEP_COUNT_DELTA_IA            (0x80)
#define LSM6DSM_FUNC_SRC_SIGN_MOTION                    (0x40)
#define LSM6DSM_FIFO_STATUS2_FIFO_EMPTY                 (0x10)
#define LSM6DSM_FIFO_STATUS2_FIFO_FULL_SMART            (0x20)
#define LSM6DSM_FIFO_STATUS2_FIFO_FULL_OVERRUN          (0x40)
#define LSM6DSM_FIFO_STATUS2_FIFO_ERROR                 (LSM6DSM_FIFO_STATUS2_FIFO_EMPTY | \
                                                         LSM6DSM_FIFO_STATUS2_FIFO_FULL_SMART | \
                                                         LSM6DSM_FIFO_STATUS2_FIFO_FULL_OVERRUN)

/* LSM6DSM ODR related */
#define LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON              80000
#define LSM6DSM_ODR_12HZ_ACCEL_STD                      1
#define LSM6DSM_ODR_26HZ_ACCEL_STD                      1
#define LSM6DSM_ODR_52HZ_ACCEL_STD                      1
#define LSM6DSM_ODR_104HZ_ACCEL_STD                     1
#define LSM6DSM_ODR_208HZ_ACCEL_STD                     1
#define LSM6DSM_ODR_416HZ_ACCEL_STD                     1
#define LSM6DSM_ODR_12HZ_GYRO_STD                       2
#define LSM6DSM_ODR_26HZ_GYRO_STD                       3
#define LSM6DSM_ODR_52HZ_GYRO_STD                       3
#define LSM6DSM_ODR_104HZ_GYRO_STD                      3
#define LSM6DSM_ODR_208HZ_GYRO_STD                      3
#define LSM6DSM_ODR_416HZ_GYRO_STD                      3

#define LSM6DSM_ODR_12HZ_REG_VALUE                      (0x10)
#define LSM6DSM_ODR_26HZ_REG_VALUE                      (0x20)
#define LSM6DSM_ODR_52HZ_REG_VALUE                      (0x30)
#define LSM6DSM_ODR_104HZ_REG_VALUE                     (0x40)
#define LSM6DSM_ODR_208HZ_REG_VALUE                     (0x50)
#define LSM6DSM_ODR_416HZ_REG_VALUE                     (0x60)

#define LSM6DSM_INT_FIFO_FTH_ENABLE_REG_VALUE           (0x08)
#define LSM6DSM_INT_STEP_DETECTOR_ENABLE_REG_VALUE      (0x80)
#define LSM6DSM_INT_STEP_COUNTER_ENABLE_REG_VALUE       (0x80)
#define LSM6DSM_INT_SIGN_MOTION_ENABLE_REG_VALUE        (0x40)

/* LSM6DSM registers */
#define LSM6DSM_FUNC_CFG_ACCESS_ADDR                    (0x01)
#define LSM6DSM_FIFO_CTRL1_ADDR                         (0x06)
#define LSM6DSM_FIFO_CTRL5_ADDR                         (0x0a)
#define LSM6DSM_DRDY_PULSE_CFG_ADDR                     (0x0b)
#define LSM6DSM_INT1_CTRL_ADDR                          (0x0d)
#define LSM6DSM_INT2_CTRL_ADDR                          (0x0e)
#define LSM6DSM_WAI_ADDR                                (0x0f)
#define LSM6DSM_CTRL1_XL_ADDR                           (0x10)
#define LSM6DSM_CTRL2_G_ADDR                            (0x11)
#define LSM6DSM_CTRL3_C_ADDR                            (0x12)
#define LSM6DSM_CTRL4_C_ADDR                            (0x13)
#define LSM6DSM_CTRL5_C_ADDR                            (0x14)
#define LSM6DSM_EBD_STEP_COUNT_DELTA_ADDR               (0x15)
#define LSM6DSM_CTRL10_C_ADDR                           (0x19)
#define LSM6DSM_MASTER_CONFIG_ADDR                      (0x1a)
#define LSM6DSM_STATUS_REG_ADDR                         (0x1e)
#define LSM6DSM_OUT_TEMP_L_ADDR                         (0x20)
#define LSM6DSM_OUTX_L_G_ADDR                           (0x22)
#define LSM6DSM_OUTX_L_XL_ADDR                          (0x28)
#define LSM6DSM_OUT_SENSORHUB1_ADDR                     (0x2e)
#define LSM6DSM_FIFO_STATUS1_ADDR                       (0x3a)
#define LSM6DSM_FIFO_DATA_OUT_L_ADDR                    (0x3e)
#define LSM6DSM_TIMESTAMP0_REG_ADDR                     (0x40)
#define LSM6DSM_TIMESTAMP2_REG_ADDR                     (0x42)
#define LSM6DSM_STEP_COUNTER_L_ADDR                     (0x4b)
#define LSM6DSM_FUNC_SRC_ADDR                           (0x53)
#define LSM6DSM_WAKE_UP_DUR_ADDR                        (0x5c)
#define LSM6DSM_X_OFS_USR_ADDR                          (0x73)

#define LSM6DSM_SW_RESET                                (0x01)
#define LSM6DSM_RESET_PEDOMETER                         (0x02)
#define LSM6DSM_ENABLE_FUNC_CFG_ACCESS                  (0x80)
#define LSM6DSM_ENABLE_DIGITAL_FUNC                     (0x04)
#define LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC           (0x10)
#define LSM6DSM_ENABLE_SIGN_MOTION_DIGITAL_FUNC         (0x01)
#define LSM6DSM_MASTER_CONFIG_PULL_UP_EN                (0x08)
#define LSM6DSM_MASTER_CONFIG_MASTER_ON                 (0x01)
#define LSM6DSM_ENABLE_FIFO_TIMESTAMP                   (0x80)
#define LSM6DSM_TIMESTAMP2_REG_RESET_TIMESTAMP          (0xaa)

/* LSM6DSM fifo modes */
#define LSM6DSM_FIFO_BYPASS_MODE                        (0x00)
#define LSM6DSM_FIFO_CONTINUOS_MODE                     (0x36)
#define LSM6DSM_FIFO_CTRL2_FTH_MASK                     (0x07)

/* LSM6DSM fifo decimators */
#define LSM6DSM_FIFO_SAMPLE_NOT_IN_FIFO                 (0x00)
#define LSM6DSM_FIFO_NO_DECIMATION                      (0x01)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_2                (0x02)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_3                (0x03)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_4                (0x04)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_8                (0x05)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_16               (0x06)
#define LSM6DSM_FIFO_DECIMATION_FACTOR_32               (0x07)

/* LSM6DSM selftest related */
#define LSM6DSM_NUM_AVERAGE_SELFTEST                    5
#define LSM6DSM_NUM_AVERAGE_SELFTEST_SLOW               30
#define LSM6DSM_ACCEL_SELFTEST_PS                       (0x01)
#define LSM6DSM_GYRO_SELFTEST_PS                        (0x04)
#define LSM6DSM_ACCEL_SELFTEST_NS                       (0x02)
#define LSM6DSM_GYRO_SELFTEST_NS                        (0x0c)
#define LSM6DSM_ACCEL_SELFTEST_HIGH_THR_LSB             6967            /* 1700mg @8g in LSB */
#define LSM6DSM_ACCEL_SELFTEST_LOW_THR_LSB              368             /* 90mg @8g in LSB */
#define LSM6DSM_GYRO_SELFTEST_HIGH_THR_LSB              10000           /* 700dps @2000dps in LSB */
#define LSM6DSM_GYRO_SELFTEST_LOW_THR_LSB               2142            /* 150dps @2000dps in LSB */

/* LSM6DSM calibration related */
#define LSM6DSM_NUM_AVERAGE_CALIBRATION                 10
#define LSM6DSM_1G_IN_LSB_CALIBRATION                   4098            /* 1000mg @8g in LSB */
#define LSM6DSM_ACCEL_MAX_CALIBRATION_THR_LSB           127             /* 8-bit available */
#define LSM6DSM_ACCEL_LSB_TO_OFFSET_DIGIT_SCALE         0.2501f         /* @8g */

/* LSM6DSM embedded registers */
#define LSM6DSM_EMBEDDED_SLV0_ADDR_ADDR                 (0x02)
#define LSM6DSM_EMBEDDED_SLV0_SUBADDR_ADDR              (0x03)
#define LSM6DSM_EMBEDDED_SLV0_CONFIG_ADDR               (0x04)
#define LSM6DSM_EMBEDDED_SLV1_ADDR_ADDR                 (0x05)
#define LSM6DSM_EMBEDDED_SLV1_SUBADDR_ADDR              (0x06)
#define LSM6DSM_EMBEDDED_SLV1_CONFIG_ADDR               (0x07)
#define LSM6DSM_EMBEDDED_SLV2_ADDR_ADDR                 (0x08)
#define LSM6DSM_EMBEDDED_SLV2_SUBADDR_ADDR              (0x09)
#define LSM6DSM_EMBEDDED_SLV2_CONFIG_ADDR               (0x0a)
#define LSM6DSM_EMBEDDED_SLV3_ADDR_ADDR                 (0x0b)
#define LSM6DSM_EMBEDDED_SLV3_SUBADDR_ADDR              (0x0c)
#define LSM6DSM_EMBEDDED_SLV3_CONFIG_ADDR               (0x0d)
#define LSM6DSM_EMBEDDED_DATAWRITE_SLV0_ADDR            (0x0e)
#define LSM6DSM_EMBEDDED_STEP_COUNT_DELTA_ADDR          (0x15)

#define LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB             (0x01)
#define LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_ONE_SENSOR     (0x10)
#define LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_TWO_SENSOR     (0x20)
#define LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_THREE_SENSOR   (0x30)
#define LSM6DSM_EMBEDDED_SLV1_CONFIG_WRITE_ONCE         (0x20)
#define LSM6DSM_EMBEDDED_SLV0_WRITE_ADDR_SLEEP          (0x07)

/* LSM6DSM I2C master - slave devices */
#ifdef LSM6DSM_I2C_MASTER_LIS3MDL
#define LSM6DSM_MAGN_KSCALE                             LIS3MDL_KSCALE
#define LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT         LIS3MDL_I2C_ADDRESS
#define LSM6DSM_SENSOR_SLAVE_MAGN_DUMMY_REG_ADDR        LIS3MDL_WAI_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_ADDR            LIS3MDL_CTRL2_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_VALUE           LIS3MDL_SW_RESET
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR            LIS3MDL_CTRL3_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE            LIS3MDL_CTRL3_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE        LIS3MDL_POWER_ON_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE       LIS3MDL_POWER_OFF_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR              LIS3MDL_CTRL1_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE              LIS3MDL_CTRL1_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_ADDR          LIS3MDL_OUTDATA_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN           LIS3MDL_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(i)    LIS3MDLMagnRatesRegValue[i]
#endif /* LSM6DSM_I2C_MASTER_LIS3MDL */

#ifdef LSM6DSM_I2C_MASTER_AK09916
#define LSM6DSM_MAGN_KSCALE                             AK09916_KSCALE
#define LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT         AK09916_I2C_ADDRESS
#define LSM6DSM_SENSOR_SLAVE_MAGN_DUMMY_REG_ADDR        AK09916_WAI_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_ADDR            AK09916_CNTL3_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_VALUE           AK09916_SW_RESET
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR            AK09916_CNTL2_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE            AK09916_CNTL2_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE        AK09916_POWER_ON_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE       AK09916_POWER_OFF_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR              AK09916_CNTL2_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE              AK09916_CNTL2_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_ADDR          AK09916_OUTDATA_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN           AK09916_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(i)    AK09916MagnRatesRegValue[i]
#endif /* LSM6DSM_I2C_MASTER_AK09916 */

#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
#define LSM6DSM_MAGN_KSCALE                             LSM303AGR_KSCALE
#define LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT         LSM303AGR_I2C_ADDRESS
#define LSM6DSM_SENSOR_SLAVE_MAGN_DUMMY_REG_ADDR        LSM303AGR_WAI_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_ADDR            LSM303AGR_CFG_REG_A_M_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_RESET_VALUE           LSM303AGR_SW_RESET
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR            LSM303AGR_CFG_REG_A_M_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE            LSM303AGR_CFG_REG_A_M_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE        LSM303AGR_POWER_ON_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE       LSM303AGR_POWER_OFF_VALUE
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR              LSM303AGR_CFG_REG_A_M_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE              LSM303AGR_CFG_REG_A_M_BASE
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_ADDR          LSM303AGR_OUTDATA_ADDR
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN           LSM303AGR_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(i)    LSM303AGRMagnRatesRegValue[i]
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */

#ifdef LSM6DSM_I2C_MASTER_LPS22HB
#define LSM6DSM_PRESS_KSCALE                            LPS22HB_PRESS_KSCALE
#define LSM6DSM_TEMP_KSCALE                             LPS22HB_TEMP_KSCALE
#define LSM6DSM_PRESS_OUTDATA_LEN                       LPS22HB_OUTDATA_PRESS_BYTE
#define LSM6DSM_TEMP_OUTDATA_LEN                        LPS22HB_OUTDATA_TEMP_BYTE
#define LSM6DSM_SENSOR_SLAVE_BARO_I2C_ADDR_8BIT         LPS22HB_I2C_ADDRESS
#define LSM6DSM_SENSOR_SLAVE_BARO_DUMMY_REG_ADDR        LPS22HB_WAI_ADDR
#define LSM6DSM_SENSOR_SLAVE_BARO_RESET_ADDR            LPS22HB_CTRL2_ADDR
#define LSM6DSM_SENSOR_SLAVE_BARO_RESET_VALUE           LPS22HB_SW_RESET
#define LSM6DSM_SENSOR_SLAVE_BARO_POWER_ADDR            LPS22HB_CTRL1_ADDR
#define LSM6DSM_SENSOR_SLAVE_BARO_POWER_BASE            LPS22HB_CTRL1_BASE
#define LSM6DSM_SENSOR_SLAVE_BARO_POWER_ON_VALUE        LPS22HB_POWER_ON_VALUE
#define LSM6DSM_SENSOR_SLAVE_BARO_POWER_OFF_VALUE       LPS22HB_POWER_OFF_VALUE
#define LSM6DSM_SENSOR_SLAVE_BARO_ODR_ADDR              LPS22HB_CTRL1_ADDR
#define LSM6DSM_SENSOR_SLAVE_BARO_ODR_BASE              LPS22HB_CTRL1_BASE
#define LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_ADDR          LPS22HB_OUTDATA_ADDR
#define LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN           LPS22HB_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_BARO_RATES_REG_VALUE(i)    LPS22HBBaroRatesRegValue[i]
#endif /* LSM6DSM_I2C_MASTER_LPS22HB */

#ifndef LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN           0
#endif /* LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN */
#ifndef LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN
#define LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN           0
#endif /* LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN */

/* Magn only enabled */
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && !defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
#ifdef LSM6DSM_I2C_MASTER_AK09916
#define LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE           LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_TWO_SENSOR
#else /* LSM6DSM_I2C_MASTER_AK09916 */
#define LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE           LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_ONE_SENSOR
#endif /* LSM6DSM_I2C_MASTER_AK09916 */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */

/* Baro only enabled */
#if !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
#define LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE           LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_ONE_SENSOR
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */

/* Magn & Baro both enabled */
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
#ifdef LSM6DSM_I2C_MASTER_AK09916
#define LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE           LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_THREE_SENSOR
#else /* LSM6DSM_I2C_MASTER_AK09916 */
#define LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE           LSM6DSM_EMBEDDED_SENSOR_HUB_HAVE_TWO_SENSOR
#endif /* LSM6DSM_I2C_MASTER_AK09916 */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */


/* LSM6DSM default base registers status */
/* LSM6DSM_FUNC_CFG_ACCESS_BASE: enable embedded functions register */
#define LSM6DSM_FUNC_CFG_ACCESS_BASE                    (0x00)

/* LSM6DSM_DRDY_PULSE_CFG_BASE: enable pulsed interrupt register */
#define LSM6DSM_DRDY_PULSE_CFG_BASE                     (0x00)

/* LSM6DSM_INT1_CTRL_BASE: interrupt 1 control register default settings */
#define LSM6DSM_INT1_CTRL_BASE                          ((0 << 7) |    /* INT1_STEP_DETECTOR */ \
                                                         (0 << 6) |    /* INT1_SIGN_MOT */ \
                                                         (1 << 5) |    /* INT1_FULL_FLAG */ \
                                                         (1 << 4) |    /* INT1_FIFO_OVR */ \
                                                         (1 << 3) |    /* INT1_FTH */ \
                                                         (0 << 2) |    /* INT1_BOOT */ \
                                                         (0 << 1) |    /* INT1_DRDY_G */ \
                                                         (0 << 0))     /* INT1_DRDY_XL */

/* LSM6DSM_INT2_CTRL_BASE: interrupt 2 control register default settings */
#define LSM6DSM_INT2_CTRL_BASE                          ((0 << 7) |    /* INT2_STEP_DELTA */ \
                                                         (0 << 6) |    /* INT2_STEP_OV */ \
                                                         (0 << 5) |    /* INT2_FULL_FLAG */ \
                                                         (0 << 4) |    /* INT2_FIFO_OVR */ \
                                                         (0 << 3) |    /* INT2_FTH */ \
                                                         (0 << 2) |    /* INT2_DRDY_TEMP */ \
                                                         (0 << 1) |    /* INT2_DRDY_G */ \
                                                         (0 << 0))     /* INT2_DRDY_XL */

/* LSM6DSM_CTRL1_XL_BASE: accelerometer sensor register default settings */
#define LSM6DSM_CTRL1_XL_BASE                           ((0 << 7) |    /* ODR_XL3 */ \
                                                         (0 << 6) |    /* ODR_XL2 */ \
                                                         (0 << 5) |    /* ODR_XL1 */ \
                                                         (0 << 4) |    /* ODR_XL0 */ \
                                                         (1 << 3) |    /* FS_XL1 */ \
                                                         (1 << 2) |    /* FS_XL0 */ \
                                                         (0 << 1) |    /* LPF1_BW_SEL */ \
                                                         (0 << 0))     /* (0) */

/* LSM6DSM_CTRL2_G_BASE: gyroscope sensor register default settings */
#define LSM6DSM_CTRL2_G_BASE                            ((0 << 7) |    /* ODR_G3 */ \
                                                         (0 << 6) |    /* ODR_G2 */ \
                                                         (0 << 5) |    /* ODR_G1 */ \
                                                         (0 << 4) |    /* ODR_G0 */ \
                                                         (1 << 3) |    /* FS_G1 */ \
                                                         (1 << 2) |    /* FS_G0 */ \
                                                         (0 << 1) |    /* FS_125 */ \
                                                         (0 << 0))     /* (0) */

/* LSM6DSM_CTRL3_C_BASE: control register 3 default settings */
#define LSM6DSM_CTRL3_C_BASE                            ((0 << 7) |    /* BOOT */ \
                                                         (1 << 6) |    /* BDU */ \
                                                         (0 << 5) |    /* H_LACTIVE */ \
                                                         (0 << 4) |    /* PP_OD */ \
                                                         (0 << 3) |    /* SIM */ \
                                                         (1 << 2) |    /* IF_INC */ \
                                                         (0 << 1) |    /* BLE */ \
                                                         (0 << 0))     /* SW_RESET */

/* LSM6DSM_CTRL4_C_BASE: control register 4 default settings */
#define LSM6DSM_CTRL4_C_BASE                            ((0 << 7) |    /* DEN_XL_EN */ \
                                                         (0 << 6) |    /* SLEEP */ \
                                                         (1 << 5) |    /* INT2_on_INT1 */ \
                                                         (0 << 4) |    /* DEN_DRDY_MASK */ \
                                                         (0 << 3) |    /* DRDY_MASK */ \
                                                         (1 << 2) |    /* I2C_disable */ \
                                                         (0 << 1) |    /* LPF1_SEL_G */ \
                                                         (0 << 0))     /* (0) */

/* LSM6DSM_CTRL5_C_BASE: control register 5 default settings */
#define LSM6DSM_CTRL5_C_BASE                            (0x00)

/* LSM6DSM_CTRL10_C_BASE: control register 10 default settings */
#define LSM6DSM_CTRL10_C_BASE                           ((0 << 7) |    /* (WRIST_TILT_EN) */ \
                                                         (0 << 6) |    /* (0) */ \
                                                         (1 << 5) |    /* TIMER_EN */ \
                                                         (0 << 4) |    /* PEDO_EN */ \
                                                         (0 << 3) |    /* TILT_EN */ \
                                                         (1 << 2) |    /* FUNC_EN */ \
                                                         (0 << 1) |    /* PEDO_RST_STEP */ \
                                                         (0 << 0))     /* SIGN_MOTION_EN */

/* LSM6DSM_MASTER_CONFIG_BASE: I2C master configuration register default value */
#ifdef LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP
#define LSM6DSM_MASTER_CONFIG_BASE                      (LSM6DSM_MASTER_CONFIG_PULL_UP_EN)
#else /* LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP */
#define LSM6DSM_MASTER_CONFIG_BASE                      (0x00)
#endif /* LSM6DSM_I2C_MASTER_USE_INTERNAL_PULLUP */

/* LSM6DSM_WAKE_UP_DUR_BASE: control register WK default settings */
#define LSM6DSM_WAKE_UP_DUR_BASE                        (0x10)         /* TIMER_HR */

#define LSM6DSM_X_MAP(x, y, z, r11, r12, r13, r21, r22, r23, r31, r32, r33) \
                                                        ((r11 == 1 ? x : (r11 == -1 ? -x : 0)) + \
                                                        (r21 == 1 ? y : (r21 == -1 ? -y : 0)) + \
                                                        (r31 == 1 ? z : (r31 == -1 ? -z : 0)))

#define LSM6DSM_Y_MAP(x, y, z, r11, r12, r13, r21, r22, r23, r31, r32, r33) \
                                                        ((r12 == 1 ? x : (r12 == -1 ? -x : 0)) + \
                                                        (r22 == 1 ? y : (r22 == -1 ? -y : 0)) + \
                                                        (r32 == 1 ? z : (r32 == -1 ? -z : 0)))

#define LSM6DSM_Z_MAP(x, y, z, r11, r12, r13, r21, r22, r23, r31, r32, r33) \
                                                        ((r13 == 1 ? x : (r13 == -1 ? -x : 0)) + \
                                                        (r23 == 1 ? y : (r23 == -1 ? -y : 0)) + \
                                                        (r33 == 1 ? z : (r33 == -1 ? -z : 0)))

#define LSM6DSM_REMAP_X_DATA(...)                       LSM6DSM_X_MAP(__VA_ARGS__)
#define LSM6DSM_REMAP_Y_DATA(...)                       LSM6DSM_Y_MAP(__VA_ARGS__)
#define LSM6DSM_REMAP_Z_DATA(...)                       LSM6DSM_Z_MAP(__VA_ARGS__)

enum SensorIndex {
    GYRO = 0,
    ACCEL,
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    MAGN,
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    PRESS,
    TEMP,
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    STEP_DETECTOR,
    STEP_COUNTER,
    SIGN_MOTION,
    NUM_SENSORS,
    EMBEDDED_TIMESTAMP
};

enum SensorFifoIndex {
    FIFO_GYRO,
    FIFO_ACCEL,
    FIFO_DS3,
    FIFO_DS4,
    FIFO_NUM
};

enum InitState {
    RESET_LSM6DSM = 0,
    INIT_LSM6DSM,
#ifdef LSM6DSM_I2C_MASTER_ENABLED
    INIT_I2C_MASTER_REGS_CONF,
    INIT_I2C_MASTER_SENSOR_RESET,
    INIT_I2C_MASTER_MAGN_SENSOR,
    INIT_I2C_MASTER_BARO_SENSOR,
    INIT_I2C_MASTER_SENSOR_END,
#endif /* LSM6DSM_I2C_MASTER_ENABLED */
    INIT_DONE,
};

enum SelfTestState {
    SELFTEST_INITIALIZATION = 0,
    SELFTEST_READ_EST_DATA,
    SELFTEST_SECOND_STEP_INITIALIZATION,
    SELFTEST_READ_NST_DATA,
    SELFTEST_VERIFICATION,
    SELFTEST_COMPLETED
};

enum CalibrationState {
    CALIBRATION_INITIALIZATION = 0,
    CALIBRATION_READ_DATA,
    CALIBRATION_VERIFICATION,
    CALIBRATION_COMPLETED
};

enum SensorEvents {
    NO_EVT = -1,
    EVT_SPI_DONE = EVT_APP_START + 1,
    EVT_START_ACCEL_TIME_CALIB,
    EVT_SENSOR_INTERRUPT_1,
    EVT_SENSOR_POWERING_UP,
    EVT_SENSOR_POWERING_DOWN,
    EVT_SENSOR_CONFIG_CHANGING,
    EVT_SENSOR_RESTORE_IDLE,
    EVT_TIME_SYNC
};

enum SensorState {
    SENSOR_BOOT = 0,
    SENSOR_VERIFY_WAI,
    SENSOR_INITIALIZATION,
    SENSOR_IDLE,
    SENSOR_POWERING_UP,
    SENSOR_POWERING_DOWN,
    SENSOR_CONFIG_CHANGING,
    SENSOR_CONFIG_WATERMARK_CHANGING,
    SENSOR_CALIBRATION,
    SENSOR_STORE_CALIBRATION_DATA,
    SENSOR_SELFTEST,
    SENSOR_INT1_STATUS_REG_HANDLING,
    SENSOR_INT1_OUTPUT_DATA_HANDLING,
    SENSOR_TIME_SYNC,
    SENSOR_BARO_READ_DATA,
    SENSOR_INVALID_STATE
};

static void lsm6dsm_spiQueueRead(uint8_t addr, size_t size, uint8_t **buf, uint32_t delay);
static void lsm6dsm_spiQueueWrite(uint8_t addr, uint8_t data, uint32_t delay);
static void lsm6dsm_spiQueueMultiwrite(uint8_t addr, uint8_t *data, size_t size, uint32_t delay);

#define SPI_MULTIWRITE_0(addr, data, size)                          lsm6dsm_spiQueueMultiwrite(addr, data, size, 2)
#define SPI_MULTIWRITE_1(addr, data, size, delay)                   lsm6dsm_spiQueueMultiwrite(addr, data, size, delay)
#define GET_SPI_MULTIWRITE_MACRO(_1, _2, _3, _4, NAME, ...)         NAME
#define SPI_MULTIWRITE(...)                                         GET_SPI_MULTIWRITE_MACRO(__VA_ARGS__, SPI_MULTIWRITE_1, SPI_MULTIWRITE_0)(__VA_ARGS__)

#define SPI_WRITE_0(addr, data)                                     lsm6dsm_spiQueueWrite(addr, data, 2)
#define SPI_WRITE_1(addr, data, delay)                              lsm6dsm_spiQueueWrite(addr, data, delay)
#define GET_SPI_WRITE_MACRO(_1, _2, _3, NAME, ...)                  NAME
#define SPI_WRITE(...)                                              GET_SPI_WRITE_MACRO(__VA_ARGS__, SPI_WRITE_1, SPI_WRITE_0)(__VA_ARGS__)

