aboutsummaryrefslogtreecommitdiff
path: root/lib/el3_runtime/aarch64/context_mgmt.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/el3_runtime/aarch64/context_mgmt.c')
-rw-r--r--lib/el3_runtime/aarch64/context_mgmt.c568
1 files changed, 568 insertions, 0 deletions
diff --git a/lib/el3_runtime/aarch64/context_mgmt.c b/lib/el3_runtime/aarch64/context_mgmt.c
new file mode 100644
index 00000000..c8232df9
--- /dev/null
+++ b/lib/el3_runtime/aarch64/context_mgmt.c
@@ -0,0 +1,568 @@
+/*
+ * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl_common.h>
+#include <context.h>
+#include <context_mgmt.h>
+#include <interrupt_mgmt.h>
+#include <platform.h>
+#include <platform_def.h>
+#include <pubsub_events.h>
+#include <smcc_helpers.h>
+#include <string.h>
+#include <utils.h>
+
+
+/*******************************************************************************
+ * Context management library initialisation routine. This library is used by
+ * runtime services to share pointers to 'cpu_context' structures for the secure
+ * and non-secure states. Management of the structures and their associated
+ * memory is not done by the context management library e.g. the PSCI service
+ * manages the cpu context used for entry from and exit to the non-secure state.
+ * The Secure payload dispatcher service manages the context(s) corresponding to
+ * the secure state. It also uses this library to get access to the non-secure
+ * state cpu context pointers.
+ * Lastly, this library provides the api to make SP_EL3 point to the cpu context
+ * which will used for programming an entry into a lower EL. The same context
+ * will used to save state upon exception entry from that EL.
+ ******************************************************************************/
+void cm_init(void)
+{
+ /*
+ * The context management library has only global data to intialize, but
+ * that will be done when the BSS is zeroed out
+ */
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context 'ctx' for
+ * first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ *
+ * The security state to initialize is determined by the SECURE attribute
+ * of the entry_point_info. The function returns a pointer to the initialized
+ * context and sets this as the next context to return to.
+ *
+ * The EE and ST attributes are used to configure the endianess and secure
+ * timer availability for the new execution context.
+ *
+ * To prepare the register state for entry call cm_prepare_el3_exit() and
+ * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
+ * cm_e1_sysreg_context_restore().
+ ******************************************************************************/
+static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ unsigned int security_state;
+ uint32_t scr_el3, pmcr_el0;
+ el3_state_t *state;
+ gp_regs_t *gp_regs;
+ unsigned long sctlr_elx;
+
+ assert(ctx);
+
+ security_state = GET_SECURITY_STATE(ep->h.attr);
+
+ /* Clear any residual register values from the context */
+ zeromem(ctx, sizeof(*ctx));
+
+ /*
+ * SCR_EL3 was initialised during reset sequence in macro
+ * el3_arch_init_common. This code modifies the SCR_EL3 fields that
+ * affect the next EL.
+ *
+ * The following fields are initially set to zero and then updated to
+ * the required value depending on the state of the SPSR_EL3 and the
+ * Security state and entrypoint attributes of the next EL.
+ */
+ scr_el3 = read_scr();
+ scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
+ SCR_ST_BIT | SCR_HCE_BIT);
+ /*
+ * SCR_NS: Set the security state of the next EL.
+ */
+ if (security_state != SECURE)
+ scr_el3 |= SCR_NS_BIT;
+ /*
+ * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
+ * Exception level as specified by SPSR.
+ */
+ if (GET_RW(ep->spsr) == MODE_RW_64)
+ scr_el3 |= SCR_RW_BIT;
+ /*
+ * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
+ * Secure timer registers to EL3, from AArch64 state only, if specified
+ * by the entrypoint attributes.
+ */
+ if (EP_GET_ST(ep->h.attr))
+ scr_el3 |= SCR_ST_BIT;
+
+#ifndef HANDLE_EA_EL3_FIRST
+ /*
+ * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
+ * to EL3 when executing at a lower EL. When executing at EL3, External
+ * Aborts are taken to EL3.
+ */
+ scr_el3 &= ~SCR_EA_BIT;
+#endif
+
+#ifdef IMAGE_BL31
+ /*
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
+ * indicated by the interrupt routing model for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(security_state);
+#endif
+
+ /*
+ * SCR_EL3.HCE: Enable HVC instructions if next execution state is
+ * AArch64 and next EL is EL2, or if next execution state is AArch32 and
+ * next mode is Hyp.
+ */
+ if ((GET_RW(ep->spsr) == MODE_RW_64
+ && GET_EL(ep->spsr) == MODE_EL2)
+ || (GET_RW(ep->spsr) != MODE_RW_64
+ && GET_M32(ep->spsr) == MODE32_hyp)) {
+ scr_el3 |= SCR_HCE_BIT;
+ }
+
+ /*
+ * Initialise SCTLR_EL1 to the reset value corresponding to the target
+ * execution state setting all fields rather than relying of the hw.
+ * Some fields have architecturally UNKNOWN reset values and these are
+ * set to zero.
+ *
+ * SCTLR.EE: Endianness is taken from the entrypoint attributes.
