/* * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LOG_NIDEBUG 0 #include #include #include #include #include #include #include #include #define LOG_TAG "QCOMPowerHAL" #include #include #include #include "utils.h" #include "metadata-defs.h" #include "hint-data.h" #include "performance.h" #include "power-common.h" #define BUS_SPEED_PATH "/sys/class/devfreq/qcom,gpubw.70/min_freq" #define GPU_MAX_FREQ_PATH "/sys/class/kgsl/kgsl-3d0/devfreq/max_freq" #define GPU_MIN_FREQ_PATH "/sys/class/kgsl/kgsl-3d0/devfreq/min_freq" #define CPU4_ONLINE_PATH "/sys/devices/system/cpu/cpu4/online" #define CPU5_ONLINE_PATH "/sys/devices/system/cpu/cpu5/online" #define CPU6_ONLINE_PATH "/sys/devices/system/cpu/cpu6/online" #define CPU7_ONLINE_PATH "/sys/devices/system/cpu/cpu7/online" #define PLATFORM_SLEEP_MODES 2 #define XO_VOTERS 3 #define VMIN_VOTERS 0 #define RPM_PARAMETERS 4 #define NUM_PARAMETERS 10 #ifndef RPM_STAT #define RPM_STAT "/d/rpm_stats" #endif #ifndef RPM_MASTER_STAT #define RPM_MASTER_STAT "/d/rpm_master_stats" #endif /* RPM runs at 19.2Mhz. Divide by 19200 for msec */ #define RPM_CLK 19200 const char *parameter_names[] = { "vlow_count", "accumulated_vlow_time", "vmin_count", "accumulated_vmin_time", "xo_accumulated_duration", "xo_count", "xo_accumulated_duration", "xo_count", "xo_accumulated_duration", "xo_count"}; static int saved_dcvs_cpu0_slack_max = -1; static int saved_dcvs_cpu0_slack_min = -1; static int saved_mpdecision_slack_max = -1; static int saved_mpdecision_slack_min = -1; static int saved_interactive_mode = -1; static int slack_node_rw_failed = 0; static int display_hint_sent; static int sustained_performance_mode = 0; static int vr_mode = 0; int display_boost; static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; static struct hw_module_methods_t power_module_methods = { .open = NULL, }; static void power_init(struct power_module *module) { ALOGI("QCOM power HAL initing."); int fd; char buf[10] = {0}; fd = open("/sys/devices/soc0/soc_id", O_RDONLY); if (fd >= 0) { if (read(fd, buf, sizeof(buf) - 1) == -1) { ALOGW("Unable to read soc_id"); } else { int soc_id = atoi(buf); if (soc_id == 194 || (soc_id >= 208 && soc_id <= 218) || soc_id == 178) { display_boost = 1; } } close(fd); } } static void process_video_decode_hint(void *metadata) { char governor[80]; struct video_decode_metadata_t video_decode_metadata; if (get_scaling_governor(governor, sizeof(governor)) == -1) { ALOGE("Can't obtain scaling governor."); return; } if (metadata) { ALOGI("Processing video decode hint. Metadata: %s", (char *)metadata); } /* Initialize encode metadata struct fields. */ memset(&video_decode_metadata, 0, sizeof(struct video_decode_metadata_t)); video_decode_metadata.state = -1; video_decode_metadata.hint_id = DEFAULT_VIDEO_DECODE_HINT_ID; if (metadata) { if (parse_video_decode_metadata((char *)metadata, &video_decode_metadata) == -1) { ALOGE("Error occurred while parsing metadata."); return; } } else { return; } if (video_decode_metadata.state == 1) { if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { int resource_values[] = {THREAD_MIGRATION_SYNC_OFF}; perform_hint_action(video_decode_metadata.hint_id, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { int resource_values[] = {TR_MS_30, HISPEED_LOAD_90, HS_FREQ_1026, THREAD_MIGRATION_SYNC_OFF}; perform_hint_action(video_decode_metadata.hint_id, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); } } else if (video_decode_metadata.state == 0) { if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { undo_hint_action(video_decode_metadata.hint_id); } } } static void process_video_encode_hint(void *metadata) { char governor[80]; struct video_encode_metadata_t video_encode_metadata; if (get_scaling_governor(governor, sizeof(governor)) == -1) { ALOGE("Can't obtain scaling governor."); return; } /* Initialize encode metadata struct fields. */ memset(&video_encode_metadata, 0, sizeof(struct video_encode_metadata_t)); video_encode_metadata.state = -1; video_encode_metadata.hint_id = DEFAULT_VIDEO_ENCODE_HINT_ID; if (metadata) { if (parse_video_encode_metadata((char *)metadata, &video_encode_metadata) == -1) { ALOGE("Error occurred while parsing metadata."); return; } } else { return; } if (video_encode_metadata.state == 1) { if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { int resource_values[] = {IO_BUSY_OFF, SAMPLING_DOWN_FACTOR_1, THREAD_MIGRATION_SYNC_OFF}; perform_hint_action(video_encode_metadata.hint_id, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { int resource_values[] = {TR_MS_30, HISPEED_LOAD_90, HS_FREQ_1026, THREAD_MIGRATION_SYNC_OFF, INTERACTIVE_IO_BUSY_OFF}; perform_hint_action(video_encode_metadata.hint_id, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); } } else if (video_encode_metadata.state == 0) { if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { undo_hint_action(video_encode_metadata.hint_id); } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { undo_hint_action(video_encode_metadata.hint_id); } } } int __attribute__ ((weak)) power_hint_override(struct power_module *module, power_hint_t hint, void *data) { return HINT_NONE; } /* Declare function before use */ int interaction(int duration, int num_args, int opt_list[]); int interaction_with_handle(int lock_handle, int duration, int num_args, int opt_list[]); static void power_hint(struct power_module *module, power_hint_t hint, void *data) { /* Check if this hint has been overridden. */ if (power_hint_override(module, hint, data) == HINT_HANDLED) { /* The power_hint has been handled. We can skip the rest. */ return; } switch(hint) { case POWER_HINT_VSYNC: break; case POWER_HINT_INTERACTION: { int duration_hint = 0; static unsigned long long previous_boost_time = 0; // If we are in sustained perforamnce Mode, touch boost should be // ignored. pthread_mutex_lock(&lock); if (sustained_performance_mode || vr_mode) { pthread_mutex_unlock(&lock); return; } pthread_mutex_unlock(&lock); // little core freq bump for 1.5s int resources[] = {0x20C}; int duration = 1500; static int handle_little = 0; // big core freq bump for 500ms int resources_big[] = {0x2312, 0x1F08}; int duration_big = 500; static int handle_big = 0; // sched_downmigrate lowered to 10 for 1s at most // should be half of upmigrate int resources_downmigrate[] = {0x4F00}; int duration_downmigrate = 1000; static int handle_downmigrate = 0; // sched_upmigrate lowered to at most 20 for 500ms // set threshold based on elapsed time since last boost int resources_upmigrate[] = {0x4E00}; int duration_upmigrate = 500; static int handle_upmigrate = 0; // set duration hint if (data) { duration_hint = *((int*)data); } struct timeval cur_boost_timeval = {0, 0}; gettimeofday(&cur_boost_timeval, NULL); unsigned long long cur_boost_time = cur_boost_timeval.tv_sec * 1000000 + cur_boost_timeval.tv_usec; double elapsed_time = (double)(cur_boost_time - previous_boost_time); if (elapsed_time > 750000) elapsed_time = 750000; // don't hint if it's been less than 250ms since last boost // also detect if we're doing anything resembling a fling // support additional boosting in case of flings else if (elapsed_time < 250000 && duration_hint <= 750) return; // 95: default upmigrate for phone // 20: upmigrate for sporadic touch // 750ms: a completely arbitrary threshold for last touch int upmigrate_value = 95 - (int)(75. * ((elapsed_time*elapsed_time) / (750000.*750000.))); // keep sched_upmigrate high when flinging if (duration_hint >= 750) upmigrate_value = 20; previous_boost_time = cur_boost_time; resources_upmigrate[0] = resources_upmigrate[0] | upmigrate_value; resources_downmigrate[0] = resources_downmigrate[0] | (upmigrate_value / 2); // modify downmigrate duration based on interaction data hint // 1000 <= duration_downmigrate <= 5000 // extend little core freq bump past downmigrate to soften downmigrates if (duration_hint > 1000) { if (duration_hint < 5000) { duration_downmigrate = duration_hint; duration = duration_hint + 750; } else { duration_downmigrate = 5000; duration = 5750; } } handle_little = interaction_with_handle(handle_little,duration, sizeof(resources)/sizeof(resources[0]), resources); handle_big = interaction_with_handle(handle_big, duration_big, sizeof(resources_big)/sizeof(resources_big[0]), resources_big); handle_downmigrate = interaction_with_handle(handle_downmigrate, duration_downmigrate, sizeof(resources_downmigrate)/sizeof(resources_downmigrate[0]), resources_downmigrate); handle_upmigrate = interaction_with_handle(handle_upmigrate, duration_upmigrate, sizeof(resources_upmigrate)/sizeof(resources_upmigrate[0]), resources_upmigrate); } break; case POWER_HINT_VIDEO_ENCODE: process_video_encode_hint(data); break; case POWER_HINT_VIDEO_DECODE: process_video_decode_hint(data); break; /* While the