#define SPI_READ_0(addr, size, buf)                                 lsm6dsm_spiQueueRead(addr, size, buf, 0)
#define SPI_READ_1(addr, size, buf, delay)                          lsm6dsm_spiQueueRead(addr, size, buf, delay)
#define GET_SPI_READ_MACRO(_1, _2, _3, _4, NAME, ...)               NAME
#define SPI_READ(...)                                               GET_SPI_READ_MACRO(__VA_ARGS__, SPI_READ_1, SPI_READ_0)(__VA_ARGS__)

#ifdef LSM6DSM_I2C_MASTER_ENABLED
static void lsm6dsm_writeSlaveRegister(uint8_t addr, uint8_t value, uint32_t accelRate, uint32_t delay, enum SensorIndex si);

#define SPI_WRITE_SS_REGISTER_0(addr, value, accelRate, si)         lsm6dsm_writeSlaveRegister(addr, value, accelRate, 0, si)
#define SPI_WRITE_SS_REGISTER_1(addr, value, accelRate, si, delay)  lsm6dsm_writeSlaveRegister(addr, value, accelRate, delay, si)
#define GET_SPI_WRITE_SS_MACRO(_1, _2, _3, _4, _5, NAME, ...)       NAME
#define SPI_WRITE_SLAVE_SENSOR_REGISTER(...)                        GET_SPI_WRITE_SS_MACRO(__VA_ARGS__, SPI_WRITE_SS_REGISTER_1, \
                                                                        SPI_WRITE_SS_REGISTER_0)(__VA_ARGS__)
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

#define INFO_PRINT(fmt, ...) \
    do { \
        osLog(LOG_INFO, "%s " fmt, "[LSM6DSM]", ##__VA_ARGS__); \
    } while (0);

#define DEBUG_PRINT(fmt, ...) \
    do { \
        if (LSM6DSM_DBG_ENABLED) { \
            osLog(LOG_DEBUG, "%s " fmt, "[LSM6DSM]", ##__VA_ARGS__); \
        } \
    } while (0);

#define ERROR_PRINT(fmt, ...) \
    do { \
        osLog(LOG_ERROR, "%s " fmt, "[LSM6DSM]", ##__VA_ARGS__); \
    } while (0);

/* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */
#ifndef LSM6DSM_DBG_ENABLED
#define LSM6DSM_DBG_ENABLED                             0
#endif /* LSM6DSM_DBG_ENABLED */


/*
 * struct LSM6DSMSPISlaveInterface: SPI slave data interface
 * @packets: spi packets needed to perform read/write operations.
 * @txrxBuffer: spi data buffer.
 * @spiDev: spi device info.
 * @mode: spi mode info (frequency, polarity, etc).
 * @mWbufCnt: counter of total data in spi buffer.
 * @cs: chip select used by SPI slave.
 * @funcSrcBuffer: pointer of txrxBuffer to access func source register data.
 * @tmpDataBuffer: pointer of txrxBuffer to access sporadic temp read.
 * @fifoDataBuffer: pointer of txrxBuffer to access fifo data.
 * @fifoStatusRegBuffer: pointer of txrxBuffer to access fifo status registers.
 * @stepCounterDataBuffer: pointer of txrxBuffer to access step counter data.
 * @tempDataBuffer: pointer of txrxBuffer to access sensor temperature data needed by calibration algos.
 * @timestampDataBuffer: pointer of txrxBuffer to access sensor timestamp data in order to syncronize time.
 * @timestampDataBufferBaro: pointer of txrxBuffer to access sensor timestamp data for barometer when not in FIFO.
 * @baroDataBuffer: pointer of txrx to access barometer data from DSM when not in FIFO.
 * @mRegCnt: spi packet num counter.
 * @spiInUse: flag used to check if SPI is currently busy.
 */
struct LSM6DSMSPISlaveInterface {
    struct SpiPacket packets[LSM6DSM_SPI_PACKET_SIZE];
    uint8_t txrxBuffer[SPI_BUF_SIZE];
    struct SpiDevice *spiDev;
    struct SpiMode mode;

    uint16_t mWbufCnt;

    spi_cs_t cs;

    uint8_t *funcSrcBuffer;
    uint8_t *tmpDataBuffer;
    uint8_t *fifoDataBuffer;
    uint8_t *fifoStatusRegBuffer;
    uint8_t *stepCounterDataBuffer;
#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
    uint8_t *tempDataBuffer;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */
    uint8_t *timestampDataBuffer;
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    uint8_t *timestampDataBufferBaro;
    uint8_t *baroDataBuffer;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    uint8_t mRegCnt;

    bool spiInUse;
};

/*
 * struct LSM6DSMConfigStatus: temporary data of pending events
 * @latency: value to be used in next setRate operation [ns].
 * @rate: value to be used in next setRate operation [Hz * 1024].
 * @enable: value to be used in next setEnable.
 */
struct LSM6DSMConfigStatus {
    uint64_t latency;
    uint32_t rate;
    bool enable;
};

/*
 * struct LSM6DSMSensor: sensor status data
 * @pConfig: temporary data of pending events.
 * @tADataEvt: three axis sensor data to send to nanohub.
 * @sADataEvt: one axis sensor data to send to nanohub.
 * @latency: current value of latency [n].
 * @pushedTimestamp: latest sample timestamp pusshed to nanohub.
 * @handle: sensor handle obtained by sensorRegister.
 * @rate: current value of rates based on dependecies [Hz * 1024].
 * @hwRate: current value of physical rate [Hz * 1024].
 * @idx: enum SensorIndex.
 * @samplesToDiscard: samples to discard after enable or odr switch.
 * @samplesDecimator: sw decimator factor to achieve lower odr that cannot be achieved only by FIFO decimator. For example accel is used by dependecies.
 * @samplesDecimatorCounter: samples counter working together with samplesDecimator.
 * @samplesFifoDecimator: sw decimator factor to achieve lower odr that cannot be achived by FIFO decimator.
 * @samplesFifoDecimatorCounter: samples counter working together with sampleFifoDecimator.
 * @dependenciesRequireData: mask used to verify if dependencies needs data or not. For example accel is used for internal algos.
 * enabled: current status of sensor.
 */
struct LSM6DSMSensor {
    struct LSM6DSMConfigStatus pConfig;

    union {
        struct TripleAxisDataEvent *tADataEvt;
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
        struct SingleAxisDataEvent *sADataEvt;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    };

    uint64_t latency;
    uint64_t pushedTimestamp;
    uint32_t handle;
    uint32_t rate[NUM_SENSORS];
    uint32_t hwRate;
    enum SensorIndex idx;
    uint8_t samplesToDiscard;
    uint8_t samplesDecimator;
    uint8_t samplesDecimatorCounter;
    uint8_t samplesFifoDecimator;
    uint8_t samplesFifoDecimatorCounter;
    bool dependenciesRequireData[NUM_SENSORS];
    bool enabled;
};

/*
 * struct LSM6DSMFifoCntl: fifo control data
 * @decimatorsIdx: give who is the sensor that store data in that FIFO slot.
 * @triggerRate: frequency of FIFO [Hz * 1024].
 * @watermark: watermark value in #num of samples.
 * @decimators: fifo decimators value.
 * @minDecimator: min value of decimators.
 * @maxDecimator: max value of decimators.
 * @maxMinDecimator: maxDecimator devided by minDecimator.
 * @totalSip: total number of samples in one pattern.
 * @timestampPosition: since timestamp in FIFO is the latest sensor, we need to know where is located during FIFO parsing.
 */
struct LSM6DSMFifoCntl {
    enum SensorIndex decimatorsIdx[FIFO_NUM];
    uint32_t triggerRate;
    uint16_t watermark;
    uint8_t decimators[FIFO_NUM];
    uint8_t minDecimator;
    uint8_t maxDecimator;
    uint8_t maxMinDecimator;
    uint8_t totalSip;
    uint8_t timestampPosition[32];
};

/*
 * struct LSM6DSMTimeCalibrationWithoutTimer: data used when time calibration is performed during FIFO read.
 *      If latency is smaller than LSM6DSM_SYNC_DELTA_INTERVAL no need to use a timer but we can read timestamp before read FIFO data.
 * @lastTimestampDataAvlRtcTime: last time we perform a timestamp read from LSM6DSM based on RTC time.
 * @newTimestampDataAvl: when deltatime is enough we can read again timestamp from LSM6DSM.
 */
struct LSM6DSMTimeCalibrationWithoutTimer {
    uint64_t lastTimestampDataAvlRtcTime;
    bool newTimestampDataAvl;
};

enum LSM6DSMTimeCalibrationStatus {
    TIME_SYNC_DISABLED,
    TIME_SYNC_TIMER,
    TIME_SYNC_DURING_FIFO_READ
};

/*
 * struct LSM6DSMTimeCalibration: time calibration task data
 * @sensorTimeToRtcData: timeSync algo data.
 * @noTimer: if timer is not used to perform time sync, those data will be used.
 * @lastSampleTimestamp: last sample timestamp from FIFO. Already coverted to RTC time.
 * @timeSyncRtcTime: Rtc time while performing timestamp read from LSM6DSM.
 * @sampleTimestampFromFifoLSB: current timestamp from FIFO in LSB. Needs to be stored becasue of overflow.
 * @timestampSyncTaskLSB: when timer is used to sync time, this is the last timestamp read from LSM6DSM in LSB. Needs to be stored becasue of overflow.
 * @deltaTimeMarginLSB: is it used to verify if timestamp from FIFO is valid, this is max jitter that timestamp can have from FIFO.
 * @timestampBaroLSB: if magn and baro are both enabled, barometer data are read with a timer because no slots are available in FIFO. This is the timestamp of baro data.
 * @theoreticalDeltaTimeLSB: theoretical value of timestamp based on sensor frequency.
 * @timestampIsValid: flag that indicate if current timestamp parsing FIFO is valid.
 */
struct LSM6DSMTimeCalibration {
    time_sync_t sensorTimeToRtcData;
    struct LSM6DSMTimeCalibrationWithoutTimer noTimer;
    uint64_t lastSampleTimestamp;
    uint64_t timeSyncRtcTime;
    enum LSM6DSMTimeCalibrationStatus status;
    uint32_t sampleTimestampFromFifoLSB;
    uint32_t timestampSyncTaskLSB;
    uint32_t deltaTimeMarginLSB;
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    uint32_t timestampBaroLSB;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    uint32_t theoreticalDeltaTimeLSB;
    bool timestampIsValid;
};

/*
 * struct LSM6DSMSelfTestResultPkt: self-test packet result data
 * @header: describe packet size and application ID of packet.
 * @dataHeader: payload of message.
 */
struct LSM6DSMSelfTestResultPkt {
    struct HostHubRawPacket header;
    struct SensorAppEventHeader dataHeader;
} __attribute__((packed));

/*
 * struct LSM6DSMCalibrationResultPkt: calibration packet result data
 * @header: describe packet size and application ID of packet.
 * @dataHeader: payload of header message.
 * @xBias: raw offset value X axis.
 * @yBias: raw offset value Y axis.
 * @zBias: raw offset value Z axis.
 */
struct LSM6DSMCalibrationResultPkt {
    struct HostHubRawPacket header;
    struct SensorAppEventHeader dataHeader;
    int32_t xBias;
    int32_t yBias;
    int32_t zBias;
} __attribute__((packed));

/*
 * struct LSM6DSMAccelGyroCfgData: configuration packet data
 * @hw: chip level calibration data.
 * @sw: software level calibration data (algos).
 */
struct LSM6DSMAccelGyroCfgData {
    int32_t hw[LSM6DSM_TRIAXIAL_NUM_AXIS];
    float sw[LSM6DSM_TRIAXIAL_NUM_AXIS];
};

/*
 * struct LSM6DSMTask: driver task data
 * @sensors: sensor status data list.
 * @slaveConn: slave interface / communication data.
 * @accelCal: accelerometer calibration algo data.
 * @gyroCal: gyroscope calibration algo data.
 * @overTempCal: gyroscope over temperature calibration algo data.
 * @magnCal: magnetometer calibration algo data.
 * @int1: int1 gpio data.
 * @isr1: isr1 data.
 * @mDataSlabThreeAxis: memory used to store three axis sensors data.
 * @mDataSlabOneAxis: memory used to store one axis sensors data.
 * @fifoCntl: fifo control data.
 * @time: time calibration data.
 * @currentTemperature: sensor temperature data value used by gyroscope/accelerometer bias calibration libs.
 * @lastFifoReadTimestamp: store when last time FIFO was read.
 * @initState: initialization is done in several steps (enum InitState).
 * @selftestState: self-test is performed in several steps (enum SelfTestState).
 * @calibrationState: sensor calibration is done in several steps (enum CalibrationState).
 * @tid: task id.
 * @totalNumSteps: total number of steps of step counter sensor.
 * @fifoDataToRead: number of byte to read in current FIFO read.
 * @fifoDataToReadPending: in order to reduce txrxBuffer, FIFO read is performed in several read. This value tell how many data still need to read from FIFO.
 * @baroTimerId: barometer task timer id.
 * @dataSelftestEnabled: sensor data read during GapSelfTestProgram while self-test bit is set.
 * @dataSelftestNotEnabled: sensor data read during GapSelfTestProgram while self-test bit is not set.
 * @dataCalibration: sensor data read during calibration program.
 * @accelCalibrationData: accelerometer offset value (hw) to store into sensor.
 * @gyroCalibrationData: gyroscope offset value (hw) applied to each sample (by software).
 * @state: task state, driver manage operations using a state machine (enum SensorState).
 * @numSamplesSelftest: temp variable storing number of samples read by self-test program.
 * @numSamplesCalibration: temp variable storing number of samples read by calibration program.
 * @mRetryLeft: counter used to retry operations #n times before return a failure.
 * @pedometerDependencies: dependencies mask of sensors that are using embedded functions.
 * @masterConfigDependencies: dependencies mask of sensors that are using I2C master.
 * @int1Register: interrupt 1 register content (addr: 0x0d).
 * @int2Register: interrupt 2 register content (addr: 0x0e).
 * @embeddedFunctionsRegister: embedded register content (addr: 0x19).
 * @pendingFlush: number of flush requested for each sensor.
 * @masterConfigRegister: i2c master register content (addr: 0x1a).
 * @readSteps: flag used to indicate if interrupt task need to read number of steps.
 * @sendFlushEvt: if flush is requested, send it out after FIFO read is completed.
 * @pendingEnableConfig: pending setEnable operations to be executed.
 * @pendingRateConfig: pending setRate operations to be executed.
 * @pendingInt: pending interrupt task to be executed.
 * @pendingTimeSyncTask: pending time sync task to be executed.
 * @pendingBaroTimerTask: pending baro read data task to be executed.
 * @pendingStoreAccelCalibData: pending calibration data store task to be executed.
 */
typedef struct LSM6DSMTask {
    struct LSM6DSMSensor sensors[NUM_SENSORS];
    struct LSM6DSMSPISlaveInterface slaveConn;

#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
    struct AccelCal accelCal;
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */
#ifdef LSM6DSM_GYRO_CALIB_ENABLED
    struct GyroCal gyroCal;
#ifdef LSM6DSM_OVERTEMP_CALIB_ENABLED
    struct OverTempCal overTempCal;
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED */
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */
#ifdef LSM6DSM_MAGN_CALIB_ENABLED
    struct MagCal magnCal;
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */

    struct Gpio *int1;
    struct ChainedIsr isr1;
    struct SlabAllocator *mDataSlabThreeAxis;
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    struct SlabAllocator *mDataSlabOneAxis;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    struct LSM6DSMFifoCntl fifoCntl;
    struct LSM6DSMTimeCalibration time;

#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
    float currentTemperature;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */

    uint64_t lastFifoReadTimestamp;

    enum InitState initState;
    enum SelfTestState selftestState;
    enum CalibrationState calibrationState;

    uint32_t tid;
    uint32_t totalNumSteps;
    uint32_t fifoDataToRead;
    uint32_t fifoDataToReadPending;
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    uint32_t baroTimerId;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    int32_t dataSelftestEnabled[LSM6DSM_TRIAXIAL_NUM_AXIS];
    int32_t dataSelftestNotEnabled[LSM6DSM_TRIAXIAL_NUM_AXIS];
    int32_t dataCalibration[LSM6DSM_TRIAXIAL_NUM_AXIS];
    int32_t accelCalibrationData[LSM6DSM_TRIAXIAL_NUM_AXIS];
    int32_t gyroCalibrationData[LSM6DSM_TRIAXIAL_NUM_AXIS];

    volatile uint8_t state;

    uint8_t numSamplesSelftest;
    uint8_t numSamplesCalibration;
    uint8_t mRetryLeft;
    uint8_t pedometerDependencies;
    uint8_t masterConfigDependencies;
    uint8_t int1Register;
    uint8_t int2Register;
    uint8_t embeddedFunctionsRegister;
    uint8_t pendingFlush[NUM_SENSORS];
#ifdef LSM6DSM_I2C_MASTER_ENABLED
    uint8_t masterConfigRegister;
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

    bool readSteps;
    bool sendFlushEvt[NUM_SENSORS];
    bool pendingEnableConfig[NUM_SENSORS];
    bool pendingRateConfig[NUM_SENSORS];
    bool pendingInt;
    bool pendingTimeSyncTask;
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    bool pendingBaroTimerTask;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    bool pendingStoreAccelCalibData;
} LSM6DSMTask;

static LSM6DSMTask mTask;

#define TASK                                            LSM6DSMTask* const _task
#define TDECL()                                         TASK = &mTask; (void)_task
#define T(v)                                            (_task->v)
#define T_SLAVE_INTERFACE(v)                            (_task->slaveConn.v)

#define BIT(x)                                          (0x01 << x)
#define SENSOR_HZ_RATE_TO_US(x)                         (1024000000UL / x)
#define NS_TO_US(ns)                                    cpuMathU64DivByU16(ns, 1000)

/* Atomic get state */
#define GET_STATE()                                     (atomicReadByte(&(_task->state)))

/* Atomic set state, this set the state to arbitrary value, use with caution */
#define SET_STATE(s) \
    do { \
        atomicWriteByte(&(_task->state), (s)); \
    } while (0)

static bool trySwitchState_(TASK, enum SensorState newState)
{
    return atomicCmpXchgByte(&T(state), SENSOR_IDLE, newState);
}
#define trySwitchState(s) trySwitchState_(_task, (s))

static void lsm6dsm_readStatusReg_(TASK, bool isInterruptContext);
#define lsm6dsm_readStatusReg(a)                        lsm6dsm_readStatusReg_(_task, (a))

#define DEC_INFO(name, type, axis, inter, samples) \
    .sensorName = name, \
    .sensorType = type, \
    .numAxis = axis, \
    .interrupt = inter, \
    .minSamples = samples

#define DEC_INFO_RATE(name, rates, type, axis, inter, samples) \
    DEC_INFO(name, type, axis, inter, samples), \
    .supportedRates = rates

#define DEC_INFO_RATE_BIAS(name, rates, type, axis, inter, samples, bias) \
    DEC_INFO(name, type, axis, inter, samples), \
    .supportedRates = rates, \
    .flags1 = SENSOR_INFO_FLAGS1_BIAS, \
    .biasType = bias

#define DEC_INFO_RATE_RAW(name, rates, type, axis, inter, samples, raw, scale) \
    DEC_INFO(name, type, axis, inter, samples), \
    .supportedRates = rates, \
    .flags1 = SENSOR_INFO_FLAGS1_RAW, \
    .rawType = raw, \
    .rawScale = scale

#define DEC_INFO_RATE_RAW_BIAS(name, rates, type, axis, inter, samples, raw, scale, bias) \
    DEC_INFO_RATE_RAW(name, rates, type, axis, inter, samples, raw, scale), \
    .flags1 = SENSOR_INFO_FLAGS1_RAW | SENSOR_INFO_FLAGS1_BIAS, \
    .biasType = bias

/*
 * LSM6DSMImuRates: supported frequencies by accelerometer and gyroscope sensors
 * LSM6DSMImuRatesRegValue, LSM6DSMRatesSamplesToDiscardGyroPowerOn, LSM6DSMAccelRatesSamplesToDiscard,
 *     LSM6DSMGyroRatesSamplesToDiscard must have same length.
 */
static uint32_t LSM6DSMImuRates[] = {
    SENSOR_HZ(26.0f / 32.0f),       /* 0.8125Hz */
    SENSOR_HZ(26.0f / 16.0f),       /* 1.625Hz */
    SENSOR_HZ(26.0f / 8.0f),        /* 3.25Hz */
    SENSOR_HZ(26.0f / 4.0f),        /* 6.5Hz */
    SENSOR_HZ(26.0f / 2.0f),        /* 12.5Hz */
    SENSOR_HZ(26.0f),               /* 26Hz */
    SENSOR_HZ(52.0f),               /* 52Hz */
    SENSOR_HZ(104.0f),              /* 104Hz */
    SENSOR_HZ(208.0f),              /* 208Hz */
    SENSOR_HZ(416.0f),              /* 416Hz */
    0,
};

static uint32_t LSM6DSMImuRatesInNs[] = {
    1230769230,                     /* 0.8125Hz */
    615384615,                      /* 1.625Hz */
    307692308,                      /* 3.25Hz */
    153846154,                      /* 6.5Hz */
    80000000,                       /* 12.5Hz */
    38461538,                       /* 26Hz */
    19230769,                       /* 52Hz */
    9615385,                        /* 104Hz */
    4807692,                        /* 208Hz */
    2403846,                        /* 416Hz */
    0,
};

static uint8_t LSM6DSMImuRatesRegValue[] = {
    LSM6DSM_ODR_12HZ_REG_VALUE,     /* 0.8125Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_REG_VALUE,     /* 1.625Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_REG_VALUE,     /* 3.25Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_REG_VALUE,     /* 6.5Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_REG_VALUE,     /* 12.5Hz */
    LSM6DSM_ODR_26HZ_REG_VALUE,     /* 26Hz */
    LSM6DSM_ODR_52HZ_REG_VALUE,     /* 52Hz */
    LSM6DSM_ODR_104HZ_REG_VALUE,    /* 104Hz */
    LSM6DSM_ODR_208HZ_REG_VALUE,    /* 208Hz */
    LSM6DSM_ODR_416HZ_REG_VALUE,    /* 416Hz */
};

/* When sensors switch status from power-down, constant boottime must be considered, some samples should be discarded */
static uint8_t LSM6DSMRatesSamplesToDiscardGyroPowerOn[] = {
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 80000, /* 0.8125Hz - do not exist, use 12.5Hz = 80000us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 80000, /* 1.625Hz - do not exist, use 12.5Hz = 80000us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 80000, /* 3.25Hz - do not exist, use 12.5Hz = 80000us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 80000, /* 6.5Hz - do not exist, use 12.5Hz = 80000us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 80000, /* 12.5Hz = 80000us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 38461, /* 26Hz = 38461us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 19230, /* 52Hz = 19230s */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 9615,  /* 104Hz = 9615us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 4807,  /* 208Hz = 4807us */
    LSM6DSM_ODR_DELAY_US_GYRO_POWER_ON / 2403,  /* 416Hz = 2403us */
};

/* When accelerometer change odr but sensor is already on, few samples should be discarded */
static uint8_t LSM6DSMAccelRatesSamplesToDiscard[] = {
    LSM6DSM_ODR_12HZ_ACCEL_STD,     /* 0.8125Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_ACCEL_STD,     /* 1.625Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_ACCEL_STD,     /* 3.25Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_ACCEL_STD,     /* 6.5Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_ACCEL_STD,     /* 12.5Hz */
    LSM6DSM_ODR_26HZ_ACCEL_STD,     /* 26Hz */
    LSM6DSM_ODR_52HZ_ACCEL_STD,     /* 52Hz */
    LSM6DSM_ODR_104HZ_ACCEL_STD,    /* 104Hz */
    LSM6DSM_ODR_208HZ_ACCEL_STD,    /* 208Hz */
    LSM6DSM_ODR_416HZ_ACCEL_STD,    /* 416Hz */
};

/* When gyroscope change odr but sensor is already on, few samples should be discarded */
static uint8_t LSM6DSMGyroRatesSamplesToDiscard[] = {
    LSM6DSM_ODR_12HZ_GYRO_STD,      /* 0.8125Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_GYRO_STD,      /* 1.625Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_GYRO_STD,      /* 3.25Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_GYRO_STD,      /* 6.5Hz - do not exist, use 12.5Hz */
    LSM6DSM_ODR_12HZ_GYRO_STD,      /* 12.5Hz */
    LSM6DSM_ODR_26HZ_GYRO_STD,      /* 26Hz */
    LSM6DSM_ODR_52HZ_GYRO_STD,      /* 52Hz */
    LSM6DSM_ODR_104HZ_GYRO_STD,     /* 104Hz */
    LSM6DSM_ODR_208HZ_GYRO_STD,     /* 208Hz */
    LSM6DSM_ODR_416HZ_GYRO_STD,     /* 416Hz */
};

#ifdef LSM6DSM_I2C_MASTER_ENABLED
static uint32_t LSM6DSMSHRates[] = {
    SENSOR_HZ(26.0f / 32.0f),       /* 0.8125Hz */
    SENSOR_HZ(26.0f / 16.0f),       /* 1.625Hz */
    SENSOR_HZ(26.0f / 8.0f),        /* 3.25Hz */
    SENSOR_HZ(26.0f / 4.0f),        /* 6.5Hz */
    SENSOR_HZ(26.0f / 2.0f),        /* 12.5Hz */
    SENSOR_HZ(26.0f),               /* 26Hz */
    SENSOR_HZ(52.0f),               /* 52Hz */
    SENSOR_HZ(104.0f),              /* 104Hz */
    0,
};
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

static uint32_t LSM6DSMStepCounterRates[] = {
    SENSOR_HZ(1.0f / (128 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)), /* 209.715 sec */
    SENSOR_HZ(1.0f / (64 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),  /* 104.857 sec */
    SENSOR_HZ(1.0f / (32 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),  /* 52.4288 sec */
    SENSOR_HZ(1.0f / (16 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),  /* 26.1574 sec */
    SENSOR_HZ(1.0f / (8 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),   /* 13.0787 sec */
    SENSOR_HZ(1.0f / (4 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),   /* 6.53936 sec */
    SENSOR_HZ(1.0f / (2 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),   /* 3.26968 sec */
    SENSOR_HZ(1.0f / (1 * LSM6DSM_SC_DELTA_TIME_PERIOD_SEC)),   /* 1.63840 sec */
    SENSOR_RATE_ONCHANGE,
    0,
};

static const struct SensorInfo LSM6DSMSensorInfo[NUM_SENSORS] = {
    {
#ifdef LSM6DSM_GYRO_CALIB_ENABLED
        DEC_INFO_RATE_BIAS("Gyroscope", LSM6DSMImuRates, SENS_TYPE_GYRO, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 20, SENS_TYPE_GYRO_BIAS)
#else /* LSM6DSM_GYRO_CALIB_ENABLED */
        DEC_INFO_RATE("Gyroscope", LSM6DSMImuRates, SENS_TYPE_GYRO, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 20)
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */
    },
    {
#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
        DEC_INFO_RATE_RAW_BIAS("Accelerometer", LSM6DSMImuRates, SENS_TYPE_ACCEL, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 3000,
            SENS_TYPE_ACCEL_RAW, 1.0f / LSM6DSM_ACCEL_KSCALE, SENS_TYPE_ACCEL_BIAS)
#else /* LSM6DSM_ACCEL_CALIB_ENABLED */
        DEC_INFO_RATE_RAW("Accelerometer", LSM6DSMImuRates, SENS_TYPE_ACCEL, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 3000,
            SENS_TYPE_ACCEL_RAW, 1.0f / LSM6DSM_ACCEL_KSCALE)
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */
    },
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    {
#ifdef LSM6DSM_MAGN_CALIB_ENABLED
        DEC_INFO_RATE_BIAS("Magnetometer", LSM6DSMSHRates, SENS_TYPE_MAG, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 600, SENS_TYPE_MAG_BIAS)
#else /* LSM6DSM_MAGN_CALIB_ENABLED */
        DEC_INFO_RATE("Magnetometer", LSM6DSMSHRates, SENS_TYPE_MAG, NUM_AXIS_THREE, NANOHUB_INT_NONWAKEUP, 600)
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */
    },
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    {
        DEC_INFO_RATE("Pressure", LSM6DSMSHRates, SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP, 300)
    },
    {
        DEC_INFO_RATE("Temperature", LSM6DSMSHRates, SENS_TYPE_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20)
    },
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    {
        DEC_INFO("Step Detector", SENS_TYPE_STEP_DETECT, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 100)
    },
    {
        DEC_INFO_RATE("Step Counter", LSM6DSMStepCounterRates, SENS_TYPE_STEP_COUNT, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20)
    },
    {
        DEC_INFO("Significant Motion", SENS_TYPE_SIG_MOTION, NUM_AXIS_EMBEDDED, NANOHUB_INT_WAKEUP, 1)
    },
};

