aboutsummaryrefslogtreecommitdiff
path: root/drivers/auth/auth_mod.c
AgeCommit message (Collapse)Author
2016-12-15tbbr: Fix updating of Non-Trusted NV counterdp-arm
The previous code required that a certificate be signed with the ROT key before the platform's NV counter could be updated with the value in the certificate. This implies that the Non-Trusted NV counter was not being updated for Non-Trusted content certificates, as they cannot be signed with the ROT key in the TBBR CoT scheme. The code is reworked to only allow updating the platform's Trusted NV counter when a certificate protected by the Trusted NV counter is signed with the ROT key. Content certificates protected by the Non-Trusted NV counter are allowed to update the platform's Non-Trusted NV counter, assuming that the certificate value is higher than the platform's value. A new optional platform API has been introduced, named plat_set_nv_ctr2(). Platforms may choose to implement it and perform additional checks based on the authentication image descriptor before modifying the NV counters. A default weak implementation is available that just calls into plat_set_nv_ctr(). Fixes ARM-software/tf-issues#426 Change-Id: I4fc978fd28a3007bc0cef972ff1f69ad0413b79c Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2016-06-03Allow dynamic overriding of ROTPK verificationSoby Mathew
A production ROM with TBB enabled must have the ability to boot test software before a real ROTPK is deployed (e.g. manufacturing mode). Previously the function plat_get_rotpk_info() must return a valid ROTPK for TBB to succeed. This patch adds an additional bit `ROTPK_NOT_DEPLOYED` in the output `flags` parameter from plat_get_rotpk_info(). If this bit is set, then the ROTPK in certificate is used without verifying against the platform value. Fixes ARM-software/tf-issues#381 Change-Id: Icbbffab6bff8ed76b72431ee21337f550d8fdbbb
2016-03-31TBB: add non-volatile counter supportJuan Castillo
This patch adds support for non-volatile counter authentication to the Authentication Module. This method consists of matching the counter values provided in the certificates with the ones stored in the platform. If the value from the certificate is lower than the platform, the boot process is aborted. This mechanism protects the system against rollback. The TBBR CoT has been updated to include this method as part of the authentication process. Two counters are used: one for the trusted world images and another for the non trusted world images. ** NEW PLATFORM APIs (mandatory when TBB is enabled) ** int plat_get_nv_ctr(void *cookie, unsigned int *nv_ctr); This API returns the non-volatile counter value stored in the platform. The cookie in the first argument may be used to select the counter in case the platform provides more than one (i.e. TBSA compliant platforms must provide trusted and non-trusted counters). This cookie is specified in the CoT. int plat_set_nv_ctr(void *cookie, unsigned int nv_ctr); This API sets a new counter value. The cookie may be used to select the counter to be updated. An implementation of these new APIs for ARM platforms is also provided. The values are obtained from the Trusted Non-Volatile Counters peripheral. The cookie is used to pass the extension OID. This OID may be interpreted by the platform to know which counter must return. On Juno, The trusted and non-trusted counter values have been tied to 31 and 223, respectively, and cannot be modified. ** IMPORTANT ** THIS PATCH BREAKS THE BUILD WHEN TRUSTED_BOARD_BOOT IS ENABLED. THE NEW PLATFORM APIs INTRODUCED IN THIS PATCH MUST BE IMPLEMENTED IN ORDER TO SUCCESSFULLY BUILD TF. Change-Id: Ic943b76b25f2a37f490eaaab6d87b4a8b3cbc89a
2015-06-25TBB: add authentication frameworkJuan Castillo
This patch adds the authentication framework that will be used as the base to implement Trusted Board Boot in the Trusted Firmware. The framework comprises the following modules: - Image Parser Module (IPM) This module is responsible for interpreting images, check their integrity and extract authentication information from them during Trusted Board Boot. The module currently supports three types of images i.e. raw binaries, X509v3 certificates and any type specific to a platform. An image parser library must be registered for each image type (the only exception is the raw image parser, which is included in the main module by default). Each parser library (if used) must export a structure in a specific linker section which contains function pointers to: 1. Initialize the library 2. Check the integrity of the image type supported by the library 3. Extract authentication information from the image - Cryptographic Module (CM) This module is responsible for verifying digital signatures and hashes. It relies on an external cryptographic library to perform the cryptographic operations. To register a cryptographic library, the library must use the REGISTER_CRYPTO_LIB macro, passing function pointers to: 1. Initialize the library 2. Verify a digital signature 3. Verify a hash Failing to register a cryptographic library will generate a build time error. - Authentication Module (AM) This module provides methods to authenticate an image, like hash comparison or digital signatures. It uses the image parser module to extract authentication parameters, the crypto module to perform cryptographic operations and the Chain of Trust to authenticate the images. The Chain of Trust (CoT) is a data structure that defines the dependencies between images and the authentication methods that must be followed to authenticate an image. The Chain of Trust, when added, must provide a header file named cot_def.h with the following definitions: - COT_MAX_VERIFIED_PARAMS Integer value indicating the maximum number of authentication parameters an image can present. This value will be used by the authentication module to allocate the memory required to load the parameters in the image descriptor. Change-Id: Ied11bd5cd410e1df8767a1df23bb720ce7e58178