+ *
+ * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
+ * required by PSCI specification)
+ */
+ sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
+ if (GET_RW(ep->spsr) == MODE_RW_64)
+ sctlr_elx |= SCTLR_EL1_RES1;
+ else {
+ /*
+ * If the target execution state is AArch32 then the following
+ * fields need to be set.
+ *
+ * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
+ * CP15DMB, CP15DSB, and CP15ISB instructions.
+ */
+ sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
+ | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
+ }
+
+ /*
+ * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
+ * and other EL2 registers are set up by cm_preapre_ns_entry() as they
+ * are not part of the stored cpu_context.
+ */
+ write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
+
+ if (security_state == SECURE) {
+ /*
+ * Initialise PMCR_EL0 for secure context only, setting all
+ * fields rather than relying on hw. Some fields are
+ * architecturally UNKNOWN on reset.
+ *
+ * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
+ * is recorded in PMOVSCLR_EL0[31], occurs on the increment
+ * that changes PMCCNTR_EL0[63] from 1 to 0.
+ *
+ * PMCR_EL0.DP: Set to one so that the cycle counter,
+ * PMCCNTR_EL0 does not count when event counting is prohibited.
+ *
+ * PMCR_EL0.X: Set to zero to disable export of events.
+ *
+ * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
+ * counts on every clock cycle.
+ */
+ pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
+ | PMCR_EL0_DP_BIT)
+ & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
+ write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
+ }
+
+ /* Populate EL3 state so that we've the right context before doing ERET */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+ write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
+ write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
+
+ /*
+ * Store the X0-X7 value from the entrypoint into the context
+ * Use memcpy as we are in control of the layout of the structures
+ */
+ gp_regs = get_gpregs_ctx(ctx);
+ memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for a CPU specified by
+ * its `cpu_idx` for first use, and sets the initial entrypoint state as
+ * specified by the entry_point_info structure.
+ ******************************************************************************/
+void cm_init_context_by_index(unsigned int cpu_idx,
+ const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
+ cm_init_context_common(ctx, ep);
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for the current CPU
+ * for first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ ******************************************************************************/
+void cm_init_my_context(const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
+ cm_init_context_common(ctx, ep);
+}
+
+/*******************************************************************************
+ * Prepare the CPU system registers for first entry into secure or normal world
+ *
+ * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
+ * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
+ * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
+ * For all entries, the EL1 registers are initialized from the cpu_context
+ ******************************************************************************/
+void cm_prepare_el3_exit(uint32_t security_state)
+{
+ uint32_t sctlr_elx, scr_el3, mdcr_el2;
+ cpu_context_t *ctx = cm_get_context(security_state);
+
+ assert(ctx);
+
+ if (security_state == NON_SECURE) {
+ scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
+ if (scr_el3 & SCR_HCE_BIT) {
+ /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
+ sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
+ CTX_SCTLR_EL1);
+ sctlr_elx &= SCTLR_EE_BIT;
+ sctlr_elx |= SCTLR_EL2_RES1;
+ write_sctlr_el2(sctlr_elx);
+ } else if (EL_IMPLEMENTED(2)) {
+ /*
+ * EL2 present but unused, need to disable safely.
+ * SCTLR_EL2 can be ignored in this case.
+ *
+ * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
+ * to zero so that Non-secure operations do not trap to
+ * EL2.
+ *
+ * HCR_EL2.RW: Set this field to match SCR_EL3.RW
+ */
+ write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
+
+ /*
+ * Initialise CPTR_EL2 setting all fields rather than
+ * relying on the hw. All fields have architecturally
+ * UNKNOWN reset values.
+ *
+ * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
+ * accesses to the CPACR_EL1 or CPACR from both
+ * Execution states do not trap to EL2.
+ *
+ * CPTR_EL2.TTA: Set to zero so that Non-secure System
+ * register accesses to the trace registers from both
+ * Execution states do not trap to EL2.
+ *
+ * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
+ * to SIMD and floating-point functionality from both
+ * Execution states do not trap to EL2.
+ */
+ write_cptr_el2(CPTR_EL2_RESET_VAL &
+ ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
+ | CPTR_EL2_TFP_BIT));
+
+ /*
+ * Initiliase CNTHCTL_EL2. All fields are
+ * architecturally UNKNOWN on reset and are set to zero
+ * except for field(s) listed below.
+ *
+ * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical timer registers.
+ *
+ * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
+ * Hyp mode of Non-secure EL0 and EL1 accesses to the
+ * physical counter registers.
+ */
+ write_cnthctl_el2(CNTHCTL_RESET_VAL |
+ EL1PCEN_BIT | EL1PCTEN_BIT);
+
+ /*
+ * Initialise CNTVOFF_EL2 to zero as it resets to an
+ * architecturally UNKNOWN value.
+ */
+ write_cntvoff_el2(0);
+
+ /*
+ * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
+ * MPIDR_EL1 respectively.
+ */
+ write_vpidr_el2(read_midr_el1());
+ write_vmpidr_el2(read_mpidr_el1());
+
+ /*
+ * Initialise VTTBR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
+ * 2 address translation is disabled, cache maintenance
+ * operations depend on the VMID.