#define DEC_OPS(power, firmware, rate, flush) \
    .sensorPower = power, \
    .sensorFirmwareUpload = firmware, \
    .sensorSetRate = rate, \
    .sensorFlush = flush

#define DEC_OPS_SEND(power, firmware, rate, flush, send) \
    .sensorPower = power, \
    .sensorFirmwareUpload = firmware, \
    .sensorSetRate = rate, \
    .sensorFlush = flush, \
    .sensorSendOneDirectEvt = send

#define DEC_OPS_CFG_SELFTEST(power, firmware, rate, flush, cfgData, selftest) \
    DEC_OPS(power, firmware, rate, flush), \
    .sensorCfgData = cfgData, \
    .sensorSelfTest = selftest

#define DEC_OPS_CAL_CFG_SELFTEST(power, firmware, rate, flush, cal, cfgData, selftest) \
    DEC_OPS(power, firmware, rate, flush), \
    .sensorCalibrate = cal, \
    .sensorCfgData = cfgData, \
    .sensorSelfTest = selftest

static bool lsm6dsm_setAccelPower(bool on, void *cookie);
static bool lsm6dsm_setGyroPower(bool on, void *cookie);
static bool lsm6dsm_setStepDetectorPower(bool on, void *cookie);
static bool lsm6dsm_setStepCounterPower(bool on, void *cookie);
static bool lsm6dsm_setSignMotionPower(bool on, void *cookie);
static bool lsm6dsm_accelFirmwareUpload(void *cookie);
static bool lsm6dsm_gyroFirmwareUpload(void *cookie);
static bool lsm6dsm_stepDetectorFirmwareUpload(void *cookie);
static bool lsm6dsm_stepCounterFirmwareUpload(void *cookie);
static bool lsm6dsm_signMotionFirmwareUpload(void *cookie);
static bool lsm6dsm_setAccelRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_setGyroRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_setStepDetectorRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_setStepCounterRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_setSignMotionRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_accelFlush(void *cookie);
static bool lsm6dsm_gyroFlush(void *cookie);
static bool lsm6dsm_stepDetectorFlush(void *cookie);
static bool lsm6dsm_stepCounterFlush(void *cookie);
static bool lsm6dsm_signMotionFlush(void *cookie);
static bool lsm6dsm_stepCounterSendLastData(void *cookie, uint32_t tid);
static bool lsm6dsm_runAccelSelfTest(void *cookie);
static bool lsm6dsm_runGyroSelfTest(void *cookie);
static bool lsm6dsm_runAccelCalibration(void *cookie);
static bool lsm6dsm_runGyroCalibration(void *cookie);
static bool lsm6dsm_accelCfgData(void *data, void *cookie);
static bool lsm6dsm_gyroCfgData(void *data, void *cookie);

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
static bool lsm6dsm_setMagnPower(bool on, void *cookie);
static bool lsm6dsm_magnFirmwareUpload(void *cookie);
static bool lsm6dsm_setMagnRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_magnFlush(void *cookie);
static bool lsm6dsm_runMagnSelfTest(void *cookie);
static bool lsm6dsm_magnCfgData(void *data, void *cookie);
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
static bool lsm6dsm_setPressPower(bool on, void *cookie);
static bool lsm6dsm_pressFirmwareUpload(void *cookie);
static bool lsm6dsm_setPressRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_pressFlush(void *cookie);
static bool lsm6dsm_setTempPower(bool on, void *cookie);
static bool lsm6dsm_tempFirmwareUpload(void *cookie);
static bool lsm6dsm_setTempRate(uint32_t rate, uint64_t latency, void *cookie);
static bool lsm6dsm_tempFlush(void *cookie);
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

static const struct SensorOps LSM6DSMSensorOps[NUM_SENSORS] = {
    { DEC_OPS_CAL_CFG_SELFTEST(lsm6dsm_setGyroPower, lsm6dsm_gyroFirmwareUpload, lsm6dsm_setGyroRate,
                                lsm6dsm_gyroFlush, lsm6dsm_runGyroCalibration, lsm6dsm_gyroCfgData, lsm6dsm_runGyroSelfTest) },
    { DEC_OPS_CAL_CFG_SELFTEST(lsm6dsm_setAccelPower, lsm6dsm_accelFirmwareUpload, lsm6dsm_setAccelRate,
                                lsm6dsm_accelFlush, lsm6dsm_runAccelCalibration, lsm6dsm_accelCfgData, lsm6dsm_runAccelSelfTest) },
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    { DEC_OPS_CFG_SELFTEST(lsm6dsm_setMagnPower, lsm6dsm_magnFirmwareUpload, lsm6dsm_setMagnRate,
                                lsm6dsm_magnFlush, lsm6dsm_magnCfgData, lsm6dsm_runMagnSelfTest) },
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    { DEC_OPS(lsm6dsm_setPressPower, lsm6dsm_pressFirmwareUpload, lsm6dsm_setPressRate, lsm6dsm_pressFlush) },
    { DEC_OPS(lsm6dsm_setTempPower, lsm6dsm_tempFirmwareUpload, lsm6dsm_setTempRate, lsm6dsm_tempFlush) },
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    { DEC_OPS(lsm6dsm_setStepDetectorPower, lsm6dsm_stepDetectorFirmwareUpload, lsm6dsm_setStepDetectorRate, lsm6dsm_stepDetectorFlush) },
    { DEC_OPS_SEND(lsm6dsm_setStepCounterPower, lsm6dsm_stepCounterFirmwareUpload, lsm6dsm_setStepCounterRate,
                                lsm6dsm_stepCounterFlush, lsm6dsm_stepCounterSendLastData) },
    { DEC_OPS(lsm6dsm_setSignMotionPower, lsm6dsm_signMotionFirmwareUpload, lsm6dsm_setSignMotionRate, lsm6dsm_signMotionFlush) },
};

static void lsm6dsm_processPendingEvt(void);

/*
 * lsm6dsm_spiQueueRead: enqueue a new SPI read that will be performed after lsm6dsm_spiBatchTxRx function is called
 * @addr: start reading from this register address.
 * @size: number of byte to read.
 * @buf: address of pointer where store data.
 * @delay: wait `delay time' after read is completed. [us]
 */
static void lsm6dsm_spiQueueRead(uint8_t addr, size_t size, uint8_t **buf, uint32_t delay)
{
    TDECL();

    if (T_SLAVE_INTERFACE(spiInUse)) {
        ERROR_PRINT("spiQueueRead: SPI in use, cannot queue read (addr=%x len=%d)\n", addr, (int)size);
        return;
    }

    *buf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);

    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).size = size + 1;
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).txBuf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).rxBuf = *buf;
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).delay = delay * 1000;

    T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)++]) = addr | 0x80;
    T_SLAVE_INTERFACE(mWbufCnt) += size;
    T_SLAVE_INTERFACE(mRegCnt)++;
}

/*
 * lsm6dsm_spiQueueWrite: enqueue a new SPI 1-byte write that will be performed after lsm6dsm_spiBatchTxRx function is called
 * @addr: write byte to this register address.
 * @data: value to write.
 * @delay: wait `delay time' after write is completed. [us]
 */
static void lsm6dsm_spiQueueWrite(uint8_t addr, uint8_t data, uint32_t delay)
{
    TDECL();

    if (T_SLAVE_INTERFACE(spiInUse)) {
        ERROR_PRINT("spiQueueWrite: SPI in use, cannot queue 1-byte write (addr=%x data=%x)\n", addr, data);
        return;
    }

    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).size = 2;
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).txBuf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).rxBuf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).delay = delay * 1000;

    T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)++]) = addr;
    T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)++]) = data;
    T_SLAVE_INTERFACE(mRegCnt)++;
}

/*
 * lsm6dsm_spiQueueMultiwrite: enqueue a new SPI n-byte write that will be performed after lsm6dsm_spiBatchTxRx function is called
 * @addr: start writing from this register address.
 * @data: array data to write.
 * @size: number of byte to write.
 * @delay: wait `delay time' after write is completed. [us]
 */
static void lsm6dsm_spiQueueMultiwrite(uint8_t addr, uint8_t *data, size_t size, uint32_t delay)
{
    TDECL();
    uint8_t i;

    if (T_SLAVE_INTERFACE(spiInUse)) {
        ERROR_PRINT("spiQueueMultiwrite: SPI in use, cannot queue multiwrite (addr=%x size=%d)\n", addr, (int)size);
        return;
    }

    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).size = 1 + size;
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).txBuf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).rxBuf = &T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)]);
    T_SLAVE_INTERFACE(packets[T_SLAVE_INTERFACE(mRegCnt)]).delay = delay * 1000;

    T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)++]) = addr;

    for (i = 0; i < size; i++)
        T_SLAVE_INTERFACE(txrxBuffer[T_SLAVE_INTERFACE(mWbufCnt)++]) = data[i];

    T_SLAVE_INTERFACE(mRegCnt)++;
}

/*
 * lsm6dsm_spiBatchTxRx: perform SPI read and/or write enqueued before
 * @mode: SPI configuration data.
 * @callback: callback function triggered when all transactions are terminated.
 * @cookie: private data delivered to callback function.
 * @src: function name and/or custom string used during print to trace the callstack.
 */
static void lsm6dsm_spiBatchTxRx(struct SpiMode *mode, SpiCbkF callback, void *cookie, const char *src)
{
    TDECL();
    uint8_t regCount;

    if (T_SLAVE_INTERFACE(mWbufCnt) > SPI_BUF_SIZE) {
        ERROR_PRINT("spiBatchTxRx: not enough SPI buffer space, dropping transaction. Ref. %s\n", src);
        return;
    }

    if (T_SLAVE_INTERFACE(mRegCnt) > LSM6DSM_SPI_PACKET_SIZE) {
        ERROR_PRINT("spiBatchTxRx: too many packets! Ref. %s\n", src);
        return;
    }

    /* Reset variables before issuing SPI transaction.
       SPI may finish before spiMasterRxTx finish */
    regCount = T_SLAVE_INTERFACE(mRegCnt);
    T_SLAVE_INTERFACE(spiInUse) = true;
    T_SLAVE_INTERFACE(mRegCnt) = 0;
    T_SLAVE_INTERFACE(mWbufCnt) = 0;

    if (spiMasterRxTx(T_SLAVE_INTERFACE(spiDev), T_SLAVE_INTERFACE(cs), T_SLAVE_INTERFACE(packets), regCount, mode, callback, cookie)) {
        ERROR_PRINT("spiBatchTxRx: transaction failed!\n");
    }
}

/*
 * lsm6dsm_timerCallback: timer callback routine used to retry WAI read
 * @timerId: timer identificator.
 * @data: private data delivered to private event handler.
 */
static void lsm6dsm_timerCallback(uint32_t timerId, void *data)
{
    osEnqueuePrivateEvt(EVT_SPI_DONE, data, NULL, mTask.tid);
}

/*
 * lsm6dsm_timerSyncCallback: time syncronization timer callback routine
 * @timerId: timer identificator.
 * @data: private data delivered to private event handler.
 */
static void lsm6dsm_timerSyncCallback(uint32_t timerId, void *data)
{
    osEnqueuePrivateEvt(EVT_TIME_SYNC, data, NULL, mTask.tid);
}

/*
 * lsm6dsm_spiCallback: SPI callback function
 * @cookie: private data from lsm6dsm_spiBatchTxRx function.
 * @err: error code from SPI transfer.
 */
static void lsm6dsm_spiCallback(void *cookie, int err)
{
    TDECL();

    T_SLAVE_INTERFACE(spiInUse) = false;
    osEnqueuePrivateEvt(EVT_SPI_DONE, cookie, NULL, mTask.tid);
}

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
/*
 * lsm6dsm_baroTimerTask: baro read data task
 */
static void lsm6dsm_baroTimerTask(void)
{
    TDECL();

    if (trySwitchState(SENSOR_BARO_READ_DATA)) {
        SPI_READ(LSM6DSM_TIMESTAMP0_REG_ADDR, LSM6DSM_TIMESTAMP_SAMPLE_BYTE, &T_SLAVE_INTERFACE(timestampDataBufferBaro));
        SPI_READ(LSM6DSM_OUT_SENSORHUB1_ADDR + LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN,
                LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN, &T_SLAVE_INTERFACE(baroDataBuffer));

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingBaroTimerTask) = true;

    return;
}

/*
 * lsm6dsm_baroTimerCallback: baro timer callback routine
 * @timerId: timer identificator.
 * @data: private data delivered to private event handler.
 */
static void lsm6dsm_baroTimerCallback(uint32_t timerId, void *data)
{
    lsm6dsm_baroTimerTask();
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_timeSyncTask: time syncronization task by timer
 */
static void lsm6dsm_timeSyncTask(void)
{
    TDECL();

    if (T(time).status != TIME_SYNC_TIMER)
        return;

    if (trySwitchState(SENSOR_TIME_SYNC)) {
        SPI_READ(LSM6DSM_TIMESTAMP0_REG_ADDR, LSM6DSM_TIMESTAMP_SAMPLE_BYTE, &T_SLAVE_INTERFACE(timestampDataBuffer));
#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
        SPI_READ(LSM6DSM_OUT_TEMP_L_ADDR, LSM6DSM_TEMP_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tempDataBuffer));
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */

        T(time).timeSyncRtcTime = sensorGetTime();

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingTimeSyncTask) = true;
}

/*
 * lsm6dsm_readStatusReg_: read status registers (interrupt arrived)
 * @TASK: task id.
 * @isInterruptContext: function is called directly by ISR.
 */
static void lsm6dsm_readStatusReg_(TASK, bool isInterruptContext)
{
    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        if (T(sensors[STEP_DETECTOR]).enabled || T(sensors[STEP_COUNTER]).enabled || T(sensors[SIGN_MOTION]).enabled)
            SPI_READ(LSM6DSM_FUNC_SRC_ADDR, 1, &T_SLAVE_INTERFACE(funcSrcBuffer));

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else {
        if (isInterruptContext)
            osEnqueuePrivateEvt(EVT_SENSOR_INTERRUPT_1, _task, NULL, T(tid));
        else
            T(pendingInt) = true;
    }
}

/*
 * lsm6dsm_isr1: INT-1 line service routine
 * @isr: isr data.
 */
static bool lsm6dsm_isr1(struct ChainedIsr *isr)
{
    TDECL();

    if (!extiIsPendingGpio(T(int1)))
        return false;

    lsm6dsm_readStatusReg(true);

    extiClearPendingGpio(T(int1));

    return true;
}

/*
 * lsm6dsm_enableInterrupt: enable driver interrupt capability
 * @pin: gpio data.
 * @isr: isr data.
 */
static void lsm6dsm_enableInterrupt(struct Gpio *pin, struct ChainedIsr *isr)
{
    gpioConfigInput(pin, GPIO_SPEED_LOW, GPIO_PULL_NONE);
    syscfgSetExtiPort(pin);
    extiEnableIntGpio(pin, EXTI_TRIGGER_RISING);
    extiChainIsr(LSM6DSM_INT_IRQ, isr);
}

/*
 * lsm6dsm_disableInterrupt: disable driver interrupt capability
 * @pin: gpio data.
 * @isr: isr data.
 */
static void lsm6dsm_disableInterrupt(struct Gpio *pin, struct ChainedIsr *isr)
{
    extiUnchainIsr(LSM6DSM_INT_IRQ, isr);
    extiDisableIntGpio(pin);
}

/*
 * lsm6dsm_sendSelfTestResult: send to nanohub result of self-test
 * @sensorType: android sensor type.
 * @result: status message to send (PASS/ERROR).
 */
static void lsm6dsm_sendSelfTestResult(uint8_t sensorType, uint8_t result)
{
    struct LSM6DSMSelfTestResultPkt *data;

    data = heapAlloc(sizeof(struct LSM6DSMSelfTestResultPkt));
    if (!data) {
        ERROR_PRINT("sendSelfTestResult: cannot allocate self-test result packet\n");
        return;
    }

    data->header.appId = LSM6DSM_APP_ID;
    data->header.dataLen = (sizeof(struct LSM6DSMSelfTestResultPkt) - sizeof(struct HostHubRawPacket));

    data->dataHeader.msgId = SENSOR_APP_MSG_ID_TEST_RESULT;
    data->dataHeader.sensorType = sensorType;
    data->dataHeader.status = result;

    if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree)) {
        ERROR_PRINT("sendSelfTestResult: failed to enqueue self-test result packet\n");
    }
}

/*
 * lsm6dsm_sendCalibrationResult: send to nanohub result of calibration
 * @sensorType: android sensor type.
 * @result: status message to send (VALID/ERROR).
 * @xBias: raw offset value X axis.
 * @yBias: raw offset value Y axis.
 * @zBias: raw offset value Z axis.
 */
static void lsm6dsm_sendCalibrationResult(uint8_t sensorType, uint8_t result, int32_t xBias, int32_t yBias, int32_t zBias)
{
    struct LSM6DSMCalibrationResultPkt *data;

    data = heapAlloc(sizeof(struct LSM6DSMCalibrationResultPkt));
    if (!data) {
        ERROR_PRINT("sendCalibrationResult: cannot allocate calibration result packet\n");
        return;
    }

    data->header.appId = LSM6DSM_APP_ID;
    data->header.dataLen = (sizeof(struct LSM6DSMCalibrationResultPkt) - sizeof(struct HostHubRawPacket));

    data->dataHeader.msgId = SENSOR_APP_MSG_ID_CAL_RESULT;
    data->dataHeader.sensorType = sensorType;
    data->dataHeader.status = result;

    data->xBias = xBias;
    data->yBias = yBias;
    data->zBias = zBias;

    if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree)) {
        ERROR_PRINT("sendCalibrationResult: failed to enqueue calibration result packet\n");
    }
}

/*
 * lsm6dsm_runGapSelfTestProgram: state machine that is executing self-test verifying data gap
 * @idx: sensor driver index.
 */
static void lsm6dsm_runGapSelfTestProgram(enum SensorIndex idx)
{
    TDECL();
    uint8_t *sensorData, numberOfAverage;

    numberOfAverage = LSM6DSM_NUM_AVERAGE_SELFTEST;

    switch (T(selftestState)) {
    case SELFTEST_INITIALIZATION:
        DEBUG_PRINT("runGapSelfTestProgram: initialization\n");

        T(numSamplesSelftest) = 0;
        memset(T(dataSelftestEnabled), 0, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));
        memset(T(dataSelftestNotEnabled), 0, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

        /* Enable self-test & power on sensor */
        switch (idx) {
        case ACCEL:
            SPI_WRITE(LSM6DSM_CTRL5_C_ADDR, LSM6DSM_CTRL5_C_BASE | LSM6DSM_ACCEL_SELFTEST_PS);
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | LSM6DSM_ODR_104HZ_REG_VALUE, 30000);
            break;
        case GYRO:
            SPI_WRITE(LSM6DSM_CTRL5_C_ADDR, LSM6DSM_CTRL5_C_BASE | LSM6DSM_GYRO_SELFTEST_PS);
            SPI_WRITE(LSM6DSM_CTRL2_G_ADDR, LSM6DSM_CTRL2_G_BASE | LSM6DSM_ODR_104HZ_REG_VALUE, 30000);
            break;
#if defined(LSM6DSM_I2C_MASTER_LSM303AGR) || defined(LSM6DSM_I2C_MASTER_LIS3MDL)
        case MAGN:
            /* Enable accelerometer and sensor-hub */
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | LSM6DSM_ODR_104HZ_REG_VALUE);
            T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

            uint8_t rateIndex = ARRAY_SIZE(LSM6DSMSHRates) - 2;

#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_B_M_ADDR, LSM303AGR_OFFSET_CANCELLATION, SENSOR_HZ(104.0f), MAGN);
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_C_M_ADDR,
                    LSM303AGR_CFG_REG_C_M_BASE | LSM303AGR_ENABLE_SELFTEST, SENSOR_HZ(104.0f), MAGN);

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE |
                    LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(rateIndex), SENSOR_HZ(104.0f), MAGN, 200000);
#else /* LSM6DSM_I2C_MASTER_LSM303AGR */
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE, SENSOR_HZ(104.0f), MAGN);
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(rateIndex) | LIS3MDL_ENABLE_SELFTEST,
                    SENSOR_HZ(104.0f), MAGN);
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */
            break;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR, LSM6DSM_I2C_MASTER_LIS3MDL */
        default:
            return;
        }

        T(selftestState) = SELFTEST_READ_EST_DATA;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
        break;

    case SELFTEST_READ_EST_DATA:
#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
        if (idx == MAGN)
            numberOfAverage = LSM6DSM_NUM_AVERAGE_SELFTEST_SLOW;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */

        if (T(numSamplesSelftest) > 0) {
            sensorData = &T_SLAVE_INTERFACE(tmpDataBuffer[1]);
            T(dataSelftestEnabled[0]) += (int16_t)*((uint16_t *)&sensorData[0]);
            T(dataSelftestEnabled[1]) += (int16_t)*((uint16_t *)&sensorData[2]);
            T(dataSelftestEnabled[2]) += (int16_t)*((uint16_t *)&sensorData[4]);
        }
        T(numSamplesSelftest)++;

        if (T(numSamplesSelftest) <= numberOfAverage) {
            DEBUG_PRINT("runGapSelfTestProgram: reading output data while self-test is enabled\n");

            switch (idx) {
            case ACCEL:
                SPI_READ(LSM6DSM_OUTX_L_XL_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
            case GYRO:
                SPI_READ(LSM6DSM_OUTX_L_G_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
#if defined(LSM6DSM_I2C_MASTER_LSM303AGR) || defined(LSM6DSM_I2C_MASTER_LIS3MDL)
            case MAGN:
                SPI_READ(LSM6DSM_OUT_SENSORHUB1_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 20000);
                break;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR, LSM6DSM_I2C_MASTER_LIS3MDL */
            default:
                return;
            }
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
            break;
        }

        T(dataSelftestEnabled[0]) /= numberOfAverage;
        T(dataSelftestEnabled[1]) /= numberOfAverage;
        T(dataSelftestEnabled[2]) /= numberOfAverage;
        T(selftestState) = SELFTEST_SECOND_STEP_INITIALIZATION;

    case SELFTEST_SECOND_STEP_INITIALIZATION:
        DEBUG_PRINT("runGapSelfTestProgram: second step initialization\n");

        T(numSamplesSelftest) = 0;

        /* Disable self-test */
        switch (idx) {
        case ACCEL:
        case GYRO:
            SPI_WRITE(LSM6DSM_CTRL5_C_ADDR, LSM6DSM_CTRL5_C_BASE, 30000);
            break;
#if defined(LSM6DSM_I2C_MASTER_LSM303AGR) || defined(LSM6DSM_I2C_MASTER_LIS3MDL)
        case MAGN: ;
#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_C_M_ADDR, LSM303AGR_CFG_REG_C_M_BASE, SENSOR_HZ(104.0f), MAGN, 200000);
#else /* LSM6DSM_I2C_MASTER_LSM303AGR */
            uint8_t rateIndex = ARRAY_SIZE(LSM6DSMSHRates) - 2;

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(rateIndex),
                    SENSOR_HZ(104.0f), MAGN);
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */
            break;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR, LSM6DSM_I2C_MASTER_LIS3MDL */
        default:
            return;
        }

        T(selftestState) = SELFTEST_READ_NST_DATA;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
        break;

    case SELFTEST_READ_NST_DATA:
#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
        if (idx == MAGN)
            numberOfAverage = LSM6DSM_NUM_AVERAGE_SELFTEST_SLOW;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */

        if (T(numSamplesSelftest) > 0) {
            sensorData = &T_SLAVE_INTERFACE(tmpDataBuffer[1]);
            T(dataSelftestNotEnabled[0]) += (int16_t)*((uint16_t *)&sensorData[0]);
            T(dataSelftestNotEnabled[1]) += (int16_t)*((uint16_t *)&sensorData[2]);
            T(dataSelftestNotEnabled[2]) += (int16_t)*((uint16_t *)&sensorData[4]);
        }
        T(numSamplesSelftest)++;

        if (T(numSamplesSelftest) <= numberOfAverage) {
            DEBUG_PRINT("runGapSelfTestProgram: reading output data while self-test is disabled\n");

            switch (idx) {
            case ACCEL:
                SPI_READ(LSM6DSM_OUTX_L_XL_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
            case GYRO:
                SPI_READ(LSM6DSM_OUTX_L_G_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
#if defined(LSM6DSM_I2C_MASTER_LSM303AGR) || defined(LSM6DSM_I2C_MASTER_LIS3MDL)
            case MAGN:
                SPI_READ(LSM6DSM_OUT_SENSORHUB1_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 20000);
                break;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR, LSM6DSM_I2C_MASTER_LIS3MDL */
            default:
                return;
            }
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
            break;
        }