system is Sustained Performance Mode: * CPUfreq for the little cores are capped to 864MHz * Big cores are hotplugged out * GPU frequency is capped to 390 MHz */ case POWER_HINT_SUSTAINED_PERFORMANCE: { static int handle = 0; pthread_mutex_lock(&lock); if (data) { int resources[] = {0x1508}; int duration = 0; handle = interaction_with_handle(handle, duration, sizeof(resources)/sizeof(resources[0]), resources); sysfs_write(GPU_MAX_FREQ_PATH, "390000000"); if (vr_mode == 0) { sysfs_write(CPU4_ONLINE_PATH, "0"); sysfs_write(CPU5_ONLINE_PATH, "0"); sysfs_write(CPU6_ONLINE_PATH, "0"); sysfs_write(CPU7_ONLINE_PATH, "0"); } sustained_performance_mode = 1; } else { release_request(handle); sysfs_write(GPU_MAX_FREQ_PATH, "600000000"); if (vr_mode == 0) { sysfs_write(CPU4_ONLINE_PATH, "1"); sysfs_write(CPU5_ONLINE_PATH, "1"); sysfs_write(CPU6_ONLINE_PATH, "1"); sysfs_write(CPU7_ONLINE_PATH, "1"); } sustained_performance_mode = 0; } pthread_mutex_unlock(&lock); } break; case POWER_HINT_VR_MODE: { static int handle_vr = 0; pthread_mutex_lock(&lock); if (data) { int resources[] = {0x206}; int duration = 0; handle_vr = interaction_with_handle(handle_vr, duration, sizeof(resources)/sizeof(resources[0]), resources); sysfs_write(GPU_MIN_FREQ_PATH, "305000000"); sysfs_write(BUS_SPEED_PATH, "7904"); if (sustained_performance_mode == 0) { sysfs_write(CPU4_ONLINE_PATH, "0"); sysfs_write(CPU5_ONLINE_PATH, "0"); sysfs_write(CPU6_ONLINE_PATH, "0"); sysfs_write(CPU7_ONLINE_PATH, "0"); } vr_mode = 1; } else { release_request(handle_vr); sysfs_write(GPU_MIN_FREQ_PATH, "180000000"); sysfs_write(BUS_SPEED_PATH, "0"); if (sustained_performance_mode == 0) { sysfs_write(CPU4_ONLINE_PATH, "1"); sysfs_write(CPU5_ONLINE_PATH, "1"); sysfs_write(CPU6_ONLINE_PATH, "1"); sysfs_write(CPU7_ONLINE_PATH, "1"); } vr_mode = 0; } pthread_mutex_unlock(&lock); } } } int __attribute__ ((weak)) set_interactive_override(struct power_module *module, int on) { return HINT_NONE; } void set_interactive(struct power_module *module, int on) { char governor[80]; char tmp_str[NODE_MAX]; struct video_encode_metadata_t video_encode_metadata; int rc; if (set_interactive_override(module, on) == HINT_HANDLED) { return; } ALOGI("Got set_interactive hint"); if (get_scaling_governor(governor, sizeof(governor)) == -1) { ALOGE("Can't obtain scaling governor."); return; } if (!on) { /* Display off. */ if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { int resource_values[] = {DISPLAY_OFF, MS_500, THREAD_MIGRATION_SYNC_OFF}; if (!display_hint_sent) { perform_hint_action(DISPLAY_STATE_HINT_ID, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); display_hint_sent = 1; } } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { int resource_values[] = {TR_MS_50, THREAD_MIGRATION_SYNC_OFF}; if (!display_hint_sent) { perform_hint_action(DISPLAY_STATE_HINT_ID, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); display_hint_sent = 1; } } else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) && (strlen(governor) == strlen(MSMDCVS_GOVERNOR))) { if (saved_interactive_mode == 1){ /* Display turned off. */ if (sysfs_read(DCVS_CPU0_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } else { saved_dcvs_cpu0_slack_max = atoi(tmp_str); } if (sysfs_read(DCVS_CPU0_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } else { saved_dcvs_cpu0_slack_min = atoi(tmp_str); } if (sysfs_read(MPDECISION_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } else { saved_mpdecision_slack_max = atoi(tmp_str); } if (sysfs_read(MPDECISION_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) { if(!slack_node_rw_failed) { ALOGE("Failed to read from %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } else { saved_mpdecision_slack_min = atoi(tmp_str); } /* Write new values. */ if (saved_dcvs_cpu0_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_max); if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } } if (saved_dcvs_cpu0_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_min); if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } } if (saved_mpdecision_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_max); if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } } if (saved_mpdecision_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_min); if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } } } slack_node_rw_failed = rc; } } else { /* Display on. */ if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { undo_hint_action(DISPLAY_STATE_HINT_ID); display_hint_sent = 0; } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { undo_hint_action(DISPLAY_STATE_HINT_ID); display_hint_sent = 0; } else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) && (strlen(governor) == strlen(MSMDCVS_GOVERNOR))) { if (saved_interactive_mode == -1 || saved_interactive_mode == 0) { /* Display turned on. Restore if possible. */ if (saved_dcvs_cpu0_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_max); if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } } if (saved_dcvs_cpu0_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_min); if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } } if (saved_mpdecision_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_max); if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } } if (saved_mpdecision_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_min); if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } } } slack_node_rw_failed = rc; } } saved_interactive_mode = !!on; } static ssize_t get_number_of_platform_modes(struct power_module *module) { return PLATFORM_SLEEP_MODES; } static int get_voter_list(struct power_module *module, size_t *voter) { voter[0] = XO_VOTERS; voter[1] = VMIN_VOTERS; return 0; } static int extract_stats(uint64_t *list, char *file, unsigned int num_parameters, unsigned int index) { FILE *fp; ssize_t read; size_t len; char *line; int ret; fp = fopen(file, "r"); if (fp == NULL) { ret = -errno; ALOGE("%s: failed to open: %s", __func__, strerror(errno)); return ret; } for (line = NULL, len = 0; ((read = getline(&line, &len, fp) != -1) && (index < num_parameters)); free(line), line = NULL, len = 0) { uint64_t value; char* offset; size_t begin = strspn(line, " \t"); if (strncmp(line + begin, parameter_names[index], strlen(parameter_names[index]))) { continue; } offset = memchr(line, ':', len); if (!offset) { continue; } if (!strcmp(file, RPM_MASTER_STAT)) { /* RPM_MASTER_STAT is reported in hex */ sscanf(offset, ":%" SCNx64, &value); /* Duration is reported in rpm SLEEP TICKS */ if (!strcmp(parameter_names[index], "xo_accumulated_duration")) { value /= RPM_CLK; } } else { /* RPM_STAT is reported in decimal */ sscanf(offset, ":%" SCNu64, &value); } list[index] = value; index++; } free(line); fclose(fp); return 0; } static int get_platform_low_power_stats(struct power_module *module, power_state_platform_sleep_state_t *list) { uint64_t stats[sizeof(parameter_names)] = {0}; int ret; if (!list) { return -EINVAL; } ret = extract_stats(stats, RPM_STAT, RPM_PARAMETERS, 0); if (ret) { return ret; } ret = extract_stats(stats, RPM_MASTER_STAT, NUM_PARAMETERS, 4); if (ret) { return ret; } /* Update statistics for XO_shutdown */ strcpy(list[0].name, "XO_shutdown"); list[0].total_transitions = stats[0]; list[0].residency_in_msec_since_boot = stats[1]; list[0].supported_only_in_suspend = false; list[0].number_of_voters = XO_VOTERS; /* Update statistics for APSS voter */ strcpy(list[0].voters[0].name, "APSS"); list[0].voters[0].total_time_in_msec_voted_for_since_boot = stats[4]; list[0].voters[0].total_number_of_times_voted_since_boot = stats[5]; /* Update statistics for MPSS voter */ strcpy(list[0].voters[1].name, "MPSS"); list[0].voters[1].total_time_in_msec_voted_for_since_boot = stats[6]; list[0].voters[1].total_number_of_times_voted_since_boot = stats[7]; /* Update statistics for LPASS voter */ strcpy(list[0].voters[2].name, "LPASS"); list[0].voters[2].total_time_in_msec_voted_for_since_boot = stats[8]; list[0].voters[2].total_number_of_times_voted_since_boot = stats[9]; /* Update statistics for VMIN state */ strcpy(list[1].name, "VMIN"); list[1].total_transitions = stats[2]; list[1].residency_in_msec_since_boot = stats[3]; list[1].supported_only_in_suspend = false; list[1].number_of_voters = VMIN_VOTERS; return 0; } struct power_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = POWER_MODULE_API_VERSION_0_5, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = POWER_HARDWARE_MODULE_ID, .name = "QCOM Power HAL", .author = "Qualcomm", .methods = &power_module_methods, }, .init = power_init, .powerHint = power_hint, .setInteractive = set_interactive, .get_number_of_platform_modes = get_number_of_platform_modes, .get_platform_low_power_stats = get_platform_low_power_stats, .get_voter_list = get_voter_list };