+ *
+ * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
+ * translation is disabled.
+ */
+ write_vttbr_el2(VTTBR_RESET_VAL &
+ ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
+ | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
+
+ /*
+ * Initialise MDCR_EL2, setting all fields rather than
+ * relying on hw. Some fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
+ * profiling controls to EL2.
+ *
+ * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
+ * state. Accesses to profiling buffer controls at
+ * non-secure EL1 are not trapped to EL2.
+ *
+ * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
+ * EL1 System register accesses to the Debug ROM
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
+ * System register accesses to the powerdown debug
+ * registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDA: Set to zero so that System register
+ * accesses to the debug registers do not trap to EL2.
+ *
+ * MDCR_EL2.TDE: Set to zero so that debug exceptions
+ * are not routed to EL2.
+ *
+ * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
+ * Monitors.
+ *
+ * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
+ * EL1 accesses to all Performance Monitors registers
+ * are not trapped to EL2.
+ *
+ * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
+ * and EL1 accesses to the PMCR_EL0 or PMCR are not
+ * trapped to EL2.
+ *
+ * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
+ * architecturally-defined reset value.
+ */
+ mdcr_el2 = ((MDCR_EL2_RESET_VAL |
+ ((read_pmcr_el0() & PMCR_EL0_N_BITS)
+ >> PMCR_EL0_N_SHIFT)) &
+ ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
+ | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
+ | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
+ | MDCR_EL2_TPMCR_BIT));
+
+#if ENABLE_SPE_FOR_LOWER_ELS
+ uint64_t id_aa64dfr0_el1;
+
+ /* Detect if SPE is implemented */
+ id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
+ ID_AA64DFR0_PMS_SHIFT;
+ if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
+ /*
+ * Make sure traps to EL2 are not generated if
+ * EL2 is implemented but not used.
+ */
+ mdcr_el2 &= ~MDCR_EL2_TPMS;
+ mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
+ }
+#endif
+
+ write_mdcr_el2(mdcr_el2);
+
+ /*
+ * Initialise HSTR_EL2. All fields are architecturally
+ * UNKNOWN on reset.
+ *
+ * HSTR_EL2.T<n>: Set all these fields to zero so that
+ * Non-secure EL0 or EL1 accesses to System registers
+ * do not trap to EL2.
+ */
+ write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
+ /*
+ * Initialise CNTHP_CTL_EL2. All fields are
+ * architecturally UNKNOWN on reset.
+ *
+ * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
+ * physical timer and prevent timer interrupts.
+ */
+ write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
+ ~(CNTHP_CTL_ENABLE_BIT));
+ }
+ }
+
+ cm_el1_sysregs_context_restore(security_state);
+ cm_set_next_eret_context(security_state);
+}
+
+/*******************************************************************************
+ * The next four functions are used by runtime services to save and restore
+ * EL1 context on the 'cpu_context' structure for the specified security
+ * state.
+ ******************************************************************************/
+void cm_el1_sysregs_context_save(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ el1_sysregs_context_save(get_sysregs_ctx(ctx));
+ el1_sysregs_context_save_post_ops();
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_exited_secure_world);
+ else
+ PUBLISH_EVENT(cm_exited_normal_world);
+#endif
+}
+
+void cm_el1_sysregs_context_restore(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ el1_sysregs_context_restore(get_sysregs_ctx(ctx));
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_entering_secure_world);
+ else
+ PUBLISH_EVENT(cm_entering_normal_world);
+#endif
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
+ * given security state with the given entrypoint
+ ******************************************************************************/
+void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
+ * pertaining to the given security state
+ ******************************************************************************/
+void cm_set_elr_spsr_el3(uint32_t security_state,
+ uintptr_t entrypoint, uint32_t spsr)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+ write_ctx_reg(state, CTX_SPSR_EL3, spsr);
+}
+
+/*******************************************************************************
+ * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
+ * pertaining to the given security state using the value and bit position
+ * specified in the parameters. It preserves all other bits.
+ ******************************************************************************/
+void cm_write_scr_el3_bit(uint32_t security_state,
+ uint32_t bit_pos,
+ uint32_t value)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+ uint32_t scr_el3;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Ensure that the bit position is a valid one */
+ assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
+
+ /* Ensure that the 'value' is only a bit wide */
+ assert(value <= 1);
+
+ /*
+ * Get the SCR_EL3 value from the cpu context, clear the desired bit
+ * and set it to its new value.
+ */
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+ scr_el3 &= ~(1 << bit_pos);
+ scr_el3 |= value << bit_pos;
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+
+/*******************************************************************************
+ * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
+ * given security state.
+ ******************************************************************************/
+uint32_t cm_get_scr_el3(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ return read_ctx_reg(state, CTX_SCR_EL3);
+}
+
+/*******************************************************************************
+ * This function is used to program the context that's used for exception
+ * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
+ * the required security state
+ ******************************************************************************/
+void cm_set_next_eret_context(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ cm_set_next_context(ctx);
+}