        T(dataSelftestNotEnabled[0]) /= numberOfAverage;
        T(dataSelftestNotEnabled[1]) /= numberOfAverage;
        T(dataSelftestNotEnabled[2]) /= numberOfAverage;
        T(selftestState) = SELFTEST_VERIFICATION;

    case SELFTEST_VERIFICATION: ;
        uint8_t i, sType;
        int32_t dataGap[3];
        bool testPassed = true;
        int32_t lower_threshold[3], higher_threshold[3];

        dataGap[0] = abs(T(dataSelftestEnabled[0]) - T(dataSelftestNotEnabled[0]));
        dataGap[1] = abs(T(dataSelftestEnabled[1]) - T(dataSelftestNotEnabled[1]));
        dataGap[2] = abs(T(dataSelftestEnabled[2]) - T(dataSelftestNotEnabled[2]));

        switch (idx) {
        case ACCEL:
            sType = SENS_TYPE_ACCEL;
            lower_threshold[0] = lower_threshold[1] = lower_threshold[2] = LSM6DSM_ACCEL_SELFTEST_LOW_THR_LSB;
            higher_threshold[0] = higher_threshold[1] = higher_threshold[2] = LSM6DSM_ACCEL_SELFTEST_HIGH_THR_LSB;

            /* Power off sensor */
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE);
            break;
        case GYRO:
            sType = SENS_TYPE_GYRO;
            lower_threshold[0] = lower_threshold[1] = lower_threshold[2] = LSM6DSM_GYRO_SELFTEST_LOW_THR_LSB;
            higher_threshold[0] = higher_threshold[1] = higher_threshold[2] = LSM6DSM_GYRO_SELFTEST_HIGH_THR_LSB;

            /* Power off sensor */
            SPI_WRITE(LSM6DSM_CTRL2_G_ADDR, LSM6DSM_CTRL2_G_BASE);
            break;
#if defined(LSM6DSM_I2C_MASTER_LSM303AGR) || defined(LSM6DSM_I2C_MASTER_LIS3MDL)
        case MAGN:
            sType = SENS_TYPE_MAG;

#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
            lower_threshold[0] = lower_threshold[1] = lower_threshold[2] = LSM303AGR_SELFTEST_LOW_THR_LSB;
            higher_threshold[0] = higher_threshold[1] = higher_threshold[2] = LSM303AGR_SELFTEST_HIGH_THR_LSB;

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_B_M_ADDR, 0x00, SENSOR_HZ(104.0f), MAGN);
#else /* LSM6DSM_I2C_MASTER_LSM303AGR */
            lower_threshold[0] = lower_threshold[1] = LIS3MDL_SELFTEST_LOW_THR_XY_LSB;
            higher_threshold[0] = higher_threshold[1] = LIS3MDL_SELFTEST_HIGH_THR_XY_LSB;
            lower_threshold[2] = LIS3MDL_SELFTEST_LOW_THR_Z_LSB;
            higher_threshold[2] = LIS3MDL_SELFTEST_HIGH_THR_Z_LSB;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */

            /* Power off sensor */
            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE, SENSOR_HZ(104.0f), MAGN);

            /* Disable accelerometer and sensor-hub */
            SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE);
            T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;
            break;
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR, LSM6DSM_I2C_MASTER_LIS3MDL */
        default:
            return;
        }

        for (i = 0; i < 3; i++) {
            if ((dataGap[i] < lower_threshold[i]) || (dataGap[i] > higher_threshold[i])) {
                testPassed = false;
                ERROR_PRINT("runGapSelfTestProgram: axis-%d out of spec! test-enabled: %ldLSB ** test-disabled: %ldLSB, ** delta: %ldLSB\n",
                            i, T(dataSelftestEnabled[i]), T(dataSelftestNotEnabled[i]), dataGap[i]);
            }
        }
        INFO_PRINT("runGapSelfTestProgram: completed. Test result: %s\n", testPassed ? "pass" : "fail");

        if (testPassed)
            lsm6dsm_sendSelfTestResult(sType, SENSOR_APP_EVT_STATUS_SUCCESS);
        else
            lsm6dsm_sendSelfTestResult(sType, SENSOR_APP_EVT_STATUS_ERROR);

        T(selftestState) = SELFTEST_COMPLETED;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
        break;

    default:
        break;
    }
}

/*
 * lsm6dsm_convertAccelOffsetValue: convert accel LSB value to offset digit
 * @val: LSB axis offset value.
 */
static uint8_t lsm6dsm_convertAccelOffsetValue(int32_t val)
{
    float temp;

    temp = val * LSM6DSM_ACCEL_LSB_TO_OFFSET_DIGIT_SCALE;
    if (temp > LSM6DSM_ACCEL_MAX_CALIBRATION_THR_LSB)
        temp = LSM6DSM_ACCEL_MAX_CALIBRATION_THR_LSB;

    if (temp < -LSM6DSM_ACCEL_MAX_CALIBRATION_THR_LSB)
        temp = -LSM6DSM_ACCEL_MAX_CALIBRATION_THR_LSB;

    return (uint8_t)((int8_t)temp);
}

/*
 * lsm6dsm_runCalibrationProgram: state machine that is executing calibration
 * @idx: sensor driver index.
 */
static void lsm6dsm_runCalibrationProgram(enum SensorIndex idx)
{
    TDECL();
    uint8_t *sensorData, numberOfAverage;
    uint8_t buffer[LSM6DSM_TRIAXIAL_NUM_AXIS] = { 0 };

    numberOfAverage = LSM6DSM_NUM_AVERAGE_CALIBRATION;

    switch (T(calibrationState)) {
    case CALIBRATION_INITIALIZATION:
        DEBUG_PRINT("runCalibrationProgram: initialization\n");

        T(numSamplesCalibration) = 0;
        memset(T(dataCalibration), 0, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

        /* Power on sensor */
        switch (idx) {
        case ACCEL:
            SPI_MULTIWRITE(LSM6DSM_X_OFS_USR_ADDR, buffer, LSM6DSM_TRIAXIAL_NUM_AXIS, 500);
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | LSM6DSM_ODR_104HZ_REG_VALUE, 30000);
            break;
        case GYRO:
            SPI_WRITE(LSM6DSM_CTRL2_G_ADDR, LSM6DSM_CTRL2_G_BASE | LSM6DSM_ODR_104HZ_REG_VALUE, 100000);
            break;
        default:
            return;
        }

        T(calibrationState) = CALIBRATION_READ_DATA;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
        break;

    case CALIBRATION_READ_DATA:
        if (T(numSamplesCalibration) > 0) {
            sensorData = &T_SLAVE_INTERFACE(tmpDataBuffer[1]);
            T(dataCalibration[0]) += (int16_t)*((uint16_t *)&sensorData[0]);
            T(dataCalibration[1]) += (int16_t)*((uint16_t *)&sensorData[2]);
            T(dataCalibration[2]) += (int16_t)*((uint16_t *)&sensorData[4]);
        }
        T(numSamplesCalibration)++;

        if (T(numSamplesCalibration) <= numberOfAverage) {
            DEBUG_PRINT("runCalibrationProgram: reading output data\n");

            switch (idx) {
            case ACCEL:
                SPI_READ(LSM6DSM_OUTX_L_XL_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
            case GYRO:
                SPI_READ(LSM6DSM_OUTX_L_G_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 10000);
                break;
            default:
                return;
            }
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
            break;
        }

        T(dataCalibration[0]) /= numberOfAverage;
        T(dataCalibration[1]) /= numberOfAverage;
        T(dataCalibration[2]) /= numberOfAverage;
        T(calibrationState) = CALIBRATION_VERIFICATION;

    case CALIBRATION_VERIFICATION: ;
        uint8_t sType;

        switch (idx) {
        case ACCEL:
            sType = SENS_TYPE_ACCEL;

            /* Power off sensor */
            SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE);

            /* Supposed 0,0,1g (Android coordinate system) */
            T(dataCalibration[0]) = -T(dataCalibration[0]);
            T(dataCalibration[1]) = -T(dataCalibration[1]);
            T(dataCalibration[2]) = T(dataCalibration[2]) - LSM6DSM_1G_IN_LSB_CALIBRATION;

            for (int8_t i = 0; i < LSM6DSM_TRIAXIAL_NUM_AXIS; i++)
                buffer[i] = lsm6dsm_convertAccelOffsetValue(T(dataCalibration[i]));

            SPI_MULTIWRITE(LSM6DSM_X_OFS_USR_ADDR, buffer, LSM6DSM_TRIAXIAL_NUM_AXIS);
            break;
        case GYRO:
            sType = SENS_TYPE_GYRO;

            /* Power off sensor */
            SPI_WRITE(LSM6DSM_CTRL2_G_ADDR, LSM6DSM_CTRL2_G_BASE);

            memcpy(T(gyroCalibrationData), T(dataCalibration), LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));
            break;
        default:
            return;
        }

        INFO_PRINT("runCalibrationProgram: completed. offset [LSB]: %ld %ld %ld\n", T(dataCalibration[0]), T(dataCalibration[1]), T(dataCalibration[2]));
        lsm6dsm_sendCalibrationResult(sType, SENSOR_APP_EVT_STATUS_SUCCESS, T(dataCalibration[0]), T(dataCalibration[1]), T(dataCalibration[2]));

        T(calibrationState) = CALIBRATION_COMPLETED;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[idx]), __FUNCTION__);
        break;

    default:
        break;
    }
}


#ifdef LSM6DSM_I2C_MASTER_AK09916
/*
 * lsm6dsm_runAbsoluteSelfTestProgram: state machine that is executing self-test verifying absolute value
 */
static void lsm6dsm_runAbsoluteSelfTestProgram(void)
{
    TDECL();
    uint8_t *sensorData;

    switch (T(selftestState)) {
    case SELFTEST_INITIALIZATION: ;
        DEBUG_PRINT("runAbsoluteSelfTestProgram: initialization\n");

        T(numSamplesSelftest) = 0;
        memset(T(dataSelftestEnabled), 0, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

        /* Enable accelerometer and sensor-hub */
        SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | LSM6DSM_ODR_104HZ_REG_VALUE);
        T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

        SPI_WRITE_SLAVE_SENSOR_REGISTER(AK09916_CNTL2_ADDR, AK09916_ENABLE_SELFTEST_MODE, SENSOR_HZ(104.0f), MAGN, 20000);

        T(selftestState) = SELFTEST_READ_EST_DATA;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
        break;

    case SELFTEST_READ_EST_DATA:
        if (T(numSamplesSelftest) > 0) {
            sensorData = &T_SLAVE_INTERFACE(tmpDataBuffer[1]);
            T(dataSelftestEnabled[0]) += (int16_t)*((uint16_t *)&sensorData[0]);
            T(dataSelftestEnabled[1]) += (int16_t)*((uint16_t *)&sensorData[2]);
            T(dataSelftestEnabled[2]) += (int16_t)*((uint16_t *)&sensorData[4]);
        }
        T(numSamplesSelftest)++;

        if (T(numSamplesSelftest) <= LSM6DSM_NUM_AVERAGE_SELFTEST) {
            DEBUG_PRINT("runAbsoluteSelfTestProgram: reading output data while self-test is enabled\n");

            SPI_READ(LSM6DSM_OUT_SENSORHUB1_ADDR, LSM6DSM_ONE_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tmpDataBuffer), 20000);
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
            break;
        }

        T(dataSelftestEnabled[0]) /= LSM6DSM_NUM_AVERAGE_SELFTEST;
        T(dataSelftestEnabled[1]) /= LSM6DSM_NUM_AVERAGE_SELFTEST;
        T(dataSelftestEnabled[2]) /= LSM6DSM_NUM_AVERAGE_SELFTEST;
        T(selftestState) = SELFTEST_VERIFICATION;

    case SELFTEST_VERIFICATION: ;
        bool testPassed = true;

        if ((T(dataSelftestEnabled[0]) < AK09916_SELFTEST_LOW_THR_XY_LSB) ||
                (T(dataSelftestEnabled[0]) > AK09916_SELFTEST_HIGH_THR_XYZ_LSB)) {
            testPassed = false;
            ERROR_PRINT("runAbsoluteSelfTestProgram: axis-0 out of spec! Read: %ldLSB\n", T(dataSelftestEnabled[0]));
        }
        if ((T(dataSelftestEnabled[1]) < AK09916_SELFTEST_LOW_THR_XY_LSB) ||
                (T(dataSelftestEnabled[1]) > AK09916_SELFTEST_HIGH_THR_XYZ_LSB)) {
            testPassed = false;
            ERROR_PRINT("runAbsoluteSelfTestProgram: axis-1 out of spec! Read: %ldLSB\n", T(dataSelftestEnabled[1]));
        }
        if ((T(dataSelftestEnabled[2]) < AK09916_SELFTEST_LOW_THR_Z_LSB) ||
                (T(dataSelftestEnabled[2]) > AK09916_SELFTEST_HIGH_THR_XYZ_LSB)) {
            testPassed = false;
            ERROR_PRINT("runAbsoluteSelfTestProgram: axis-2 out of spec! Read: %ldLSB\n", T(dataSelftestEnabled[2]));
        }

        INFO_PRINT("runAbsoluteSelfTestProgram: completed. Test result: %s\n", testPassed ? "pass" : "fail");

        if (testPassed)
            lsm6dsm_sendSelfTestResult(SENS_TYPE_MAG, SENSOR_APP_EVT_STATUS_SUCCESS);
        else
            lsm6dsm_sendSelfTestResult(SENS_TYPE_MAG, SENSOR_APP_EVT_STATUS_ERROR);

        /* Disable accelerometer and sensor-hub */
        SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
        SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE);
        T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;

        T(selftestState) = SELFTEST_COMPLETED;
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
        break;

    default:
        break;
    }
}
#endif /* LSM6DSM_I2C_MASTER_AK09916 */

/*
 * lsm6dsm_writeEmbeddedRegister: write embedded register
 * @addr: address of register to be written.
 * @value: value to write.
 */
static void lsm6dsm_writeEmbeddedRegister(uint8_t addr, uint8_t value)
{
    TDECL();

#ifdef LSM6DSM_I2C_MASTER_ENABLED
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
#endif /* LSM6DSM_I2C_MASTER_ENABLED */
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister) & ~LSM6DSM_ENABLE_DIGITAL_FUNC, 3000);
    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE | LSM6DSM_ENABLE_FUNC_CFG_ACCESS, 50);

    SPI_WRITE(addr, value);

    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE, 50);
#ifdef LSM6DSM_I2C_MASTER_ENABLED
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));
#endif /* LSM6DSM_I2C_MASTER_ENABLED */
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
}

#ifdef LSM6DSM_I2C_MASTER_ENABLED
/*
 * lsm6dsm_writeSlaveRegister: write I2C slave register using sensor-hub feature
 * @addr: address of register to be written.
 * @value: value to write.
 * @accelRate: sensor-hub is using accel odr as trigger. This is current accel odr value.
 * @delay: perform a delay after write is completed.
 * @si: which slave sensor needs to be written.
 */
static void lsm6dsm_writeSlaveRegister(uint8_t addr, uint8_t value, uint32_t accelRate, uint32_t delay, enum SensorIndex si)
{
    TDECL();
    uint8_t slave_addr, buffer[2];
    uint32_t SHOpCompleteTime;

    switch (si) {
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    case MAGN:
        slave_addr = LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT;
        break;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    case PRESS:
    case TEMP:
        slave_addr = LSM6DSM_SENSOR_SLAVE_BARO_I2C_ADDR_8BIT;
        break;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    default:
        return;
    }

    if (accelRate > SENSOR_HZ(104.0f))
        SHOpCompleteTime = SENSOR_HZ_RATE_TO_US(SENSOR_HZ(104.0f));
    else
        SHOpCompleteTime = SENSOR_HZ_RATE_TO_US(accelRate);

    /* Perform write to slave sensor and wait write is done (1 accel ODR) */
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister) & ~LSM6DSM_ENABLE_DIGITAL_FUNC, 3000);
    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE | LSM6DSM_ENABLE_FUNC_CFG_ACCESS, 50);

    buffer[0] = slave_addr << 1;                                     /* LSM6DSM_EMBEDDED_SLV0_ADDR */
    buffer[1] = addr;                                                /* LSM6DSM_EMBEDDED_SLV0_SUBADDR */
    SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV0_ADDR_ADDR, buffer, 2);
    SPI_WRITE(LSM6DSM_EMBEDDED_DATAWRITE_SLV0_ADDR, value);

    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE, 50);
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister) | LSM6DSM_MASTER_CONFIG_MASTER_ON);
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister), (3 * SHOpCompleteTime) / 2);

    /* After write is completed slave 0 must be set to sleep mode */
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister) & ~LSM6DSM_ENABLE_DIGITAL_FUNC, 3000);
    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE | LSM6DSM_ENABLE_FUNC_CFG_ACCESS, 50);

    buffer[0] = LSM6DSM_EMBEDDED_SLV0_WRITE_ADDR_SLEEP;              /* LSM6DSM_EMBEDDED_SLV0_ADDR */
    buffer[1] = addr;                                                /* LSM6DSM_EMBEDDED_SLV0_SUBADDR */
    SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV0_ADDR_ADDR, buffer, 2);

    SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE, 50);
    SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));
    SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister), delay);
}
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

/*
 * lsm6dsm_computeOdr: get index of LSM6DSMImuRates array based on selected rate
 * @rate: ODR value expressed in SENSOR_HZ(x).
 */
static uint8_t lsm6dsm_computeOdr(uint32_t rate)
{
    int i;

    for (i = 0; i < (ARRAY_SIZE(LSM6DSMImuRates) - 1); i++) {
        if (LSM6DSMImuRates[i] == rate)
            break;
    }
    if (i == (ARRAY_SIZE(LSM6DSMImuRates) - 1)) {
        ERROR_PRINT("computeOdr: ODR not valid! Selected smallest ODR available\n");
        i = 0;
    }

    return i;
}

/*
 * lsm6dsm_sensorHzToNs: return delta time of specifi sensor rate
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 */
static uint32_t lsm6dsm_sensorHzToNs(uint32_t rate)
{
    int i;

    for (i = 0; i < (ARRAY_SIZE(LSM6DSMImuRates) - 1); i++) {
        if (LSM6DSMImuRates[i] == rate)
            break;
    }
    if (i == (ARRAY_SIZE(LSM6DSMImuRates) - 1)) {
        ERROR_PRINT("sensorHzToNs: rate not available. Selected smaller rate\n");
        i = 0;
    }

    return LSM6DSMImuRatesInNs[i];
}

/*
 * lsm6dsm_decimatorToFifoDecimatorReg: get decimator reg value based on decimation factor
 * @dec: FIFO sample decimation factor.
 */
static uint8_t lsm6dsm_decimatorToFifoDecimatorReg(uint8_t dec)
{
    uint8_t regValue;

    switch (dec) {
    case 1:
        regValue = LSM6DSM_FIFO_NO_DECIMATION;
        break;
    case 2:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_2;
        break;
    case 3:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_3;
        break;
    case 4:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_4;
        break;
    case 8:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_8;
        break;
    case 16:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_16;
        break;
    case 32:
        regValue = LSM6DSM_FIFO_DECIMATION_FACTOR_32;
        break;
    default:
        regValue = LSM6DSM_FIFO_SAMPLE_NOT_IN_FIFO;
        break;
    }

    return regValue;
}

/*
 * lsm6dsm_calculateFifoDecimators: calculate fifo decimators
 * @RequestedRate: list of ODRs requested by driver for each sensor in FIFO.
 * @minLatency: the function will set the min latency based on all sensors enabled in FIFO.
 */
static bool lsm6dsm_calculateFifoDecimators(uint32_t RequestedRate[FIFO_NUM], uint64_t *minLatency)
{
    TDECL();
    uint8_t i, n, tempDec, decimators[FIFO_NUM] = { 0 }, minDec = UINT8_MAX, maxDec = 0;
    enum SensorIndex sidx;
    bool changed = false;

    T(fifoCntl).triggerRate = T(sensors[ACCEL]).hwRate;
    if (T(sensors[GYRO]).hwRate > T(fifoCntl).triggerRate)
        T(fifoCntl).triggerRate = T(sensors[GYRO]).hwRate;

    for (i = 0; i < FIFO_NUM; i++) {
        sidx = T(fifoCntl).decimatorsIdx[i];
        if (sidx >= NUM_SENSORS)
            continue;

        if (T(sensors[i]).latency < *minLatency)
            *minLatency = T(sensors[i]).latency;
    }

    for (i = 0; i < FIFO_NUM; i++) {
        sidx = T(fifoCntl).decimatorsIdx[i];
        if (sidx >= NUM_SENSORS)
            continue;

        if (RequestedRate[i]) {
            decimators[i] = (T(fifoCntl).triggerRate / RequestedRate[i]) <= 32 ? (T(fifoCntl).triggerRate / RequestedRate[i]) : 32;

            tempDec = decimators[i];
            while (decimators[i] > 1) {
                if (((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * decimators[i]) > *minLatency)
                    decimators[i] /= 2;
                else
                    break;
            }
            T(sensors[sidx]).samplesFifoDecimator = tempDec / decimators[i];
            T(sensors[sidx]).samplesFifoDecimatorCounter = T(sensors[sidx]).samplesFifoDecimator - 1;

            if (decimators[i] < minDec)
                minDec = decimators[i];

            if (decimators[i] > maxDec)
                maxDec = decimators[i];
        }

        DEBUG_PRINT("calculateFifoDecimators: sensorIndex=%d, fifo decimator=%d, software decimation=%d\n", sidx, decimators[i], T(sensors[sidx]).samplesFifoDecimator);

        if (T(fifoCntl).decimators[i] != decimators[i]) {
            T(fifoCntl).decimators[i] = decimators[i];
            changed = true;
        }
    }

    /* Embedded timestamp slot */
    T(fifoCntl).decimators[FIFO_DS4] = minDec;

    T(fifoCntl).minDecimator = minDec;
    T(fifoCntl).maxDecimator = maxDec;
    T(fifoCntl).maxMinDecimator = maxDec / minDec;
    T(fifoCntl).totalSip = 0;

    if (maxDec > 0) {
        T(time).theoreticalDeltaTimeLSB = cpuMathU64DivByU16((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).minDecimator, LSM6DSM_TIME_RESOLUTION);
        T(time).deltaTimeMarginLSB = ((T(time).theoreticalDeltaTimeLSB) * 10) / 100;

        for (i = 0; i < FIFO_NUM; i++) {
            if (T(fifoCntl).decimators[i] > 0)
                T(fifoCntl).totalSip += (maxDec / T(fifoCntl).decimators[i]);
        }
    }

    DEBUG_PRINT("calculateFifoDecimators: samples in pattern=%d\n", T(fifoCntl).totalSip);

    for (i = 0; i < T(fifoCntl).maxMinDecimator; i++) {
        T(fifoCntl).timestampPosition[i] = 0;
        for (n = 0; n < FIFO_NUM - 1; n++) {
            if ((T(fifoCntl).decimators[n] > 0) && ((i % (T(fifoCntl).decimators[n] / T(fifoCntl).minDecimator)) == 0))
                T(fifoCntl).timestampPosition[i] += LSM6DSM_ONE_SAMPLE_BYTE;
        }
    }

    return changed;
}

/*
 * lsm6dsm_calculateWatermark: calculate fifo watermark level
 * @minLatency: min latency requested by system based on all sensors in FIFO.
 */
static bool lsm6dsm_calculateWatermark(uint64_t *minLatency)
{
    TDECL();
    uint64_t patternRate, tempLatency;
    uint16_t watermark;
    uint16_t i = 1;

    if (T(fifoCntl).totalSip > 0) {
        patternRate = (uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator;

        do {
            tempLatency = patternRate * (++i);
        } while ((tempLatency < *minLatency) && (i <= LSM6DSM_MAX_WATERMARK_VALUE));

        watermark = (i - 1) * T(fifoCntl).totalSip;

        while (watermark > LSM6DSM_MAX_WATERMARK_VALUE) {
            watermark /= 2;
            watermark = watermark - (watermark % T(fifoCntl).totalSip);
        }

        DEBUG_PRINT("calculateWatermark: level=#%d, min latency=%lldns\n", watermark, *minLatency);

        if (T(fifoCntl).watermark != watermark) {
            T(fifoCntl).watermark = watermark;
            return true;
        }
    }

   return false;
}

/*
 * lsm6dsm_resetTimestampSync: reset all variables used by sync timestamp task
 */
static inline void lsm6dsm_resetTimestampSync(void)
{
    TDECL();

    T(lastFifoReadTimestamp) = 0;

    T(time).sampleTimestampFromFifoLSB = 0;
    T(time).timestampIsValid = false;
    T(time).lastSampleTimestamp = 0;
    T(time).noTimer.lastTimestampDataAvlRtcTime = 0;
    T(time).noTimer.newTimestampDataAvl = false;
    T(time).timestampSyncTaskLSB = 0;

    time_sync_reset(&T(time).sensorTimeToRtcData);
}

/*
 * lsm6dsm_updateSyncTaskMode: set the best way to sync timestamp
 * @minLatency: min latency of sensors using FIFO.
 */
static inline void lsm6dsm_updateSyncTaskMode(uint64_t *minLatency)
{
    TDECL();

    /* If minLatency is `small` do not use timer to read timestamp and
        temperature but read it during FIFO read. */
    if (*minLatency < LSM6DSM_SYNC_DELTA_INTERVAL) {
        T(time).status = TIME_SYNC_DURING_FIFO_READ;
    } else {
        T(time).status = TIME_SYNC_TIMER;

        if (!osEnqueuePrivateEvt(EVT_TIME_SYNC, 0, NULL, mTask.tid)) {
            T(pendingTimeSyncTask) = true;
            ERROR_PRINT("updateSyncTaskMode: failed to enqueue time sync event\n");
        }
    }
}

/*
 * lsm6dsm_updateOdrs: update ODRs based on rates
 */
static bool lsm6dsm_updateOdrs(void)
{
    TDECL();
    bool accelOdrChanged = false, gyroOdrChanged = false, decChanged, watermarkChanged, gyroFirstEnable = false;
    uint32_t maxRate, maxPushDataRate[FIFO_NUM] = { 0 };
    uint64_t minLatency = UINT64_MAX;
    uint8_t i, regValue, buffer[5];
    uint16_t watermarkReg;

    maxRate = 0;

    /* Verify accel odr */
    for (i = 0; i < NUM_SENSORS; i++) {
        if (T(sensors[ACCEL]).rate[i] > maxRate)
            maxRate = T(sensors[ACCEL]).rate[i] < SENSOR_HZ(26.0f / 2.0f) ? SENSOR_HZ(26.0f / 2.0f) : T(sensors[ACCEL]).rate[i];

        if ((T(sensors[ACCEL]).rate[i] > maxPushDataRate[FIFO_ACCEL]) && T(sensors[ACCEL]).dependenciesRequireData[i])
            maxPushDataRate[FIFO_ACCEL] = T(sensors[ACCEL]).rate[i];
    }
    if (T(sensors[ACCEL]).hwRate != maxRate) {
        T(sensors[ACCEL]).hwRate = maxRate;
        accelOdrChanged = true;
    }

    maxRate = 0;

    /* Verify gyro odr */
    for (i = 0; i < NUM_SENSORS; i++) {
        if (T(sensors[GYRO]).rate[i] > maxRate)
            maxRate = T(sensors[GYRO]).rate[i] < SENSOR_HZ(26.0f / 2.0f) ? SENSOR_HZ(26.0f / 2.0f) : T(sensors[GYRO]).rate[i];

        if (T(sensors[GYRO]).rate[i] > maxPushDataRate[FIFO_GYRO])
            maxPushDataRate[FIFO_GYRO] = T(sensors[GYRO]).rate[i];
    }
    if (T(sensors[GYRO]).hwRate != maxRate) {
        /* If gyro is enabled from PowerDown more samples needs to be discarded */
        if (T(sensors[GYRO]).hwRate == 0)
            gyroFirstEnable = true;

        T(sensors[GYRO]).hwRate = maxRate;
        gyroOdrChanged = true;
    }

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    /* If magnetometer is enabled, FIFO is used for it */
    maxPushDataRate[FIFO_DS3] = T(sensors[MAGN]).rate[MAGN];
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) && !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
    /* If magnetometer is not available FIFO can be used to store barometer sensor data */
    maxPushDataRate[FIFO_DS3] = T(sensors[PRESS]).rate[PRESS] > T(sensors[TEMP]).rate[TEMP] ? T(sensors[PRESS]).rate[PRESS] : T(sensors[TEMP]).rate[TEMP];
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED, LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

    decChanged = lsm6dsm_calculateFifoDecimators(maxPushDataRate, &minLatency);
    watermarkChanged = lsm6dsm_calculateWatermark(&minLatency);
    watermarkReg = T(fifoCntl).watermark * 3;

    if (accelOdrChanged || gyroOdrChanged || decChanged) {
        /* read all FIFO content and disable it */
        DEBUG_PRINT("updateOdrs: disabling FIFO\n");
        T(time).status = TIME_SYNC_DISABLED;

        SPI_WRITE(LSM6DSM_TIMESTAMP2_REG_ADDR, LSM6DSM_TIMESTAMP2_REG_RESET_TIMESTAMP);
        SPI_WRITE(LSM6DSM_FIFO_CTRL5_ADDR, LSM6DSM_FIFO_BYPASS_MODE, 25);
    }

    if (accelOdrChanged) {
        if (T(sensors[ACCEL]).hwRate == 0) {
            DEBUG_PRINT("updateOdrs: no one is using accel, disabling it\n");
            regValue = 0;
        } else {
            DEBUG_PRINT("updateOdrs: accel in use, updating odr to %dHz\n", (int)(T(sensors[ACCEL]).hwRate / 1024));
            i = lsm6dsm_computeOdr(T(sensors[ACCEL]).hwRate);
            regValue = LSM6DSMImuRatesRegValue[i];
            T(sensors[ACCEL]).samplesToDiscard = LSM6DSMAccelRatesSamplesToDiscard[i] /
                                                    (T(sensors[ACCEL]).hwRate / (T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_ACCEL]));

            if (T(sensors[ACCEL]).samplesToDiscard == 0)
                T(sensors[ACCEL]).samplesToDiscard = 1;

            T(sensors[ACCEL]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_ACCEL]) /
                                                    T(sensors[ACCEL]).samplesFifoDecimator) / T(sensors[ACCEL]).rate[ACCEL];
            T(sensors[ACCEL]).samplesDecimatorCounter = T(sensors[ACCEL]).samplesDecimator - 1;
        }
        SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | regValue, 30);
    }

    if (gyroOdrChanged) {
        if (T(sensors[GYRO]).hwRate == 0) {
            DEBUG_PRINT("updateOdrs: no one is using gyro, disabling it\n");
            regValue = 0;
        } else {
            DEBUG_PRINT("updateOdrs: gyro in use, updating odr to %dHz\n", (int)(T(sensors[GYRO]).hwRate / 1024));
            i = lsm6dsm_computeOdr(T(sensors[GYRO]).hwRate);
            regValue = LSM6DSMImuRatesRegValue[i];
            T(sensors[GYRO]).samplesToDiscard = LSM6DSMGyroRatesSamplesToDiscard[i];

            if (gyroFirstEnable)
                T(sensors[GYRO]).samplesToDiscard += LSM6DSMRatesSamplesToDiscardGyroPowerOn[i];

            T(sensors[GYRO]).samplesToDiscard /= (T(sensors[GYRO]).hwRate / (T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_GYRO]));

            if (T(sensors[GYRO]).samplesToDiscard == 0)
                T(sensors[GYRO]).samplesToDiscard = 1;

            T(sensors[GYRO]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_GYRO]) /
                                                    T(sensors[GYRO]).samplesFifoDecimator) / T(sensors[GYRO]).rate[GYRO];
            T(sensors[GYRO]).samplesDecimatorCounter = T(sensors[GYRO]).samplesDecimator - 1;
        }
        SPI_WRITE(LSM6DSM_CTRL2_G_ADDR, LSM6DSM_CTRL2_G_BASE | regValue, 30);
    }

    /* Program Fifo and enable or disable it */
    if (accelOdrChanged || gyroOdrChanged || decChanged) {
        buffer[0] = *((uint8_t *)&watermarkReg);
        buffer[1] = (*((uint8_t *)&watermarkReg + 1) & LSM6DSM_FIFO_CTRL2_FTH_MASK) | LSM6DSM_ENABLE_FIFO_TIMESTAMP;
        buffer[2] = (lsm6dsm_decimatorToFifoDecimatorReg(T(fifoCntl).decimators[FIFO_GYRO]) << 3) |
                    lsm6dsm_decimatorToFifoDecimatorReg(T(fifoCntl).decimators[FIFO_ACCEL]);
        buffer[3] = (lsm6dsm_decimatorToFifoDecimatorReg(T(fifoCntl).decimators[FIFO_DS4]) << 3) |
                    lsm6dsm_decimatorToFifoDecimatorReg(T(fifoCntl).decimators[FIFO_DS3]);

        for (i = 0; i < FIFO_NUM - 1; i++) {
            if (T(fifoCntl).decimators[i] > 0)
                break;
        }
        if (i < (FIFO_NUM - 1)) {
            /* Someone want to use FIFO */
            DEBUG_PRINT("updateOdrs: enabling FIFO in continuos mode\n");
            buffer[4] = LSM6DSM_FIFO_CONTINUOS_MODE;

            lsm6dsm_resetTimestampSync();
            lsm6dsm_updateSyncTaskMode(&minLatency);
        } else {
            /* No one is using FIFO */
            buffer[4] = LSM6DSM_FIFO_BYPASS_MODE;

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
            if ((T(sensors[PRESS]).rate[PRESS] > 0) || (T(sensors[TEMP]).rate[TEMP] > 0)) {
                uint64_t latencyOnlyBaro = LSM6DSM_SYNC_DELTA_INTERVAL;
                lsm6dsm_resetTimestampSync();
                lsm6dsm_updateSyncTaskMode(&latencyOnlyBaro);
            }
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
        }

        SPI_MULTIWRITE(LSM6DSM_FIFO_CTRL1_ADDR, buffer, 5);
    } else {
        if (watermarkChanged) {
            lsm6dsm_updateSyncTaskMode(&minLatency);

            buffer[0] = *((uint8_t *)&watermarkReg);
            buffer[1] = (*((uint8_t *)&watermarkReg + 1) & LSM6DSM_FIFO_CTRL2_FTH_MASK) | LSM6DSM_ENABLE_FIFO_TIMESTAMP;
            SPI_MULTIWRITE(LSM6DSM_FIFO_CTRL1_ADDR, buffer, 2);
        }
    }

    if (accelOdrChanged || gyroOdrChanged || decChanged || watermarkChanged)
        return true;

    return false;
}

/*
 * lsm6dsm_setAccelPower: enable/disable accelerometer sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setAccelPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setAccelPower: %s\n", on ? "enable" : "disable");

        if (on)
            osEnqueuePrivateEvt(EVT_SENSOR_POWERING_UP, &T(sensors[ACCEL]), NULL, mTask.tid);
        else {
            T(sensors[ACCEL]).rate[ACCEL] = 0;
            T(sensors[ACCEL]).latency = UINT64_MAX;

            if (lsm6dsm_updateOdrs())
                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[ACCEL]), __FUNCTION__);
            else
                osEnqueuePrivateEvt(EVT_SENSOR_POWERING_DOWN, &T(sensors[ACCEL]), NULL, mTask.tid);
        }
    } else {
        T(pendingEnableConfig[ACCEL]) = true;
        T(sensors[ACCEL]).pConfig.enable = on;
    }

    return true;
}

/*
 * lsm6dsm_setGyroPower: enable/disable gyroscope sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setGyroPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setGyroPower: %s\n", on ? "enable" : "disable");

        if (on)
            osEnqueuePrivateEvt(EVT_SENSOR_POWERING_UP, &T(sensors[GYRO]), NULL, mTask.tid);
        else {
#ifdef LSM6DSM_GYRO_CALIB_ENABLED
            T(sensors[ACCEL]).rate[GYRO] = 0;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */
            T(sensors[GYRO]).rate[GYRO] = 0;
            T(sensors[GYRO]).latency = UINT64_MAX;

            if (lsm6dsm_updateOdrs()) {
                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[GYRO]), __FUNCTION__);
            } else
                osEnqueuePrivateEvt(EVT_SENSOR_POWERING_DOWN, &T(sensors[GYRO]), NULL, mTask.tid);
        }
    } else {
        T(pendingEnableConfig[GYRO]) = true;
        T(sensors[GYRO]).pConfig.enable = on;
    }

    return true;
}

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
/*
 * lsm6dsm_setMagnPower: enable/disable magnetometer sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setMagnPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setMagnPower: %s\n", on ? "enable" : "disable");

        if (on) {
            if (T(masterConfigDependencies) != 0) {
                T(masterConfigDependencies) |= BIT(MAGN);

                osEnqueuePrivateEvt(EVT_SENSOR_POWERING_UP, &T(sensors[MAGN]), NULL, mTask.tid);
            } else {
                T(masterConfigDependencies) |= BIT(MAGN);
                T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));

                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
            }
        } else {
            T(masterConfigDependencies) &= ~BIT(MAGN);

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR,
                    LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE,
                    T(sensors[ACCEL]).hwRate, MAGN);

            if (T(masterConfigDependencies) == 0) {
                DEBUG_PRINT("setMagnPower: no sensors enabled on i2c master, disabling it\n");
                T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;
                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));
            }

            T(sensors[ACCEL]).rate[MAGN] = 0;
            T(sensors[MAGN]).rate[MAGN] = 0;
            T(sensors[MAGN]).latency = UINT64_MAX;
            T(sensors[MAGN]).hwRate = 0;

            lsm6dsm_updateOdrs();

            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
        }
    } else {
        T(pendingEnableConfig[MAGN]) = true;
        T(sensors[MAGN]).pConfig.enable = on;
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
/*
 * lsm6dsm_setPressPower: enable/disable pressure sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setPressPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setPressPower: %s\n", on ? "enable" : "disable");

        if (on) {
            if (T(masterConfigDependencies) != 0) {
                T(masterConfigDependencies) |= BIT(PRESS);

                osEnqueuePrivateEvt(EVT_SENSOR_POWERING_UP, &T(sensors[PRESS]), NULL, mTask.tid);
            } else {
                T(masterConfigDependencies) |= BIT(PRESS);
                T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));

                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[PRESS]), __FUNCTION__);
            }
        } else {
            uint8_t i, reg_value = LSM6DSM_SENSOR_SLAVE_BARO_POWER_BASE;

            T(masterConfigDependencies) &= ~BIT(PRESS);

            if (T(sensors[TEMP]).enabled) {
                i = lsm6dsm_computeOdr(T(sensors[TEMP]).rate[TEMP]);
                reg_value |= LSM6DSM_SENSOR_SLAVE_BARO_RATES_REG_VALUE(i);
            } else
                reg_value |= LSM6DSM_SENSOR_SLAVE_BARO_POWER_OFF_VALUE;

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_BARO_POWER_ADDR, reg_value,
                    T(sensors[ACCEL]).hwRate, PRESS);

            if (T(masterConfigDependencies) == 0) {
                DEBUG_PRINT("setPressPower: no sensors enabled on i2c master, disabling it\n");
                T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;
                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));
            }

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
            if (T(baroTimerId)) {
                timTimerCancel(T(baroTimerId));
                T(baroTimerId) = 0;

                T(pendingBaroTimerTask) = false;
                T(time).timestampBaroLSB = 0;

                if (T(sensors[TEMP]).enabled)
                    T(baroTimerId) = timTimerSet(lsm6dsm_sensorHzToNs(T(sensors[TEMP]).rate[TEMP]), 0, 50, lsm6dsm_baroTimerCallback, NULL, false);
            }
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

            T(sensors[ACCEL]).rate[PRESS] = 0;
            T(sensors[PRESS]).rate[PRESS] = 0;
            T(sensors[PRESS]).latency = UINT64_MAX;
            T(sensors[PRESS]).hwRate = 0;

            lsm6dsm_updateOdrs();

            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[PRESS]), __FUNCTION__);
        }
    } else {
        T(pendingEnableConfig[PRESS]) = true;
        T(sensors[PRESS]).pConfig.enable = on;
    }

    return true;
}

/*
 * lsm6dsm_setTempPower: enable/disable temperature sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setTempPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setTempPower: %s\n", on ? "enable" : "disable");

        if (on) {
            if (T(masterConfigDependencies) != 0) {
                T(masterConfigDependencies) |= BIT(TEMP);

                osEnqueuePrivateEvt(EVT_SENSOR_POWERING_UP, &T(sensors[TEMP]), NULL, mTask.tid);
            } else {
                T(masterConfigDependencies) |= BIT(TEMP);
                T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));

                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[TEMP]), __FUNCTION__);
            }
        } else {
            uint8_t i, reg_value = LSM6DSM_SENSOR_SLAVE_BARO_POWER_BASE;

            T(masterConfigDependencies) &= ~BIT(TEMP);

            if (T(sensors[PRESS]).enabled) {
                i = lsm6dsm_computeOdr(T(sensors[PRESS]).rate[PRESS]);
                reg_value |= LSM6DSM_SENSOR_SLAVE_BARO_RATES_REG_VALUE(i);
            } else
                reg_value |= LSM6DSM_SENSOR_SLAVE_BARO_POWER_OFF_VALUE;

            SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_BARO_POWER_ADDR, reg_value,
                    T(sensors[ACCEL]).hwRate, TEMP);

            if (T(masterConfigDependencies) == 0) {
                DEBUG_PRINT("setTempPower: no sensors enabled on i2c master, disabling it\n");
                T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;
                SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, T(masterConfigRegister));
            }

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
            if (T(baroTimerId)) {
                timTimerCancel(T(baroTimerId));
                T(baroTimerId) = 0;

                T(pendingBaroTimerTask) = false;
                T(time).timestampBaroLSB = 0;

                if (T(sensors[PRESS]).enabled)
                    T(baroTimerId) = timTimerSet(lsm6dsm_sensorHzToNs(T(sensors[PRESS]).rate[PRESS]), 0, 50, lsm6dsm_baroTimerCallback, NULL, false);
            }
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

            T(sensors[ACCEL]).rate[TEMP] = 0;
            T(sensors[TEMP]).rate[TEMP] = 0;
            T(sensors[TEMP]).latency = UINT64_MAX;
            T(sensors[TEMP]).hwRate = 0;

            lsm6dsm_updateOdrs();

            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[TEMP]), __FUNCTION__);
        }
    } else {
        T(pendingEnableConfig[TEMP]) = true;
        T(sensors[TEMP]).pConfig.enable = on;
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_setStepDetectorPower: enable/disable step detector sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setStepDetectorPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setStepDetectorPower: %s\n", on ? "enable" : "disable");

        if (on) {
            T(pedometerDependencies) |= BIT(STEP_DETECTOR);
            T(embeddedFunctionsRegister) |= LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC;
            T(int1Register) |= LSM6DSM_INT_STEP_DETECTOR_ENABLE_REG_VALUE;

            T(sensors[ACCEL]).rate[STEP_DETECTOR] = SENSOR_HZ(26.0f);
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
            SPI_WRITE(LSM6DSM_INT1_CTRL_ADDR, T(int1Register));
        } else {
            T(pedometerDependencies) &= ~BIT(STEP_DETECTOR);
            T(int1Register) &= ~LSM6DSM_INT_STEP_DETECTOR_ENABLE_REG_VALUE;

            if ((T(pedometerDependencies) & (BIT(STEP_COUNTER) | BIT(SIGN_MOTION))) == 0) {
                DEBUG_PRINT("setStepDetectorPower: no more need pedometer algo, disabling it\n");
                T(embeddedFunctionsRegister) &= ~LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC;
            }

            T(sensors[ACCEL]).rate[STEP_DETECTOR] = 0;
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_INT1_CTRL_ADDR, T(int1Register));
            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
        }

        /* If enable, set INT bit enable and enable accelerometer sensor @26Hz if disabled. If disable, disable INT bit and disable accelerometer if no one need it */
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[STEP_DETECTOR]), __FUNCTION__);
    } else {
        T(pendingEnableConfig[STEP_DETECTOR]) = true;
        T(sensors[STEP_DETECTOR]).pConfig.enable = on;
    }

    return true;
}

/*
 * lsm6dsm_setStepCounterPower: enable/disable step counter sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setStepCounterPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setStepCounterPower: %s\n", on ? "enable" : "disable");

        if (on) {
            T(readSteps) = false;
            T(pedometerDependencies) |= BIT(STEP_COUNTER);
            T(embeddedFunctionsRegister) |= LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC;
            T(int2Register) |= LSM6DSM_INT_STEP_COUNTER_ENABLE_REG_VALUE;

            T(sensors[ACCEL]).rate[STEP_COUNTER] = SENSOR_HZ(26.0f);
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
            SPI_WRITE(LSM6DSM_INT2_CTRL_ADDR, T(int2Register));
        } else {
            T(pedometerDependencies) &= ~BIT(STEP_COUNTER);
            T(int2Register) &= ~LSM6DSM_INT_STEP_COUNTER_ENABLE_REG_VALUE;

            if ((T(pedometerDependencies) & (BIT(STEP_DETECTOR) | BIT(SIGN_MOTION))) == 0) {
                DEBUG_PRINT("setStepCounterPower: no more need pedometer algo, disabling it\n");
                T(embeddedFunctionsRegister) &= ~LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC;
            }

            T(sensors[ACCEL]).rate[STEP_COUNTER] = 0;
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_INT2_CTRL_ADDR, T(int2Register));
            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
        }

        /* If enable, set INT bit enable and enable accelerometer sensor @26Hz if disabled. If disable, disable INT bit and disable accelerometer if no one need it */
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[STEP_COUNTER]), __FUNCTION__);
    } else {
        T(pendingEnableConfig[STEP_COUNTER]) = true;
        T(sensors[STEP_COUNTER]).pConfig.enable = on;
    }

    return true;
}

/*
 * lsm6dsm_setSignMotionPower: enable/disable significant motion sensor
 * @on: enable or disable sensor.
 * @cookie: private data.
 */
static bool lsm6dsm_setSignMotionPower(bool on, void *cookie)
{
    TDECL();

    /* If current status is SENSOR_IDLE set state to SENSOR_POWERING_* and execute command directly.
        If current status is NOT SENSOR_IDLE add pending config that will be managed before go back to SENSOR_IDLE. */
    if (trySwitchState(on ? SENSOR_POWERING_UP : SENSOR_POWERING_DOWN)) {
        INFO_PRINT("setSignMotionPower: %s\n", on ? "enable" : "disable");

        if (on) {
            T(pedometerDependencies) |= BIT(SIGN_MOTION);
            T(embeddedFunctionsRegister) |= (LSM6DSM_ENABLE_SIGN_MOTION_DIGITAL_FUNC | LSM6DSM_ENABLE_PEDOMETER_DIGITAL_FUNC);
            T(int1Register) |= LSM6DSM_INT_SIGN_MOTION_ENABLE_REG_VALUE;

            T(sensors[ACCEL]).rate[SIGN_MOTION] = SENSOR_HZ(26.0f);
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
            SPI_WRITE(LSM6DSM_INT1_CTRL_ADDR, T(int1Register));
        } else {
            T(pedometerDependencies) &= ~BIT(SIGN_MOTION);
            T(int1Register) &= ~LSM6DSM_INT_SIGN_MOTION_ENABLE_REG_VALUE;

            if ((T(pedometerDependencies) & (BIT(STEP_DETECTOR) | BIT(STEP_COUNTER))) == 0) {
                DEBUG_PRINT("setSignMotionPower: no more need pedometer algo, disabling it\n");
                T(embeddedFunctionsRegister) &= ~LSM6DSM_ENABLE_SIGN_MOTION_DIGITAL_FUNC;
            }

            T(sensors[ACCEL]).rate[SIGN_MOTION] = 0;
            lsm6dsm_updateOdrs();

            SPI_WRITE(LSM6DSM_INT1_CTRL_ADDR, T(int1Register), 50000);
            SPI_WRITE(LSM6DSM_CTRL10_C_ADDR, T(embeddedFunctionsRegister));
        }

        /* If enable, set INT bit enable and enable accelerometer sensor @26Hz if disabled. If disable, disable INT bit and disable accelerometer if no one need it */
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[SIGN_MOTION]), __FUNCTION__);
    } else {
        T(pendingEnableConfig[SIGN_MOTION]) = true;
        T(sensors[SIGN_MOTION]).pConfig.enable = on;
    }

    return true;
}

/*
 * lsm6dsm_accelFirmwareUpload: upload accelerometer firmware
 * @cookie: private data.
 */
static bool lsm6dsm_accelFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[ACCEL]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

/*
 * lsm6dsm_gyroFirmwareUpload: upload gyroscope firmware
 * @cookie: private data.
 */
static bool lsm6dsm_gyroFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[GYRO]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
/*
 * lsm6dsm_magnFirmwareUpload: upload magnetometer firmware
 * @cookie: private data.
 */
static bool lsm6dsm_magnFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[MAGN]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
/*
 * lsm6dsm_pressFirmwareUpload: upload pressure firmware
 * @cookie: private data.
 */
static bool lsm6dsm_pressFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[PRESS]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

/*
 * lsm6dsm_tempFirmwareUpload: upload pressure firmware
 * @cookie: private data.
 */
static bool lsm6dsm_tempFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[TEMP]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_stepDetectorFirmwareUpload: upload step detector firmware
 * @cookie: private data.
 */
static bool lsm6dsm_stepDetectorFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[STEP_DETECTOR]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

/*
 * lsm6dsm_stepCounterFirmwareUpload: upload step counter firmware
 * @cookie: private data.
 */
static bool lsm6dsm_stepCounterFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[STEP_COUNTER]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

/*
 * lsm6dsm_signMotionFirmwareUpload: upload significant motion firmware
 * @cookie: private data.
 */
static bool lsm6dsm_signMotionFirmwareUpload(void *cookie)
{
    TDECL();

    sensorSignalInternalEvt(T(sensors[SIGN_MOTION]).handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);

    return true;
}

/*
 * lsm6dsm_setAccelRate: set accelerometer ODR and report latency (FIFO watermark related)
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setAccelRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        INFO_PRINT("setAccelRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

        T(sensors[ACCEL]).rate[ACCEL] = rate;
        T(sensors[ACCEL]).latency = latency;

        if (lsm6dsm_updateOdrs())
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[ACCEL]), __FUNCTION__);
        else
            osEnqueuePrivateEvt(EVT_SENSOR_CONFIG_CHANGING, &T(sensors[ACCEL]), NULL, mTask.tid);
    } else {
        T(pendingRateConfig[ACCEL]) = true;
        T(sensors[ACCEL].pConfig.rate) = rate;
        T(sensors[ACCEL]).pConfig.latency = latency;
    }

    return true;
}

/*
 * lsm6dsm_setGyroRate: set gyroscope ODR and report latency (FIFO watermark related)
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setGyroRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        INFO_PRINT("setGyroRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

#ifdef LSM6DSM_GYRO_CALIB_ENABLED
        T(sensors[ACCEL]).rate[GYRO] = rate;
        T(sensors[ACCEL]).dependenciesRequireData[GYRO] = true;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */
        T(sensors[GYRO]).rate[GYRO] = rate;
        T(sensors[GYRO]).latency = latency;

        if (lsm6dsm_updateOdrs())
            lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[GYRO]), __FUNCTION__);
        else
            osEnqueuePrivateEvt(EVT_SENSOR_CONFIG_CHANGING, &T(sensors[GYRO]), NULL, mTask.tid);
    } else {
        T(pendingRateConfig[GYRO]) = true;
        T(sensors[GYRO]).pConfig.rate = rate;
        T(sensors[GYRO]).pConfig.latency = latency;
    }

    return true;
}

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
/*
 * lsm6dsm_setMagnRate: set magnetometer ODR and report latency (FIFO watermark related)
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setMagnRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();
    uint8_t i;

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        INFO_PRINT("setMagnRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

        T(sensors[ACCEL]).rate[MAGN] = rate;
#ifdef LSM6DSM_MAGN_CALIB_ENABLED
        T(sensors[ACCEL]).dependenciesRequireData[MAGN] = true;
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */
        T(sensors[MAGN]).rate[MAGN] = rate;
        T(sensors[MAGN]).latency = latency;

        lsm6dsm_updateOdrs();

        /* This call return index of LSM6DSMImuRates struct element */
        i = lsm6dsm_computeOdr(rate);
        T(sensors[MAGN]).hwRate = LSM6DSMSHRates[i];
        T(sensors[MAGN]).samplesToDiscard = 3;

        T(sensors[MAGN]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_DS3]) / T(sensors[MAGN]).samplesFifoDecimator) / T(sensors[MAGN]).rate[MAGN];
        T(sensors[MAGN]).samplesDecimatorCounter = T(sensors[MAGN]).samplesDecimator - 1;

#ifdef LSM6DSM_I2C_MASTER_LIS3MDL
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ADDR,
                LSM6DSM_SENSOR_SLAVE_MAGN_POWER_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE,
                T(sensors[ACCEL]).hwRate, MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR,
                LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(i),
                T(sensors[ACCEL]).hwRate, MAGN);
#else /* LSM6DSM_I2C_MASTER_LIS3MDL */
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_ODR_ADDR,
                LSM6DSM_SENSOR_SLAVE_MAGN_ODR_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_ON_VALUE | LSM6DSM_SENSOR_SLAVE_MAGN_RATES_REG_VALUE(i),
                T(sensors[ACCEL]).hwRate, MAGN);
#endif /* LSM6DSM_I2C_MASTER_LIS3MDL */

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[MAGN]), __FUNCTION__);
    } else {
        T(pendingRateConfig[MAGN]) = true;
        T(sensors[MAGN]).pConfig.rate = rate;
        T(sensors[MAGN]).pConfig.latency = latency;
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
/*
 * lsm6dsm_setPressRate: set pressure ODR and report latency (FIFO watermark related)
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setPressRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();
    uint8_t i;

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        INFO_PRINT("setPressRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

        T(sensors[ACCEL]).rate[PRESS] = rate;
        T(sensors[PRESS]).rate[PRESS] = rate;
        T(sensors[PRESS]).latency = latency;

        lsm6dsm_updateOdrs();

        if (T(sensors[TEMP]).enabled) {
            if (rate < T(sensors[TEMP]).rate[TEMP])
                rate = T(sensors[TEMP]).rate[TEMP];
        }

        /* This call return index of LSM6DSMImuRates struct element */
        i = lsm6dsm_computeOdr(rate);
        T(sensors[PRESS]).hwRate = LSM6DSMSHRates[i];
        T(sensors[PRESS]).samplesToDiscard = 3;

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
        if (T(baroTimerId)) {
            timTimerCancel(T(baroTimerId));
            T(baroTimerId) = 0;
            T(pendingBaroTimerTask) = false;
        }

        T(sensors[PRESS]).samplesDecimator = rate / T(sensors[PRESS]).rate[PRESS];
        T(sensors[TEMP]).samplesDecimator = rate / T(sensors[TEMP]).rate[TEMP];
        T(time).timestampBaroLSB = 0;

        T(baroTimerId) = timTimerSet(lsm6dsm_sensorHzToNs(rate), 0, 50, lsm6dsm_baroTimerCallback, NULL, false);
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
        T(sensors[PRESS]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_DS3]) / T(sensors[PRESS]).samplesFifoDecimator) / T(sensors[PRESS]).rate[PRESS];
        T(sensors[TEMP]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_DS3]) / T(sensors[PRESS]).samplesFifoDecimator) / T(sensors[TEMP]).rate[TEMP];
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

        T(sensors[PRESS]).samplesDecimatorCounter = T(sensors[PRESS]).samplesDecimator - 1;
        T(sensors[TEMP]).samplesDecimatorCounter = T(sensors[TEMP]).samplesDecimator - 1;

        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_BARO_ODR_ADDR,
                LSM6DSM_SENSOR_SLAVE_BARO_ODR_BASE | LSM6DSM_SENSOR_SLAVE_BARO_RATES_REG_VALUE(i),
                T(sensors[ACCEL]).hwRate, PRESS);

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[PRESS]), __FUNCTION__);
    } else {
        T(pendingRateConfig[PRESS]) = true;
        T(sensors[PRESS]).pConfig.rate = rate;
        T(sensors[PRESS]).pConfig.latency = latency;
    }

    return true;
}

/*
 * lsm6dsm_setTempRate: set temperature ODR and report latency (FIFO watermark related)
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setTempRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();
    uint8_t i;

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        INFO_PRINT("setTempRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

        T(sensors[ACCEL]).rate[TEMP] = rate;
        T(sensors[TEMP]).rate[TEMP] = rate;
        T(sensors[TEMP]).latency = latency;

        lsm6dsm_updateOdrs();

        if (T(sensors[PRESS]).enabled) {
            if (rate < T(sensors[PRESS]).rate[PRESS])
                rate = T(sensors[PRESS]).rate[PRESS];
        }

        /* This call return index of LSM6DSMImuRates struct element */
        i = lsm6dsm_computeOdr(rate);
        T(sensors[TEMP]).hwRate = LSM6DSMSHRates[i];
        T(sensors[TEMP]).samplesToDiscard = 3;

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
        if (T(baroTimerId)) {
            timTimerCancel(T(baroTimerId));
            T(baroTimerId) = 0;
            T(pendingBaroTimerTask) = false;
        }

        T(sensors[TEMP]).samplesDecimator = rate / T(sensors[PRESS]).rate[PRESS];
        T(sensors[PRESS]).samplesDecimator = rate / T(sensors[PRESS]).rate[PRESS];
        T(time).timestampBaroLSB = 0;

        T(baroTimerId) = timTimerSet(lsm6dsm_sensorHzToNs(rate), 0, 50, lsm6dsm_baroTimerCallback, NULL, false);
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
        T(sensors[TEMP]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_DS3]) / T(sensors[PRESS]).samplesFifoDecimator) / T(sensors[TEMP]).rate[TEMP];
        T(sensors[PRESS]).samplesDecimator = ((T(fifoCntl).triggerRate / T(fifoCntl).decimators[FIFO_DS3]) / T(sensors[PRESS]).samplesFifoDecimator) / T(sensors[PRESS]).rate[TEMP];
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

        T(sensors[TEMP]).samplesDecimatorCounter = T(sensors[TEMP]).samplesDecimator - 1;
        T(sensors[PRESS]).samplesDecimatorCounter = T(sensors[PRESS]).samplesDecimator - 1;

        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_BARO_ODR_ADDR,
                LSM6DSM_SENSOR_SLAVE_BARO_ODR_BASE | LSM6DSM_SENSOR_SLAVE_BARO_RATES_REG_VALUE(i),
                T(sensors[ACCEL]).hwRate, TEMP);

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[TEMP]), __FUNCTION__);
    } else {
        T(pendingRateConfig[TEMP]) = true;
        T(sensors[TEMP]).pConfig.rate = rate;
        T(sensors[TEMP]).pConfig.latency = latency;
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_setStepDetectorRate: set step detector report latency
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setStepDetectorRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();

    INFO_PRINT("setStepDetectorRate: latency=%lldns\n", latency);

    T(sensors[STEP_DETECTOR]).hwRate = rate;
    T(sensors[STEP_DETECTOR]).latency = latency;

    sensorSignalInternalEvt(T(sensors[STEP_DETECTOR]).handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);

    return true;
}

/*
 * lsm6dsm_setStepCounterRate: set step counter report latency
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setStepCounterRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();
    uint8_t i, regValue;

    if (trySwitchState(SENSOR_CONFIG_CHANGING)) {
        if (rate == SENSOR_RATE_ONCHANGE) {
            INFO_PRINT("setStepCounterRate: delivery-rate=on_change, latency=%lldns\n", latency);
        } else
            INFO_PRINT("setStepCounterRate: delivery_rate=%dms, latency=%lldns\n", (int)((1024.0f / rate) * 1000.0f), latency);

        T(sensors[STEP_COUNTER]).hwRate = rate;
        T(sensors[STEP_COUNTER]).latency = latency;

        if (rate != SENSOR_RATE_ONCHANGE) {
        for (i = 0; i < ARRAY_SIZE(LSM6DSMStepCounterRates); i++) {
            if (rate == LSM6DSMStepCounterRates[i])
                break;
        }
        if (i >= (ARRAY_SIZE(LSM6DSMStepCounterRates) - 2))
            regValue = 0;
        else
            regValue = (128 >> i);
        } else
            regValue = 0;

        lsm6dsm_writeEmbeddedRegister(LSM6DSM_EMBEDDED_STEP_COUNT_DELTA_ADDR, regValue);

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &T(sensors[GYRO]), __FUNCTION__);
    } else {
        T(pendingRateConfig[STEP_COUNTER]) = true;
        T(sensors[STEP_COUNTER]).pConfig.rate = rate;
        T(sensors[STEP_COUNTER]).pConfig.latency = latency;
    }

    return true;
}

/*
 * lsm6dsm_setSignMotionRate: set significant motion report latency
 * @rate: sensor rate expressed in SENSOR_HZ(x).
 * @latency: max latency valud in ns.
 * @cookie: private data.
 */
static bool lsm6dsm_setSignMotionRate(uint32_t rate, uint64_t latency, void *cookie)
{
    TDECL();

    DEBUG_PRINT("setSignMotionRate: rate=%dHz, latency=%lldns\n", (int)(rate / 1024), latency);

    T(sensors[SIGN_MOTION]).rate[SIGN_MOTION] = rate;
    T(sensors[SIGN_MOTION]).latency = latency;

    sensorSignalInternalEvt(T(sensors[SIGN_MOTION]).handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);

    return true;
}

/*
 * lsm6dsm_accelFlush: send accelerometer flush event
 * @cookie: private data.
 */
static bool lsm6dsm_accelFlush(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        INFO_PRINT("accelFlush: flush accelerometer data\n");

        if (sensorGetTime() <= (T(lastFifoReadTimestamp) + ((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator))) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_ACCEL), SENSOR_DATA_EVENT_FLUSH, NULL);
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
            return true;
        }

        T(sendFlushEvt[ACCEL]) = true;

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingFlush[ACCEL])++;

    return true;
}

/*
 * lsm6dsm_gyroFlush: send gyroscope flush event
 * @cookie: private data.
 */
static bool lsm6dsm_gyroFlush(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        INFO_PRINT("gyroFlush: flush gyroscope data\n");

        if (sensorGetTime() <= (T(lastFifoReadTimestamp) + ((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator))) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_GYRO), SENSOR_DATA_EVENT_FLUSH, NULL);
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
            return true;
        }

        T(sendFlushEvt[GYRO]) = true;

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingFlush[GYRO])++;

    return true;
}

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
/*
 * lsm6dsm_magnFlush: send magnetometer flush event
 * @cookie: private data.
 */
static bool lsm6dsm_magnFlush(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        INFO_PRINT("magnFlush: flush magnetometer data\n");

        if (sensorGetTime() <= (T(lastFifoReadTimestamp) + ((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator))) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_MAG), SENSOR_DATA_EVENT_FLUSH, NULL);
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
            return true;
        }

        T(sendFlushEvt[MAGN]) = true;

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingFlush[MAGN])++;

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
/*
 * lsm6dsm_pressFlush: send pressure flush event
 * @cookie: private data.
 */
static bool lsm6dsm_pressFlush(void *cookie)
{
    TDECL();

#if !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        INFO_PRINT("pressFlush: flush pressure data\n");

        if (sensorGetTime() <= (T(lastFifoReadTimestamp) + ((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator))) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
            return true;
        }

        T(sendFlushEvt[PRESS]) = true;

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingFlush[PRESS])++;
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
    INFO_PRINT("pressFlush: flush pressure data\n");

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

    return true;
}

/*
 * lsm6dsm_tempFlush: send temperature flush event
 * @cookie: private data.
 */
static bool lsm6dsm_tempFlush(void *cookie)
{
    TDECL();

#if !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
    if (trySwitchState(SENSOR_INT1_STATUS_REG_HANDLING)) {
        INFO_PRINT("tempFlush: flush temperature data\n");

        if (sensorGetTime() <= (T(lastFifoReadTimestamp) + ((uint64_t)lsm6dsm_sensorHzToNs(T(fifoCntl).triggerRate) * T(fifoCntl).maxDecimator))) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL);
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
            return true;
        }

        T(sendFlushEvt[TEMP]) = true;

        SPI_READ(LSM6DSM_FIFO_STATUS1_ADDR, 2, &T_SLAVE_INTERFACE(fifoStatusRegBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
    } else
        T(pendingFlush[TEMP])++;
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
    INFO_PRINT("tempFlush: flush temperature data\n");

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL);
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_stepDetectorFlush: send step detector flush event
 * @cookie: private data.
 */
static bool lsm6dsm_stepDetectorFlush(void *cookie)
{
    TDECL();

    INFO_PRINT("stepDetectorFlush: flush step detector data\n");

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_DETECT), SENSOR_DATA_EVENT_FLUSH, NULL);

    return true;
}

/*
 * lsm6dsm_stepCounterFlush: send step counter flush event
 * @cookie: private data.
 */
static bool lsm6dsm_stepCounterFlush(void *cookie)
{
    TDECL();

    INFO_PRINT("stepCounterFlush: flush step counter data\n");

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_COUNT), SENSOR_DATA_EVENT_FLUSH, NULL);

    return true;
}

/*
 * lsm6dsm_signMotionFlush: send significant motion flush event
 * @cookie: private data.
 */
static bool lsm6dsm_signMotionFlush(void *cookie)
{
    TDECL();

    INFO_PRINT("signMotionFlush: flush significant motion data\n");

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_SIG_MOTION), SENSOR_DATA_EVENT_FLUSH, NULL);

    return true;
}

/*
 * lsm6dsm_stepCounterSendLastData: send last number of steps
 * @cookie: private data.
 * @tid: task id.
 */
static bool lsm6dsm_stepCounterSendLastData(void *cookie, uint32_t tid)
{
    TDECL();

    INFO_PRINT("stepCounterSendLastData: %lu steps\n", T(totalNumSteps));

    osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_COUNT), &T(totalNumSteps), NULL);

    return true;
}

/*
 * lsm6dsm_runAccelSelfTest: execute accelerometer self-test
 * @cookie: private data.
 */
static bool lsm6dsm_runAccelSelfTest(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_SELFTEST)) {
        if (!T(sensors[ACCEL]).enabled && (T(sensors[ACCEL]).hwRate == 0) && (T(sensors[GYRO]).hwRate == 0)) {
            INFO_PRINT("runAccelSelfTest: executing accelerometer selftest\n");
            T(selftestState) = SELFTEST_INITIALIZATION;
            lsm6dsm_runGapSelfTestProgram(ACCEL);
            return true;
        } else
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
    }

    ERROR_PRINT("runAccelSelfTest: cannot run selftest because sensor is busy!\n");
    lsm6dsm_sendSelfTestResult(SENS_TYPE_ACCEL, SENSOR_APP_EVT_STATUS_BUSY);

    return false;
}

/*
 * lsm6dsm_runGyroSelfTest: execute gyroscope self-test
 * @cookie: private data.
 */
static bool lsm6dsm_runGyroSelfTest(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_SELFTEST)) {
        if (!T(sensors[GYRO]).enabled && (T(sensors[GYRO]).hwRate == 0) && (T(sensors[ACCEL]).hwRate == 0)) {
            INFO_PRINT("runGyroSelfTest: executing gyroscope selftest\n");
            T(selftestState) = SELFTEST_INITIALIZATION;
            lsm6dsm_runGapSelfTestProgram(GYRO);
            return true;
        } else
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
    }

    ERROR_PRINT("runGyroSelfTest: cannot run selftest because sensor is busy!\n");
    lsm6dsm_sendSelfTestResult(SENS_TYPE_GYRO, SENSOR_APP_EVT_STATUS_BUSY);

    return false;
}

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
/*
 * lsm6dsm_runMagnSelfTest: execute magnetometer self-test
 * @cookie: private data.
 */
static bool lsm6dsm_runMagnSelfTest(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_SELFTEST)) {
        if (!T(sensors[MAGN]).enabled && (T(sensors[MAGN]).hwRate == 0) && (T(sensors[GYRO]).hwRate == 0) && (T(sensors[ACCEL]).hwRate == 0)) {
            INFO_PRINT("runMagnSelfTest: executing magnetometer selftest\n");
            T(selftestState) = SELFTEST_INITIALIZATION;
#ifdef LSM6DSM_I2C_MASTER_AK09916
            lsm6dsm_runAbsoluteSelfTestProgram();
#else
            lsm6dsm_runGapSelfTestProgram(MAGN);
#endif
            return true;
        } else
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
    }

    ERROR_PRINT("runMagnSelfTest: cannot run selftest because sensor is busy!\n");
    lsm6dsm_sendSelfTestResult(SENS_TYPE_MAG, SENSOR_APP_EVT_STATUS_BUSY);

    return false;
}

/*
 * lsm6dsm_magnCfgData: set sw magnetometer calibration values
 * @data: calibration data struct.
 * @cookie: private data.
 */
static bool lsm6dsm_magnCfgData(void *data, void *cookie)
{
    TDECL();
    const struct AppToSensorHalDataPayload *p = data;

    if (p->type == HALINTF_TYPE_MAG_CAL_BIAS && p->size == sizeof(struct MagCalBias)) {
        const struct MagCalBias *d = p->magCalBias;
        INFO_PRINT("lsm6dsm_magnCfgData: calibration %ldnT, %ldnT, %ldnT\n",
                (int32_t)(d->bias[0] * 1000),
                (int32_t)(d->bias[1] * 1000),
                (int32_t)(d->bias[2] * 1000));

        T(magnCal).x_bias = d->bias[0];
        T(magnCal).y_bias = d->bias[1];
        T(magnCal).z_bias = d->bias[2];
    } else if (p->type == HALINTF_TYPE_MAG_LOCAL_FIELD && p->size == sizeof(struct MagLocalField)) {
        const struct MagLocalField *d = p->magLocalField;
        INFO_PRINT("lsm6dsm_magnCfgData: local field strength %dnT, dec %ddeg, inc %ddeg\n",
                (int)(d->strength * 1000),
                (int)(d->declination * 180 / M_PI + 0.5f),
                (int)(d->inclination * 180 / M_PI + 0.5f));

        // Passing local field information to mag calibration routine
        diversityCheckerLocalFieldUpdate(&T(magnCal).diversity_checker, d->strength);

        // TODO: pass local field information to rotation vector sensor.
    } else {
        ERROR_PRINT("lsm6dsm_magnCfgData: unknown type 0x%04x, size %d", p->type, p->size);
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

/*
 * lsm6dsm_runAccelCalibration: execute accelerometer calibration
 * @cookie: private data.
 */
static bool lsm6dsm_runAccelCalibration(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_CALIBRATION)) {
        if (!T(sensors[ACCEL]).enabled && (T(sensors[ACCEL]).hwRate == 0) && (T(sensors[GYRO]).hwRate == 0)) {
            INFO_PRINT("runAccelCalibration: executing accelerometer calibration\n");
            T(calibrationState) = CALIBRATION_INITIALIZATION;
            lsm6dsm_runCalibrationProgram(ACCEL);
            return true;
        } else
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
    }

    ERROR_PRINT("runAccelCalibration: cannot run selftest because sensor is busy!\n");
    lsm6dsm_sendCalibrationResult(SENS_TYPE_ACCEL, SENSOR_APP_EVT_STATUS_BUSY, 0, 0, 0);

    return true;
}

/*
 * lsm6dsm_runGyroCalibration: execute gyroscope calibration
 * @cookie: private data.
 */
static bool lsm6dsm_runGyroCalibration(void *cookie)
{
    TDECL();

    if (trySwitchState(SENSOR_CALIBRATION)) {
        if (!T(sensors[GYRO]).enabled && (T(sensors[GYRO]).hwRate == 0) && (T(sensors[ACCEL]).hwRate == 0)) {
            INFO_PRINT("runGyroCalibration: executing gyroscope calibration\n");
            T(calibrationState) = CALIBRATION_INITIALIZATION;
            lsm6dsm_runCalibrationProgram(GYRO);
            return true;
        } else
            osEnqueuePrivateEvt(EVT_SENSOR_RESTORE_IDLE, cookie, NULL, mTask.tid);
    }

    ERROR_PRINT("runGyroCalibration: cannot run selftest because sensor is busy!\n");
    lsm6dsm_sendCalibrationResult(SENS_TYPE_GYRO, SENSOR_APP_EVT_STATUS_BUSY, 0, 0, 0);

    return true;
}

/*
 * lsm6dsm_storeAccelCalibrationData: store hw calibration into sensor
 */
static bool lsm6dsm_storeAccelCalibrationData(void)
{
    TDECL();
    uint8_t buffer[LSM6DSM_TRIAXIAL_NUM_AXIS];

    if (trySwitchState(SENSOR_STORE_CALIBRATION_DATA)) {
        for (uint8_t i = 0; i < LSM6DSM_TRIAXIAL_NUM_AXIS; i++)
            buffer[i] = lsm6dsm_convertAccelOffsetValue(T(accelCalibrationData[i]));

        SPI_MULTIWRITE(LSM6DSM_X_OFS_USR_ADDR, buffer, LSM6DSM_TRIAXIAL_NUM_AXIS);

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, NULL, __FUNCTION__);
    } else
        return false;

    return true;
}

/*
 * lsm6dsm_accelCfgData: set hw and sw accelerometer calibration values
 * @data: calibration data struct.
 * @cookie: private data.
 */
static bool lsm6dsm_accelCfgData(void *data, void *cookie)
{
    TDECL();
    struct LSM6DSMAccelGyroCfgData *cfgData = data;

#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
    accelCalBiasSet(&T(accelCal) , cfgData->sw[0], cfgData->sw[1], cfgData->sw[2]);
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */

    DEBUG_PRINT("Accel hw bias data [LSB]: %ld %ld %ld\n", cfgData->hw[0], cfgData->hw[1], cfgData->hw[2]);

    memcpy(T(accelCalibrationData), cfgData->hw, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

    if (!lsm6dsm_storeAccelCalibrationData())
        T(pendingStoreAccelCalibData) = true;

    return true;
}

/*
 * lsm6dsm_gyroCfgData: set hw and sw gyroscope calibration values
 * @data: calibration data struct.
 * @cookie: private data.
 */
static bool lsm6dsm_gyroCfgData(void *data, void *cookie)
{
    TDECL();
    struct LSM6DSMAccelGyroCfgData *cfgData = data;

#ifdef LSM6DSM_GYRO_CALIB_ENABLED
    const float dummy_temperature_celsius = 25.0f;
    gyroCalSetBias(&T(gyroCal), cfgData->sw[0], cfgData->sw[1], cfgData->sw[2], dummy_temperature_celsius, sensorGetTime());
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */

    DEBUG_PRINT("Gyro hw bias data [LSB]: %ld %ld %ld\n", cfgData->hw[0], cfgData->hw[1], cfgData->hw[2]);

    memcpy(T(gyroCalibrationData), cfgData->hw, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

    return true;
}

/*
 * lsm6dsm_sensorInit: initial sensors configuration
 */
static void lsm6dsm_sensorInit(void)
{
    TDECL();
    uint8_t buffer[5];

    switch (T(initState)) {
    case RESET_LSM6DSM:
        INFO_PRINT("Performing soft-reset\n");

        T(initState) = INIT_LSM6DSM;

        /* Sensor SW-reset */
        SPI_WRITE(LSM6DSM_CTRL3_C_ADDR, LSM6DSM_SW_RESET, 20000);

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case INIT_LSM6DSM:
        INFO_PRINT("Initial registers configuration\n");

        /* During init, reset all configurable registers to default values */
        SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE, 50);
        SPI_WRITE(LSM6DSM_DRDY_PULSE_CFG_ADDR, LSM6DSM_DRDY_PULSE_CFG_BASE);

        buffer[0] = LSM6DSM_CTRL1_XL_BASE;                           /* LSM6DSM_CTRL1_XL */
        buffer[1] = LSM6DSM_CTRL2_G_BASE;                            /* LSM6DSM_CTRL2_G */
        buffer[2] = LSM6DSM_CTRL3_C_BASE;                            /* LSM6DSM_CTRL3_C */
        buffer[3] = LSM6DSM_CTRL4_C_BASE;                            /* LSM6DSM_CTRL4_C */
        buffer[4] = LSM6DSM_CTRL5_C_BASE;                            /* LSM6DSM_CTRL4_C */
        SPI_MULTIWRITE(LSM6DSM_CTRL1_XL_ADDR, buffer, 5);

        buffer[0] = LSM6DSM_CTRL10_C_BASE | LSM6DSM_RESET_PEDOMETER; /* LSM6DSM_CTRL10_C */
        buffer[1] = LSM6DSM_MASTER_CONFIG_BASE;                      /* LSM6DSM_MASTER_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_CTRL10_C_ADDR, buffer, 2);

        SPI_WRITE(LSM6DSM_INT1_CTRL_ADDR, LSM6DSM_INT1_CTRL_BASE);
        SPI_WRITE(LSM6DSM_WAKE_UP_DUR_ADDR, LSM6DSM_WAKE_UP_DUR_BASE);

#ifdef LSM6DSM_I2C_MASTER_ENABLED
        T(initState) = INIT_I2C_MASTER_REGS_CONF;
#else /* LSM6DSM_I2C_MASTER_ENABLED */
        INFO_PRINT("Initialization completed successfully!\n");
        T(initState) = INIT_DONE;
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

#ifdef LSM6DSM_I2C_MASTER_ENABLED
    case INIT_I2C_MASTER_REGS_CONF:
        INFO_PRINT("Initial I2C master registers configuration\n");

        /* Enable access for embedded registers */
        SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE | LSM6DSM_ENABLE_FUNC_CFG_ACCESS, 50);

        /* I2C-0 configuration */
        buffer[0] = LSM6DSM_EMBEDDED_SLV0_WRITE_ADDR_SLEEP;                                               /* LSM6DSM_EMBEDDED_SLV0_ADDR */
        buffer[1] = 0x00;                                                                                 /* LSM6DSM_EMBEDDED_SLV0_SUBADDR */
        buffer[2] = LSM6DSM_EMBEDDED_SENSOR_HUB_NUM_SLAVE;                                                /* LSM6DSM_EMBEDDED_SLV0_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV0_ADDR_ADDR, buffer, 3);

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)     /* Magn & Baro both enabled */
        /* I2C-1 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV1_ADDR */
        buffer[1] = LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_ADDR;                                               /* LSM6DSM_EMBEDDED_SLV1_SUBADDR */
        buffer[2] = LSM6DSM_EMBEDDED_SLV1_CONFIG_WRITE_ONCE | LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN;      /* LSM6DSM_EMBEDDED_SLV1_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV1_ADDR_ADDR, buffer, 3);

        /* I2C-2 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_BARO_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV2_ADDR */
        buffer[1] = LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_ADDR;                                               /* LSM6DSM_EMBEDDED_SLV2_SUBADDR */
        buffer[2] = LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN;                                                /* LSM6DSM_EMBEDDED_SLV2_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV2_ADDR_ADDR, buffer, 3);

#ifdef LSM6DSM_I2C_MASTER_AK09916
        /* I2C-3 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV3_ADDR */
        buffer[1] = AK09916_STATUS_DATA_ADDR;                                                             /* LSM6DSM_EMBEDDED_SLV3_SUBADDR */
        buffer[2] = 1;                                                                                    /* LSM6DSM_EMBEDDED_SLV3_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV3_ADDR_ADDR, buffer, 3);
#endif /* LSM6DSM_I2C_MASTER_AK09916 */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && !defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)    /* Magn only enabled */
        /* I2C-1 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV1_ADDR */
        buffer[1] = LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_ADDR;                                               /* LSM6DSM_EMBEDDED_SLV1_SUBADDR */
        buffer[2] = LSM6DSM_EMBEDDED_SLV1_CONFIG_WRITE_ONCE | LSM6DSM_SENSOR_SLAVE_MAGN_OUTDATA_LEN;      /* LSM6DSM_EMBEDDED_SLV1_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV1_ADDR_ADDR, buffer, 3);

#ifdef LSM6DSM_I2C_MASTER_AK09916
        /* I2C-2 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_MAGN_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV2_ADDR */
        buffer[1] = AK09916_STATUS_DATA_ADDR;                                                             /* LSM6DSM_EMBEDDED_SLV2_SUBADDR */
        buffer[2] = 0x01;                                                                                 /* LSM6DSM_EMBEDDED_SLV2_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV2_ADDR_ADDR, buffer, 3);
#endif /* LSM6DSM_I2C_MASTER_AK09916 */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */

#if !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)    /* Baro only enabled */
        /* I2C-1 configuration */
        buffer[0] = (LSM6DSM_SENSOR_SLAVE_BARO_I2C_ADDR_8BIT << 1) | LSM6DSM_EMBEDDED_READ_OP_SENSOR_HUB; /* LSM6DSM_EMBEDDED_SLV1_ADDR */
        buffer[1] = LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_ADDR;                                               /* LSM6DSM_EMBEDDED_SLV1_SUBADDR */
        buffer[2] = LSM6DSM_EMBEDDED_SLV1_CONFIG_WRITE_ONCE | LSM6DSM_SENSOR_SLAVE_BARO_OUTDATA_LEN;      /* LSM6DSM_EMBEDDED_SLV1_CONFIG */
        SPI_MULTIWRITE(LSM6DSM_EMBEDDED_SLV1_ADDR_ADDR, buffer, 3);
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) */

        /* Disable access for embedded registers */
        SPI_WRITE(LSM6DSM_FUNC_CFG_ACCESS_ADDR, LSM6DSM_FUNC_CFG_ACCESS_BASE, 50);

        T(initState) = INIT_I2C_MASTER_SENSOR_RESET;

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case INIT_I2C_MASTER_SENSOR_RESET:
        INFO_PRINT("Performing soft-reset slave sensors\n");
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
        T(initState) = INIT_I2C_MASTER_MAGN_SENSOR;
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
        T(initState) = INIT_I2C_MASTER_BARO_SENSOR;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

        /* Enable accelerometer and sensor-hub to initialize slave sensor */
        SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE | LSM6DSM_ODR_104HZ_REG_VALUE);
        T(masterConfigRegister) |= LSM6DSM_MASTER_CONFIG_MASTER_ON;

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_MAGN_RESET_ADDR, LSM6DSM_SENSOR_SLAVE_MAGN_RESET_VALUE, SENSOR_HZ(104.0f), MAGN, 20000);
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM6DSM_SENSOR_SLAVE_BARO_RESET_ADDR, LSM6DSM_SENSOR_SLAVE_BARO_RESET_VALUE, SENSOR_HZ(104.0f), PRESS, 20000);
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case INIT_I2C_MASTER_MAGN_SENSOR:
        INFO_PRINT("Initial slave magnetometer sensor registers configuration\n");
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
        T(initState) = INIT_I2C_MASTER_BARO_SENSOR;
#else /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
        T(initState) = INIT_I2C_MASTER_SENSOR_END;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

#ifdef LSM6DSM_I2C_MASTER_LIS3MDL
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LIS3MDL_CTRL1_ADDR, LIS3MDL_CTRL1_BASE, SENSOR_HZ(104.0f), MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LIS3MDL_CTRL2_ADDR, LIS3MDL_CTRL2_BASE, SENSOR_HZ(104.0f), MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LIS3MDL_CTRL3_ADDR, LIS3MDL_CTRL3_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE, SENSOR_HZ(104.0f), MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LIS3MDL_CTRL4_ADDR, LIS3MDL_CTRL4_BASE, SENSOR_HZ(104.0f), MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LIS3MDL_CTRL5_ADDR, LIS3MDL_CTRL5_BASE, SENSOR_HZ(104.0f), MAGN);
#endif /* LSM6DSM_I2C_MASTER_LIS3MDL */

#ifdef LSM6DSM_I2C_MASTER_LSM303AGR
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_A_M_ADDR, LSM303AGR_CFG_REG_A_M_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE, SENSOR_HZ(104.0f), MAGN);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LSM303AGR_CFG_REG_C_M_ADDR, LSM303AGR_CFG_REG_C_M_BASE, SENSOR_HZ(104.0f), MAGN);
#endif /* LSM6DSM_I2C_MASTER_LSM303AGR */

#ifdef LSM6DSM_I2C_MASTER_AK09916
        SPI_WRITE_SLAVE_SENSOR_REGISTER(AK09916_CNTL2_ADDR, AK09916_CNTL2_BASE | LSM6DSM_SENSOR_SLAVE_MAGN_POWER_OFF_VALUE, SENSOR_HZ(104.0f), MAGN);
#endif /* LSM6DSM_I2C_MASTER_AK09916 */

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case INIT_I2C_MASTER_BARO_SENSOR:
        INFO_PRINT("Initial slave barometer sensor registers configuration\n");
        T(initState) = INIT_I2C_MASTER_SENSOR_END;

#ifdef LSM6DSM_I2C_MASTER_LPS22HB
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LPS22HB_CTRL1_ADDR, LPS22HB_CTRL1_BASE | LSM6DSM_SENSOR_SLAVE_BARO_POWER_OFF_VALUE, SENSOR_HZ(104.0f), PRESS);
        SPI_WRITE_SLAVE_SENSOR_REGISTER(LPS22HB_CTRL2_ADDR, LPS22HB_CTRL2_BASE, SENSOR_HZ(104.0f), PRESS);
#endif /* LSM6DSM_I2C_MASTER_LPS22HB */

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case INIT_I2C_MASTER_SENSOR_END:
        INFO_PRINT("Initialization completed successfully!\n");
        T(initState) = INIT_DONE;

        /* Disable accelerometer and sensor-hub */
        SPI_WRITE(LSM6DSM_MASTER_CONFIG_ADDR, LSM6DSM_MASTER_CONFIG_BASE);
        SPI_WRITE(LSM6DSM_CTRL1_XL_ADDR, LSM6DSM_CTRL1_XL_BASE);
        T(masterConfigRegister) &= ~LSM6DSM_MASTER_CONFIG_MASTER_ON;

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;
#endif /* LSM6DSM_I2C_MASTER_ENABLED */

    default:
        break;
    }
}

/*
 * lsm6dsm_processPendingEvt: process pending events
 */
static void lsm6dsm_processPendingEvt(void)
{
    TDECL();
    enum SensorIndex i;

    SET_STATE(SENSOR_IDLE);

    for (i = 0; i < NUM_SENSORS; i++) {
        if (T(pendingEnableConfig[i])) {
            T(pendingEnableConfig[i]) = false;
            LSM6DSMSensorOps[i].sensorPower(T(sensors[i]).pConfig.enable, (void *)i);
            return;
        }

        if (T(pendingRateConfig[i])) {
            T(pendingRateConfig[i]) = false;
            LSM6DSMSensorOps[i].sensorSetRate(T(sensors[i]).pConfig.rate, T(sensors[i]).pConfig.latency, (void *)i);
            return;
        }

        if (T(pendingFlush[i]) > 0) {
            T(pendingFlush[i])--;
            LSM6DSMSensorOps[i].sensorFlush((void *)i);
            return;
        }
    }

    if (T(pendingTimeSyncTask)) {
        T(pendingTimeSyncTask) = false;
        lsm6dsm_timeSyncTask();
        return;
    }

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    if (T(pendingBaroTimerTask)) {
        T(pendingBaroTimerTask) = false;
        lsm6dsm_baroTimerTask();
        return;
    }
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

    if (T(pendingStoreAccelCalibData)) {
        T(pendingStoreAccelCalibData) = lsm6dsm_storeAccelCalibrationData();
        return;
    }

    if (T(pendingInt)) {
        T(pendingInt) = false;
        lsm6dsm_readStatusReg(false);
        return;
    }

    if (gpioGet(T(int1)))
        lsm6dsm_readStatusReg(false);
}

/*
 * lsm6dsm_allocateThreeAxisDataEvt: allocate slab for three axis sensor data
 * @mSensor: sensor info.
 * @rtcTime: time of first sample in this block.
 */
static bool lsm6dsm_allocateThreeAxisDataEvt(struct LSM6DSMSensor *mSensor, uint64_t rtcTime)
{
    TDECL();

    mSensor->tADataEvt = slabAllocatorAlloc(T(mDataSlabThreeAxis));
    if (!mSensor->tADataEvt) {
        ERROR_PRINT("Failed to allocate memory!\n");
        return false;
    }

    memset(&mSensor->tADataEvt->samples[0].firstSample, 0, sizeof(struct SensorFirstSample));
    mSensor->tADataEvt->referenceTime = rtcTime;
    mSensor->pushedTimestamp = rtcTime;

    return true;
}

/*
 * lsm6dsm_threeAxisDataEvtFree: deallocate slab of three axis sensor.
 * @ptr: sensor data pointer.
 */
static void lsm6dsm_threeAxisDataEvtFree(void *ptr)
{
    TDECL();

    slabAllocatorFree(T(mDataSlabThreeAxis), (struct TripleAxisDataEvent *)ptr);
}

#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
/*
 * lsm6dsm_allocateOneAxisDataEvt: allocate slab for one axis sensor data
 * @mSensor: sensor info.
 * @rtcTime: time of first sample in this block.
 */
static bool lsm6dsm_allocateOneAxisDataEvt(struct LSM6DSMSensor *mSensor, uint64_t rtcTime)
{
    TDECL();

    mSensor->sADataEvt = slabAllocatorAlloc(T(mDataSlabOneAxis));
    if (!mSensor->sADataEvt) {
        ERROR_PRINT("Failed to allocate memory!\n");
        return false;
    }

    memset(&mSensor->sADataEvt->samples[0].firstSample, 0, sizeof(struct SensorFirstSample));
    mSensor->sADataEvt->referenceTime = rtcTime;
    mSensor->pushedTimestamp = rtcTime;

    return true;
}

/*
 * lsm6dsm_oneAxisDataEvtFree: deallocate slab of one axis sensor
 * @ptr: sensor data pointer.
 */
static void lsm6dsm_oneAxisDataEvtFree(void *ptr)
{
    TDECL();

    slabAllocatorFree(T(mDataSlabOneAxis), (struct SingleAxisDataEvent *)ptr);
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_processSensorThreeAxisData: process three axis sensors data
 * @mSensor: sensor info.
 * @data: sensor data.
 * @sampleNum: number of samples in the current slab.
 * @timestamp: current sample timestamp;
 */
static bool lsm6dsm_processSensorThreeAxisData(struct LSM6DSMSensor *mSensor, uint8_t *data, uint16_t *sampleNum, uint64_t *timestamp)
{
    TDECL();
    int16_t x, y, z;
    float x_remap, y_remap, z_remap;
    struct TripleAxisDataPoint *samples;

    if (*timestamp == 0)
        return false;

    if (mSensor->tADataEvt == NULL) {
        if (!lsm6dsm_allocateThreeAxisDataEvt(mSensor, *timestamp))
            return false;
    }
    samples = mSensor->tADataEvt->samples;

    x = (int16_t)(data[1] << 8) | data[0];
    y = (int16_t)(data[3] << 8) | data[2];
    z = (int16_t)(data[5] << 8) | data[4];

    switch (mSensor->idx) {
    case ACCEL:
        x_remap = LSM6DSM_REMAP_X_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_ACCEL_KSCALE;
        y_remap = LSM6DSM_REMAP_Y_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_ACCEL_KSCALE;
        z_remap = LSM6DSM_REMAP_Z_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_ACCEL_KSCALE;

#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
        accelCalRun(&T(accelCal), *timestamp, x_remap, y_remap, z_remap, T(currentTemperature));
        accelCalBiasRemove(&T(accelCal), &x_remap, &y_remap, &z_remap);

        if (accelCalUpdateBias(&T(accelCal), &samples[*sampleNum].x, &samples[*sampleNum].y, &samples[*sampleNum].z)) {
            if (!samples->firstSample.biasCurrent) {
                samples->firstSample.biasCurrent = true;
                samples->firstSample.biasPresent = 1;
                samples->firstSample.biasSample = *sampleNum;

                if (*sampleNum > 0)
                    samples[*sampleNum].deltaTime = 0;

                *sampleNum += 1;
            }
        }
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */

#ifdef LSM6DSM_GYRO_CALIB_ENABLED
        if (T(sensors[GYRO].enabled))
            gyroCalUpdateAccel(&T(gyroCal), *timestamp, x_remap, y_remap, z_remap);
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */

        break;

    case GYRO:
        x -= (int16_t)T(gyroCalibrationData)[0];
        y -= (int16_t)T(gyroCalibrationData)[1];
        z -= (int16_t)T(gyroCalibrationData)[2];

        x_remap = LSM6DSM_REMAP_X_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_GYRO_KSCALE;
        y_remap = LSM6DSM_REMAP_Y_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_GYRO_KSCALE;
        z_remap = LSM6DSM_REMAP_Z_DATA(x, y, z, LSM6DSM_ACCEL_GYRO_ROT_MATRIX) * LSM6DSM_GYRO_KSCALE;

#ifdef LSM6DSM_GYRO_CALIB_ENABLED
        gyroCalUpdateGyro(&T(gyroCal), *timestamp, x_remap, y_remap, z_remap, T(currentTemperature));

#ifdef LSM6DSM_OVERTEMP_CALIB_ENABLED
        overTempCalSetTemperature(&T(overTempCal), *timestamp, T(currentTemperature));
#else /* LSM6DSM_OVERTEMP_CALIB_ENABLED */
        gyroCalRemoveBias(&T(gyroCal), x_remap, y_remap, z_remap, &x_remap, &y_remap, &z_remap);
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED */

        if (gyroCalNewBiasAvailable(&T(gyroCal))) {
            float biasTemperature, gyroOffset[3] = { 0.0f, 0.0f, 0.0f };
            uint64_t calTime;

            gyroCalGetBias(&T(gyroCal), &gyroOffset[0], &gyroOffset[1], &gyroOffset[2], &biasTemperature, &calTime);

            if (!samples->firstSample.biasCurrent) {
                samples->firstSample.biasCurrent = true;
                samples->firstSample.biasPresent = 1;
                samples->firstSample.biasSample = *sampleNum;

                if (*sampleNum > 0)
                    samples[*sampleNum].deltaTime = 0;

                samples[*sampleNum].x = gyroOffset[0];
                samples[*sampleNum].y = gyroOffset[1];
                samples[*sampleNum].z = gyroOffset[2];

                *sampleNum += 1;
            }

#ifdef LSM6DSM_OVERTEMP_CALIB_ENABLED
            overTempCalUpdateSensorEstimate(&T(overTempCal), *timestamp, gyroOffset, biasTemperature);
            overTempCalRemoveOffset(&T(overTempCal), *timestamp, x_remap, y_remap, z_remap, &x_remap, &y_remap, &z_remap);
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED */
        } else {
#ifdef LSM6DSM_OVERTEMP_CALIB_ENABLED
            overTempCalRemoveOffset(&T(overTempCal), *timestamp, x_remap, y_remap, z_remap, &x_remap, &y_remap, &z_remap);
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED */
        }
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */
        break;

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    case MAGN: ;
#ifdef LSM6DSM_MAGN_CALIB_ENABLED
        bool newMagnCalibData;
        float magnOffX, magnOffY, magnOffZ;
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */

        x_remap = LSM6DSM_REMAP_X_DATA(x, y, z, LSM6DSM_MAGN_ROT_MATRIX) * LSM6DSM_MAGN_KSCALE;
        y_remap = LSM6DSM_REMAP_Y_DATA(x, y, z, LSM6DSM_MAGN_ROT_MATRIX) * LSM6DSM_MAGN_KSCALE;
        z_remap = LSM6DSM_REMAP_Z_DATA(x, y, z, LSM6DSM_MAGN_ROT_MATRIX) * LSM6DSM_MAGN_KSCALE;

#ifdef LSM6DSM_MAGN_CALIB_ENABLED
        magCalRemoveSoftiron(&T(magnCal), x_remap, y_remap, z_remap, &magnOffX, &magnOffY, &magnOffZ);
        newMagnCalibData = magCalUpdate(&T(magnCal), NS_TO_US(*timestamp), magnOffX, magnOffY, magnOffZ);
        magCalRemoveBias(&T(magnCal), magnOffX, magnOffY, magnOffZ, &x_remap, &y_remap, &z_remap);

        if (newMagnCalibData && !samples->firstSample.biasCurrent) {
            samples->firstSample.biasCurrent = true;
            samples->firstSample.biasPresent = 1;
            samples->firstSample.biasSample = *sampleNum;

            if (*sampleNum > 0)
                samples[*sampleNum].deltaTime = 0;

            magCalGetBias(&T(magnCal), &samples[*sampleNum].x, &samples[*sampleNum].y, &samples[*sampleNum].z);

            *sampleNum += 1;
        }
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */

        break;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

    default:
        return false;
    }

    if (++mSensor->samplesDecimatorCounter >= mSensor->samplesDecimator) {
        samples[*sampleNum].x = x_remap;
        samples[*sampleNum].y = y_remap;
        samples[*sampleNum].z = z_remap;

        if (*sampleNum > 0) {
            samples[*sampleNum].deltaTime = *timestamp - mSensor->pushedTimestamp;
            mSensor->pushedTimestamp = *timestamp;
        }

        *sampleNum += 1;

        mSensor->samplesDecimatorCounter = 0;
    }

    return true;
}

#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
/*
 * lsm6dsm_processSensorOneAxisData: process single axis sensors data
 * @mSensor: sensor info.
 * @data: sensor data.
 * @sampleNum: number of samples in the current slab.
 * @timestamp: current sample timestamp;
 */
static bool lsm6dsm_processSensorOneAxisData(struct LSM6DSMSensor *mSensor, uint8_t *data, uint16_t *sampleNum, uint64_t *timestamp)
{
    TDECL();

    if (*timestamp == 0)
        return false;

    if (++mSensor->samplesDecimatorCounter >= mSensor->samplesDecimator) {
        if (mSensor->sADataEvt == NULL) {
            if (!lsm6dsm_allocateOneAxisDataEvt(mSensor, *timestamp))
                return false;
        }

        switch (mSensor->idx) {
        case PRESS:
            mSensor->sADataEvt->samples[*sampleNum].fdata = ((data[2] << 16) | (data[1] << 8) | data[0]) * LSM6DSM_PRESS_KSCALE;
            break;
        default:
            return false;
        }

        if (*sampleNum > 0) {
            mSensor->sADataEvt->samples[*sampleNum].deltaTime = *timestamp - mSensor->pushedTimestamp;
            mSensor->pushedTimestamp = *timestamp;
        }

        *sampleNum += 1;

        mSensor->samplesDecimatorCounter = 0;
    }

    return true;
}
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

/*
 * lsm6dsm_pushData: push slab to nanohub
 * @sidx: sensor index.
 * @numSamples: number of samples in the slab.
 */
static void lsm6dsm_pushData(enum SensorIndex sidx, uint16_t *numSamples)
{
    TDECL();
    bool triaxial = true;

#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    if (sidx == PRESS)
        triaxial = false;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

    if (triaxial) {
        T(sensors[sidx]).tADataEvt->samples[0].firstSample.numSamples = *numSamples;
        osEnqueueEvtOrFree(sensorGetMyEventType(LSM6DSMSensorInfo[sidx].sensorType), T(sensors[sidx]).tADataEvt, lsm6dsm_threeAxisDataEvtFree);
        T(sensors[sidx]).tADataEvt = NULL;
    } else {
#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
        T(sensors[sidx]).sADataEvt->samples[0].firstSample.numSamples = *numSamples;
        osEnqueueEvtOrFree(sensorGetMyEventType(LSM6DSMSensorInfo[sidx].sensorType), T(sensors[sidx]).sADataEvt, lsm6dsm_oneAxisDataEvtFree);
        T(sensors[sidx]).sADataEvt = NULL;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    }

    *numSamples = 0;
}

/*
 * lsm6dsm_parseFifoData: processing FIFO data.
 * @data: FIFO data.
 * @numPattern: number of pattern inside data.
 */
static void lsm6dsm_parseFifoData(uint8_t *data, uint16_t numPattern)
{
    TDECL();
    uint16_t j, fifoCounter = 0, samplesCounter[FIFO_NUM] = { 0 };
    struct LSM6DSMSensor *sensor;
    uint32_t sampleTimestamp;
    int32_t timestampDiffLSB;
    uint64_t timestamp = 0;
    enum SensorIndex sidx;
    uint8_t i, n;

    for (j = 0; j < numPattern; j++) {
        for (i = 0; i < T(fifoCntl).maxMinDecimator; i++) {
            sampleTimestamp = ((data[fifoCounter + T(fifoCntl).timestampPosition[i] + 1] << 16) |
                            (data[fifoCounter + T(fifoCntl).timestampPosition[i]] << 8) |
                            data[fifoCounter + T(fifoCntl).timestampPosition[i] + 3]);

            if (T(time).sampleTimestampFromFifoLSB > 0) {
                timestampDiffLSB = (int32_t)sampleTimestamp - (int32_t)(T(time).sampleTimestampFromFifoLSB & LSM6DSM_MASK_24BIT_TIMESTAMP);

                if ((timestampDiffLSB < 0) || (timestampDiffLSB > (T(time).theoreticalDeltaTimeLSB + T(time).deltaTimeMarginLSB))) {
                    if (timestampDiffLSB < -LSM6DSM_TIMEDIFF_OVERFLOW_LSB) {
                        T(time).sampleTimestampFromFifoLSB += (UINT32_MAX >> 8) + 1;
                    } else {
                        if (T(time).timestampIsValid)
                            sampleTimestamp = (T(time).sampleTimestampFromFifoLSB & LSM6DSM_MASK_24BIT_TIMESTAMP) + T(time).theoreticalDeltaTimeLSB;
                        else
                            sampleTimestamp = 0;
                    }
                } else
                    T(time).timestampIsValid = true;
            }

            T(time).sampleTimestampFromFifoLSB = (T(time).sampleTimestampFromFifoLSB & ~LSM6DSM_MASK_24BIT_TIMESTAMP) + sampleTimestamp;

            if (T(time).timestampIsValid) {
                if (!time_sync_estimate_time1(&T(time).sensorTimeToRtcData, (uint64_t)T(time).sampleTimestampFromFifoLSB * LSM6DSM_TIME_RESOLUTION, &timestamp)) {
                    timestamp = 0;
                } else {
                    if (T(time).lastSampleTimestamp > 0) {
                        if ((int64_t)timestamp <= (int64_t)T(time).lastSampleTimestamp)
                            timestamp = 0;
                    }

                    T(time).lastSampleTimestamp = timestamp > 0 ? timestamp : T(time).lastSampleTimestamp;

                }
            }

            for (n = 0; n < FIFO_NUM; n++) {
                if ((T(fifoCntl).decimators[n] > 0) && ((i % (T(fifoCntl).decimators[n] / T(fifoCntl).minDecimator)) == 0)) {
                    sidx = T(fifoCntl).decimatorsIdx[n];
                    if (sidx != EMBEDDED_TIMESTAMP) {
                        sensor = &T(sensors[sidx]);

                        if (sensor->samplesToDiscard == 0) {
                            if (++sensor->samplesFifoDecimatorCounter >= sensor->samplesFifoDecimator) {
                                switch (sidx) {
                                case GYRO:
                                case ACCEL:
#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
                                case MAGN:
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
                                    lsm6dsm_processSensorThreeAxisData(sensor, &data[fifoCounter], &samplesCounter[n], &timestamp);
                                    break;

#if defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED) && !defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED)
                                case PRESS:
                                    if (T(sensors[PRESS]).enabled)
                                        lsm6dsm_processSensorOneAxisData(sensor, &data[fifoCounter], &samplesCounter[n], &timestamp);

                                    if (T(sensors[TEMP]).enabled) {
                                        union EmbeddedDataPoint tempData;

                                        tempData.fdata = ((int16_t)(data[fifoCounter + LSM6DSM_PRESS_OUTDATA_LEN + 1] << 8) |
                                                    data[fifoCounter + LSM6DSM_PRESS_OUTDATA_LEN]) * LSM6DSM_TEMP_KSCALE;

                                        osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), tempData.vptr, NULL);
                                    }

                                    break;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED, LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

                                default:
                                    break;
                                }

                                sensor->samplesFifoDecimatorCounter = 0;

                                if (samplesCounter[n] >= (LSM6DSM_MAX_NUM_COMMS_EVENT_SAMPLE - 1))
                                    lsm6dsm_pushData(sidx, &samplesCounter[n]);
                            }
                        } else
                            sensor->samplesToDiscard--;
                    } else {
                        if (T(sensors[STEP_COUNTER].enabled) && !T(readSteps)) {
                            uint16_t steps = data[fifoCounter + 4] | (data[fifoCounter + 5] << 8);

                            if (steps != T(totalNumSteps)) {
                                union EmbeddedDataPoint stepCntData;

                                stepCntData.idata = steps;
                                osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_COUNT), stepCntData.vptr, NULL);
                                DEBUG_PRINT("Step Counter update: %ld steps\n", stepCntData.idata);
                                T(totalNumSteps) = stepCntData.idata;
                            }
                        }
                    }

                    fifoCounter += LSM6DSM_ONE_SAMPLE_BYTE;
                }
            }
        }
    }

    for (n = 0; n < FIFO_NUM; n++) {
        if (samplesCounter[n])
            lsm6dsm_pushData(T(fifoCntl).decimatorsIdx[n], &samplesCounter[n]);
    }
}

/*
 * lsm6dsm_updateSyncTaskValues: read timestamp used for time calibration and temperature
 */
static inline void lsm6dsm_updateSyncTaskValues(void)
{
    TDECL();
    uint32_t sensorTimestamp;

    sensorTimestamp = ((T_SLAVE_INTERFACE(timestampDataBuffer[1]) << 0) |
                    (T_SLAVE_INTERFACE(timestampDataBuffer[2]) << 8) |
                    (T_SLAVE_INTERFACE(timestampDataBuffer[3]) << 16));

    if (T(time).timestampSyncTaskLSB > 0) {
        if (((int32_t)sensorTimestamp - (int32_t)(T(time).timestampSyncTaskLSB & LSM6DSM_MASK_24BIT_TIMESTAMP)) < -LSM6DSM_TIMEDIFF_OVERFLOW_LSB)
            T(time).timestampSyncTaskLSB += (UINT32_MAX >> 8) + 1;
    }

    T(time).timestampSyncTaskLSB = (T(time).timestampSyncTaskLSB & ~LSM6DSM_MASK_24BIT_TIMESTAMP) + sensorTimestamp;

    time_sync_add(&T(time).sensorTimeToRtcData, T(time).timeSyncRtcTime, (uint64_t)T(time).timestampSyncTaskLSB * LSM6DSM_TIME_RESOLUTION);

#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
    T(currentTemperature) = LSM6DSM_TEMP_OFFSET +
            (float)((int16_t)((T_SLAVE_INTERFACE(tempDataBuffer[2]) << 8) | T_SLAVE_INTERFACE(tempDataBuffer[1]))) / 256.0f;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */
}

/*
 * lsm6dsm_handleSpiDoneEvt: all SPI operation fall back here
 * @evtData: event data.
 */
static void lsm6dsm_handleSpiDoneEvt(const void *evtData)
{
    TDECL();
    bool returnIdle = false, resetFIFO = false;
    struct LSM6DSMSensor *mSensor;
    int i;

    switch (GET_STATE()) {
    case SENSOR_BOOT:
        SET_STATE(SENSOR_VERIFY_WAI);

        SPI_READ(LSM6DSM_WAI_ADDR, 1, &T_SLAVE_INTERFACE(tmpDataBuffer));
        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
        break;

    case SENSOR_VERIFY_WAI:
        if (T_SLAVE_INTERFACE(tmpDataBuffer[1]) != LSM6DSM_WAI_VALUE) {
            T(mRetryLeft)--;
            if (T(mRetryLeft) == 0)
                break;

            ERROR_PRINT("`Who-Am-I` register value not valid: %x\n", T_SLAVE_INTERFACE(tmpDataBuffer[1]));
            SET_STATE(SENSOR_BOOT);
            timTimerSet(100000000, 100, 100, lsm6dsm_timerCallback, NULL, true);
        } else {
            SET_STATE(SENSOR_INITIALIZATION);
            T(initState) = RESET_LSM6DSM;
            lsm6dsm_sensorInit();
        }

        break;

    case SENSOR_INITIALIZATION:
        if (T(initState) == INIT_DONE) {
            for (i = 0; i < NUM_SENSORS; i++) {
                sensorRegisterInitComplete(T(sensors[i]).handle);
            }

                returnIdle = true;
            } else
                lsm6dsm_sensorInit();

        break;

    case SENSOR_POWERING_UP:
        mSensor = (struct LSM6DSMSensor *)evtData;

        mSensor->enabled = true;
        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 1, 0);
        returnIdle = true;
        break;

    case SENSOR_POWERING_DOWN:
        mSensor = (struct LSM6DSMSensor *)evtData;

        mSensor->enabled = false;
        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 0, 0);
        returnIdle = true;
        break;

    case SENSOR_CONFIG_CHANGING:
        mSensor = (struct LSM6DSMSensor *)evtData;

        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_RATE_CHG, mSensor->rate[mSensor->idx], mSensor->latency);
        returnIdle = true;
        break;

    case SENSOR_CONFIG_WATERMARK_CHANGING:
        returnIdle = true;
        break;

    case SENSOR_CALIBRATION:
        mSensor = (struct LSM6DSMSensor *)evtData;

        if (T(calibrationState == CALIBRATION_COMPLETED)) {
            returnIdle = true;
        } else {
            lsm6dsm_runCalibrationProgram(mSensor->idx);
        }
        break;

    case SENSOR_STORE_CALIBRATION_DATA:
        returnIdle = true;
        break;

    case SENSOR_SELFTEST:
        mSensor = (struct LSM6DSMSensor *)evtData;

        if (T(selftestState == SELFTEST_COMPLETED)) {
            returnIdle = true;
        } else {
#ifdef LSM6DSM_I2C_MASTER_AK09916
            if (mSensor->idx == MAGN) {
                lsm6dsm_runAbsoluteSelfTestProgram();
            } else {
                lsm6dsm_runGapSelfTestProgram(mSensor->idx);
            }
#else /* LSM6DSM_I2C_MASTER_AK09916 */
            lsm6dsm_runGapSelfTestProgram(mSensor->idx);
#endif /* LSM6DSM_I2C_MASTER_AK09916 */
        }

        break;

    case SENSOR_INT1_STATUS_REG_HANDLING:
        if (T(sensors[STEP_DETECTOR].enabled) && (T_SLAVE_INTERFACE(funcSrcBuffer[1]) & LSM6DSM_FUNC_SRC_STEP_DETECTED)) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_DETECT), NULL, NULL);
            DEBUG_PRINT("Step Detected!\n");
        }

        if (T(sensors[SIGN_MOTION].enabled) && (T_SLAVE_INTERFACE(funcSrcBuffer[1]) & LSM6DSM_FUNC_SRC_SIGN_MOTION)) {
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_SIG_MOTION), NULL, NULL);
            DEBUG_PRINT("Significant Motion event!\n");
        }

        if ((T_SLAVE_INTERFACE(fifoStatusRegBuffer[2]) & LSM6DSM_FIFO_STATUS2_FIFO_ERROR) == 0) {
            T(fifoDataToRead) = (((T_SLAVE_INTERFACE(fifoStatusRegBuffer[2]) & LSM6DSM_FIFO_CTRL2_FTH_MASK) << 8) | T_SLAVE_INTERFACE(fifoStatusRegBuffer[1])) * 2;

            if (T(fifoDataToRead) > LSM6DSM_SPI_FIFO_SIZE) {
                T(fifoDataToReadPending) = T(fifoDataToRead);
                T(fifoDataToRead) = LSM6DSM_SPI_FIFO_SIZE - (LSM6DSM_SPI_FIFO_SIZE % (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE));
                T(fifoDataToReadPending) -= T(fifoDataToRead);
            } else {
                T(fifoDataToReadPending) = 0;

                if (T(fifoDataToRead) >= (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE))
                    T(fifoDataToRead) -= T(fifoDataToRead) % (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE);
                else
                    T(fifoDataToRead) = 0;
            }

            if (T(fifoDataToRead) > 0) {
                if (T(time).status == TIME_SYNC_DURING_FIFO_READ) {
                    uint64_t time = sensorGetTime();
                    if ((time - T(time).noTimer.lastTimestampDataAvlRtcTime) > LSM6DSM_SYNC_DELTA_INTERVAL) {
                        T(time).noTimer.newTimestampDataAvl = true;
                        T(time).noTimer.lastTimestampDataAvlRtcTime = time;

                        SPI_READ(LSM6DSM_TIMESTAMP0_REG_ADDR, LSM6DSM_TIMESTAMP_SAMPLE_BYTE, &T_SLAVE_INTERFACE(timestampDataBuffer));
#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
                        SPI_READ(LSM6DSM_OUT_TEMP_L_ADDR, LSM6DSM_TEMP_SAMPLE_BYTE, &T_SLAVE_INTERFACE(tempDataBuffer));
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */
                    }
                }

                SPI_READ(LSM6DSM_FIFO_DATA_OUT_L_ADDR, T(fifoDataToRead), &T_SLAVE_INTERFACE(fifoDataBuffer));
            }
        } else {
            T(fifoDataToRead) = 0;

            if ((T_SLAVE_INTERFACE(fifoStatusRegBuffer[2]) & LSM6DSM_FIFO_STATUS2_FIFO_FULL_SMART) ||
                                    (T_SLAVE_INTERFACE(fifoStatusRegBuffer[2]) & LSM6DSM_FIFO_STATUS2_FIFO_FULL_OVERRUN)) {
                resetFIFO = true;
                SPI_WRITE(LSM6DSM_FIFO_CTRL5_ADDR, LSM6DSM_FIFO_BYPASS_MODE, 25);
                SPI_WRITE(LSM6DSM_FIFO_CTRL5_ADDR, LSM6DSM_FIFO_CONTINUOS_MODE);
            }

            if (T(sensors[STEP_COUNTER].enabled) && (T_SLAVE_INTERFACE(funcSrcBuffer[1]) & LSM6DSM_FUNC_SRC_STEP_COUNT_DELTA_IA)) {
                T(readSteps) = true;
                SPI_READ(LSM6DSM_STEP_COUNTER_L_ADDR, 2, &T_SLAVE_INTERFACE(stepCounterDataBuffer));
            }
        }

        if (!T(readSteps) && (T(fifoDataToRead) == 0)) {
            for (i = 0; i < NUM_SENSORS; i++) {
                if (T(sendFlushEvt[i])) {
                    osEnqueueEvt(sensorGetMyEventType(LSM6DSMSensorInfo[i].sensorType), SENSOR_DATA_EVENT_FLUSH, NULL);
                    T(sendFlushEvt[i]) = false;
                }
            }

            if (resetFIFO) {
                SET_STATE(SENSOR_INVALID_STATE);
                lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
            } else
                returnIdle = true;

            break;
        }

        SET_STATE(SENSOR_INT1_OUTPUT_DATA_HANDLING);

        if (T(fifoDataToRead) > 0) {
            T(lastFifoReadTimestamp) = sensorGetTime();

            if (T(time).noTimer.newTimestampDataAvl)
                T(time).timeSyncRtcTime = T(lastFifoReadTimestamp);
        }

        lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);

        break;

    case SENSOR_INT1_OUTPUT_DATA_HANDLING:
        if (T(fifoDataToRead) > 0) {
            if (T(time).noTimer.newTimestampDataAvl) {
                T(time).noTimer.newTimestampDataAvl = false;
                lsm6dsm_updateSyncTaskValues();
            }

            lsm6dsm_parseFifoData(&T_SLAVE_INTERFACE(fifoDataBuffer[1]), (T(fifoDataToRead) / 6) / T(fifoCntl).totalSip);

            if (T(fifoDataToReadPending) > 0) {
                T(fifoDataToRead) = T(fifoDataToReadPending);

                if (T(fifoDataToRead) > LSM6DSM_SPI_FIFO_SIZE) {
                    T(fifoDataToReadPending) = T(fifoDataToRead);
                    T(fifoDataToRead) = LSM6DSM_SPI_FIFO_SIZE - (LSM6DSM_SPI_FIFO_SIZE % (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE));
                    T(fifoDataToReadPending) -= T(fifoDataToRead);
                } else {
                    T(fifoDataToReadPending) = 0;

                    if (T(fifoDataToRead) >= (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE))
                        T(fifoDataToRead) -= T(fifoDataToRead) % (T(fifoCntl).totalSip * LSM6DSM_ONE_SAMPLE_BYTE);
                    else
                        T(fifoDataToRead) = 0;
                }

                if (T(fifoDataToRead) > 0) {
                    SPI_READ(LSM6DSM_FIFO_DATA_OUT_L_ADDR, T(fifoDataToRead), &T_SLAVE_INTERFACE(fifoDataBuffer));
                    lsm6dsm_spiBatchTxRx(&T_SLAVE_INTERFACE(mode), lsm6dsm_spiCallback, &mTask, __FUNCTION__);
                    return;
                }
            } else
                T(fifoDataToRead) = 0;
        }

        for (i = 0; i < NUM_SENSORS; i++) {
            if (T(sendFlushEvt[i])) {
                osEnqueueEvt(sensorGetMyEventType(LSM6DSMSensorInfo[i].sensorType), SENSOR_DATA_EVENT_FLUSH, NULL);
                T(sendFlushEvt[i]) = false;
            }
        }

        if (T(readSteps)) {
            union EmbeddedDataPoint stepCntData;

            stepCntData.idata = T_SLAVE_INTERFACE(stepCounterDataBuffer[1]) | (T_SLAVE_INTERFACE(stepCounterDataBuffer[2]) << 8);
            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_STEP_COUNT), stepCntData.vptr, NULL);
            DEBUG_PRINT("Step Counter update: %ld steps\n", stepCntData.idata);
            T(totalNumSteps) = stepCntData.idata;
            T(readSteps) = false;
        }

        returnIdle = true;
        break;

    case SENSOR_TIME_SYNC: ;
        lsm6dsm_updateSyncTaskValues();

        if (T(time).status == TIME_SYNC_TIMER) {
            if (timTimerSet(LSM6DSM_SYNC_DELTA_INTERVAL, 100, 100, lsm6dsm_timerSyncCallback, NULL, true) == 0)
                ERROR_PRINT("Failed to set a timer for time sync\n");
        }

        returnIdle = true;
        break;

#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    case SENSOR_BARO_READ_DATA: ;
        uint16_t samplesCounter = 0;
        uint32_t sensorTimestamp;
        uint64_t timestamp;

        sensorTimestamp = ((T_SLAVE_INTERFACE(timestampDataBufferBaro[1]) << 0) |
                        (T_SLAVE_INTERFACE(timestampDataBufferBaro[2]) << 8) |
                        (T_SLAVE_INTERFACE(timestampDataBufferBaro[3]) << 16));

        if (T(time).timestampBaroLSB > 0) {
            if (((int32_t)sensorTimestamp - (int32_t)(T(time).timestampBaroLSB & LSM6DSM_MASK_24BIT_TIMESTAMP)) < -LSM6DSM_TIMEDIFF_OVERFLOW_LSB)
                T(time).timestampBaroLSB += (UINT32_MAX >> 8) + 1;
        }

        T(time).timestampBaroLSB = (T(time).timestampBaroLSB & ~LSM6DSM_MASK_24BIT_TIMESTAMP) + sensorTimestamp;

        if (time_sync_estimate_time1(&T(time).sensorTimeToRtcData, (uint64_t)T(time).timestampBaroLSB * LSM6DSM_TIME_RESOLUTION, &timestamp)) {
            if (T(sensors[PRESS]).enabled) {
                lsm6dsm_processSensorOneAxisData(&T(sensors[PRESS]), &T_SLAVE_INTERFACE(baroDataBuffer[1]), &samplesCounter, &timestamp);
                lsm6dsm_pushData(PRESS, &samplesCounter);
            }
        }

        if (T(sensors[TEMP]).enabled) {
            union EmbeddedDataPoint tempData;

            tempData.fdata = ((int16_t)(T_SLAVE_INTERFACE(baroDataBuffer[LSM6DSM_PRESS_OUTDATA_LEN + 2]) << 8) |
                            T_SLAVE_INTERFACE(baroDataBuffer[LSM6DSM_PRESS_OUTDATA_LEN + 1])) * LSM6DSM_TEMP_KSCALE;

            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), tempData.vptr, NULL);
        }

        returnIdle = true;
        break;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

    default:
        returnIdle = true;
        break;
    }

    if (returnIdle)
        lsm6dsm_processPendingEvt();
}

/*
 * lsm6dsm_handleEvent: handle driver events
 * @evtType: event type.
 * @evtData: event data.
 */
static void lsm6dsm_handleEvent(uint32_t evtType, const void *evtData)
{
    TDECL();
    struct LSM6DSMSensor *mSensor;

    switch (evtType) {
    case EVT_APP_START: ;
        uint64_t currTime;

        T(mRetryLeft) = LSM6DSM_RETRY_CNT_WAI;
        SET_STATE(SENSOR_BOOT);
        osEventUnsubscribe(T(tid), EVT_APP_START);

        /* Sensor need 100ms to boot, use a timer callback to continue */
        currTime = timGetTime();
        if (currTime < 100000000ULL) {
            timTimerSet(100000000 - currTime, 100, 100, lsm6dsm_timerCallback, NULL, true);
            break;
        }

        /* If 100ms already passed just fall through next step */
    case EVT_SPI_DONE:
        lsm6dsm_handleSpiDoneEvt(evtData);
        break;

    case EVT_SENSOR_INTERRUPT_1:
        lsm6dsm_readStatusReg(false);
        break;

    case EVT_SENSOR_POWERING_UP:
        mSensor = (struct LSM6DSMSensor *)evtData;

        mSensor->enabled = true;
        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 1, 0);
        lsm6dsm_processPendingEvt();
        break;

    case EVT_SENSOR_POWERING_DOWN:
        mSensor = (struct LSM6DSMSensor *)evtData;

        mSensor->enabled = false;
        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, 0, 0);
        lsm6dsm_processPendingEvt();
        break;

    case EVT_SENSOR_CONFIG_CHANGING:
        mSensor = (struct LSM6DSMSensor *)evtData;

        sensorSignalInternalEvt(mSensor->handle, SENSOR_INTERNAL_EVT_RATE_CHG, mSensor->rate[mSensor->idx], mSensor->latency);
        lsm6dsm_processPendingEvt();
        break;

    case EVT_APP_FROM_HOST:
        break;

    case EVT_SENSOR_RESTORE_IDLE:
        lsm6dsm_processPendingEvt();
        break;

    case EVT_TIME_SYNC:
        lsm6dsm_timeSyncTask();
        break;

    default:
        break;
    }
}

/*
 * lsm6dsm_initSensorStruct: initialize sensor struct variable
 * @sensor: sensor info.
 * @idx: sensor index.
 */
static void lsm6dsm_initSensorStruct(struct LSM6DSMSensor *sensor, enum SensorIndex idx)
{
    TDECL();
    uint8_t i;

    for (i = 0; i < NUM_SENSORS; i++) {
        if (i == idx)
            sensor->dependenciesRequireData[i] = true;
        else
            sensor->dependenciesRequireData[i] = false;

        sensor->rate[i] = 0;
    }

    sensor->idx = idx;
    sensor->hwRate = 0;
    sensor->latency = UINT64_MAX;
    sensor->enabled = false;
    sensor->samplesToDiscard = 0;
    sensor->samplesDecimator = 1;
    sensor->samplesDecimatorCounter = 0;
    sensor->samplesFifoDecimator = 1;
    sensor->samplesFifoDecimatorCounter = 0;
    sensor->tADataEvt = NULL;
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    sensor->sADataEvt = NULL;
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
}

/*
 * lsm6dsm_startTask: first function executed when App start
 * @taskId: task id.
 */
static bool lsm6dsm_startTask(uint32_t taskId)
{
    TDECL();
    enum SensorIndex i;
    size_t slabSize;
    int err;

    DEBUG_PRINT("IMU: %lu\n", taskId);

    T(tid) = taskId;
    T(int1) = gpioRequest(LSM6DSM_INT1_GPIO);
    T(isr1).func = lsm6dsm_isr1;

    T_SLAVE_INTERFACE(mode).speed = LSM6DSM_SPI_SLAVE_FREQUENCY_HZ;
    T_SLAVE_INTERFACE(mode).bitsPerWord = 8;
    T_SLAVE_INTERFACE(mode).cpol = SPI_CPOL_IDLE_HI;
    T_SLAVE_INTERFACE(mode).cpha = SPI_CPHA_TRAILING_EDGE;
    T_SLAVE_INTERFACE(mode).nssChange = true;
    T_SLAVE_INTERFACE(mode).format = SPI_FORMAT_MSB_FIRST;
    T_SLAVE_INTERFACE(cs) = LSM6DSM_SPI_SLAVE_CS_GPIO;

    DEBUG_PRINT("Requested SPI on bus #%d @%dHz, int1 on gpio#%d\n",
            LSM6DSM_SPI_SLAVE_BUS_ID, LSM6DSM_SPI_SLAVE_FREQUENCY_HZ, LSM6DSM_INT1_GPIO);

    err = spiMasterRequest(LSM6DSM_SPI_SLAVE_BUS_ID, &T_SLAVE_INTERFACE(spiDev));
    if (err < 0) {
        ERROR_PRINT("Failed to request SPI on this bus: #%d\n", LSM6DSM_SPI_SLAVE_BUS_ID);
        return false;
    }

    T(int1Register) = LSM6DSM_INT1_CTRL_BASE;
    T(int2Register) = LSM6DSM_INT2_CTRL_BASE;
    T(embeddedFunctionsRegister) = LSM6DSM_CTRL10_C_BASE;
    T(pedometerDependencies) = 0;
    T(pendingInt) = false;
    T(pendingTimeSyncTask) = false;
    T(lastFifoReadTimestamp) = 0;
    T(totalNumSteps) = 0;
    T(time).status = TIME_SYNC_DISABLED;
#if defined(LSM6DSM_GYRO_CALIB_ENABLED) || defined(LSM6DSM_ACCEL_CALIB_ENABLED)
    T(currentTemperature) = 0;
#endif /* LSM6DSM_GYRO_CALIB_ENABLED, LSM6DSM_ACCEL_CALIB_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_ENABLED
    T(masterConfigRegister) = LSM6DSM_MASTER_CONFIG_BASE;
    T(masterConfigDependencies) = 0;
#endif /* LSM6DSM_I2C_MASTER_ENABLED */
#if defined(LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED) && defined(LSM6DSM_I2C_MASTER_BAROMETER_ENABLED)
    T(baroTimerId) = 0;
    T(pendingBaroTimerTask) = false;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED, LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    memset(T(gyroCalibrationData), 0, LSM6DSM_TRIAXIAL_NUM_AXIS * sizeof(int32_t));

    slabSize = sizeof(struct TripleAxisDataEvent) + (LSM6DSM_MAX_NUM_COMMS_EVENT_SAMPLE * sizeof(struct TripleAxisDataPoint));

    T(mDataSlabThreeAxis) = slabAllocatorNew(slabSize, 4, 20);
    if (!T(mDataSlabThreeAxis)) {
        ERROR_PRINT("Failed to allocate mDataSlabThreeAxis memory\n");
        spiMasterRelease(T_SLAVE_INTERFACE(spiDev));
        return false;
    }

#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    slabSize = sizeof(struct SingleAxisDataEvent) + (LSM6DSM_MAX_NUM_COMMS_EVENT_SAMPLE * sizeof(struct SingleAxisDataPoint));

    T(mDataSlabOneAxis) = slabAllocatorNew(slabSize, 4, 20);
    if (!T(mDataSlabOneAxis)) {
        ERROR_PRINT("Failed to allocate mDataSlabOneAxis memory\n");
        slabAllocatorDestroy(T(mDataSlabThreeAxis));
        spiMasterRelease(T_SLAVE_INTERFACE(spiDev));
        return false;
    }
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */

    for (i = 0; i < NUM_SENSORS; i++) {
        T(pendingEnableConfig[i]) = false;
        T(pendingRateConfig[i]) = false;
        T(pendingFlush[i]) = 0;
        T(sendFlushEvt[i]) = false;
        lsm6dsm_initSensorStruct(&T(sensors[i]), i);
        T(sensors[i]).handle = sensorRegister(&LSM6DSMSensorInfo[i], &LSM6DSMSensorOps[i], NULL, false);
    }

    T(fifoCntl).decimatorsIdx[FIFO_GYRO] = GYRO;
    T(fifoCntl).decimatorsIdx[FIFO_ACCEL] = ACCEL;
    T(fifoCntl).decimatorsIdx[FIFO_DS3] = NUM_SENSORS;
    T(fifoCntl).decimatorsIdx[FIFO_DS4] = EMBEDDED_TIMESTAMP;

#ifdef LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED
    T(fifoCntl).decimatorsIdx[FIFO_DS3] = MAGN;
#else /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    T(fifoCntl).decimatorsIdx[FIFO_DS3] = PRESS;
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */
#endif /* LSM6DSM_I2C_MASTER_MAGNETOMETER_ENABLED */

#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
    // Initializes the accelerometer offset calibration algorithm.
    const struct AccelCalParameters accelCalParameters = {
        MSEC_TO_NANOS(800),  // t0
        5,                   // n_s
        15,                  // fx
        15,                  // fxb
        15,                  // fy
        15,                  // fyb
        15,                  // fz
        15,                  // fzb
        15,                  // fle
        0.00025f             // th
    };
    accelCalInit(&T(accelCal), &accelCalParameters);
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */

#ifdef LSM6DSM_GYRO_CALIB_ENABLED
    const struct GyroCalParameters gyroCalParameters = {
        SEC_TO_NANOS(5),      // min_still_duration_nanos
        SEC_TO_NANOS(5.9f),   // max_still_duration_nanos [see, NOTE 1]
        0,                    // calibration_time_nanos
        SEC_TO_NANOS(1.5f),   // window_time_duration_nanos
        0,                    // bias_x
        0,                    // bias_y
        0,                    // bias_z
        0.95f,                // stillness_threshold
        MDEG_TO_RAD * 40.0f,  // stillness_mean_delta_limit [rad/sec]
        5e-5f,                // gyro_var_threshold [rad/sec]^2
        1e-5f,                // gyro_confidence_delta [rad/sec]^2
        8e-3f,                // accel_var_threshold [m/sec^2]^2
        1.6e-3f,              // accel_confidence_delta [m/sec^2]^2
        1.4f,                 // mag_var_threshold [uTesla]^2
        0.25f,                // mag_confidence_delta [uTesla]^2
        1.5f,                 // temperature_delta_limit_celsius
        true                  // gyro_calibration_enable
    };
    // [NOTE 1]: 'max_still_duration_nanos' is set to 5.9 seconds to achieve a
    // max stillness period of 6.0 seconds and avoid buffer boundary conditions
    // that could push the max stillness to the next multiple of the analysis
    // window length (i.e., 7.5 seconds).
    gyroCalInit(&T(gyroCal), &gyroCalParameters);
#endif /* LSM6DSM_GYRO_CALIB_ENABLED */

#ifdef LSM6DSM_OVERTEMP_CALIB_ENABLED
    // Initializes the gyroscope over-temperature offset compensation algorithm.
    const struct OverTempCalParameters gyroOtcParameters = {
        MSEC_TO_NANOS(500),    // min_temp_update_period_nanos
        DAYS_TO_NANOS(2),      // age_limit_nanos
        0.75f,                 // delta_temp_per_bin
        40.0f * MDEG_TO_RAD,   // jump_tolerance
        50.0f * MDEG_TO_RAD,   // outlier_limit
        80.0f * MDEG_TO_RAD,   // temp_sensitivity_limit
        3.0e3f * MDEG_TO_RAD,  // sensor_intercept_limit
        0.1f * MDEG_TO_RAD,    // significant_offset_change
        5,                     // min_num_model_pts
        true                   // over_temp_enable
    };
    overTempCalInit(&T(overTempCal), &gyroOtcParameters);
#endif /* LSM6DSM_OVERTEMP_CALIB_ENABLED */

#ifdef LSM6DSM_MAGN_CALIB_ENABLED
    const struct MagCalParameters magCalParameters = {
        3000000,  // min_batch_window_in_micros
        0.0f,     // x_bias
        0.0f,     // y_bias
        0.0f,     // z_bias
        1.0f,     // c00
        0.0f,     // c01
        0.0f,     // c02
        0.0f,     // c10
        1.0f,     // c11
        0.0f,     // c12
        0.0f,     // c20
        0.0f,     // c21
        1.0f      // c22
    };

    // Initializes the magnetometer offset calibration algorithm with diversity
    // checker.
    const struct DiversityCheckerParameters magDiversityParameters = {
        6.0f,    // var_threshold
        10.0f,   // max_min_threshold
        48.0f,   // local_field
        0.5f,    // threshold_tuning_param
        2.552f,  // max_distance_tuning_param
        8,       // min_num_diverse_vectors
        1        // max_num_max_distance
    };
    initMagCal(&T(magnCal), &magCalParameters, &magDiversityParameters);
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */

    /* Initialize index used to fill/get data from buffer */
    T_SLAVE_INTERFACE(mWbufCnt) = 0;
    T_SLAVE_INTERFACE(mRegCnt) = 0;

    time_sync_init(&T(time).sensorTimeToRtcData);

    osEventSubscribe(T(tid), EVT_APP_START);

    DEBUG_PRINT("Enabling gpio#%d connected to int1\n", LSM6DSM_INT1_GPIO);
    lsm6dsm_enableInterrupt(T(int1), &T(isr1));

    return true;
}

/*
 * lsm6dsm_endTask: last function executed when App end
 */
static void lsm6dsm_endTask(void)
{
    TDECL();
    enum SensorIndex i;

#ifdef LSM6DSM_ACCEL_CALIB_ENABLED
    accelCalDestroy(&T(accelCal));
#endif /* LSM6DSM_ACCEL_CALIB_ENABLED */
#ifdef LSM6DSM_MAGN_CALIB_ENABLED
    magCalDestroy(&T(magnCal));
#endif /* LSM6DSM_MAGN_CALIB_ENABLED */

    lsm6dsm_disableInterrupt(T(int1), &T(isr1));
#ifdef LSM6DSM_I2C_MASTER_BAROMETER_ENABLED
    slabAllocatorDestroy(T(mDataSlabOneAxis));
#endif /* LSM6DSM_I2C_MASTER_BAROMETER_ENABLED */
    slabAllocatorDestroy(T(mDataSlabThreeAxis));
    spiMasterRelease(T_SLAVE_INTERFACE(spiDev));

    for (i = 0; i < NUM_SENSORS; i++)
        sensorUnregister(T(sensors[i]).handle);

    gpioRelease(T(int1));
}

INTERNAL_APP_INIT(LSM6DSM_APP_ID, LSM6DSM_APP_VERSION, lsm6dsm_startTask, lsm6dsm_endTask, lsm6dsm_handleEvent);