cadence’

HiFi Speech Codec

Application Programming Interface (API) Definition

For Xtensa HiFi Audio Engines

Cadence Design Systems, Inc.
2655 Seely Ave.

San Jose, CA 95134
www.cadence.com

Cd d ence HiFi Speech Codec API Definition

© 2016 Cadence Design Systems, Inc.
All Rights Reserved

This publication is provided “AS IS.” Cadence Design Systems, Inc. (hereafter “Cadence") does not make any warranty of any
kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. Information in this document is provided solely to enable system and software developers to use our
processors. Unless specifically set forth herein, there are no express or implied patent, copyright or any other intellectual
property rights or licenses granted hereunder to design or fabricate Cadence integrated circuits or integrated circuits based on
the information in this document. Cadence does not warrant that the contents of this publication, whether individually or as one
or more groups, meets your requirements or that the publication is error-free. This publication could include technical
inaccuracies or typographical errors. Changes may be made to the information herein, and these changes may be incorporated
in new editions of this publication.

© 2016 Cadence, the Cadence logo, Allegro, Assura, Broadband Spice, CDNLIVE!, Celtic, Chipestimate.com, Conformal,
Connections, Denali, Diva, Dracula, Encounter, Flashpoint, FLIX, First Encounter, Incisive, Incyte, InstallScape, NanoRoute,
NC-Verilog, OrCAD, OSKit, Palladium, PowerForward, PowerSI, PSpice, Purespec, Puresuite, Quickcycles, SignalStorm,
Sigrity, SKILL, SoC Encounter, SourceLink, Spectre, Specman, Specman-Elite, SpeedBridge, Stars & Strikes, Tensilica,
TripleCheck, TurboXim, Vectra, Virtuoso, VoltageStorm, Xplorer, Xtensa, and Xtreme are either trademarks or registered
trademarks of Cadence Design Systems, Inc. in the United States and/or other jurisdictions.

OSCI, SystemC, Open SystemC, Open SystemC Initiative, and SystemC Initiative are registered trademarks of Open SystemC
Initiative, Inc. in the United States and other countries and are used with permission. All other trademarks are the property of
their respective holders.

Version 1.0 Cadence IPG Tensilica
' - ® Technical Publications
May 2016 d Certified original
c a e n c e document May 2016
PD-16-8558-10-00 2016.05.02 11:06:35 -07'00'

HiFi Speech Codec API Definition Cd d ence

Contents

1. Introduction to the HiFi Speech Codec APc.uuiiiiiiiiii e 1
DOCUMENT OVEIVIBW ...ttt ettt e ettt et e e e s e ettt e e e e e e s e aabbbe e e e e e e e e sanbbbeeeaaaeeeansbnneeas 1

2. Generic HiFi SPeech CoUEC AP ... e r e e e e 2
Y L= g Lo T VLY, =T = o =T 0 =T o P PSPPRPRN 2
2.1.1 APl Handle / PersiStent MEMOIYc.couiiiiiiiiiiiae et siiieeee e eea e 2
2.1.2 SCratCh MEMIOTY ..ottt ettt e e e e e e bbb e e e e e e e e s nbnbeeeaaaaeas 3
2% T N 1o o012 10T S PS 3

% I © 11 1 10 = U= PSR 3

LR I T g T 0= T = 3
2.1.5 Query Functions: xa_<codec>_get_<data>ccccouriiriiiiiieiiniine i 4
2.1.6 Initialization Functions: Xa_<codeC>_TNTtccccceeiiiiiiiiiiiii e, 4
2.1.7 Execution FUNCtiONS: X8_<COUEC>_PrOCESS.....ccciiiiiiiieiiiiieeiiiieeeeniieeessiieeesseees 4
GENETIC AP EFTOIS ..eeiiiiiiiie ettt ettt ettt ettt ettt e e s be e e e sab e e e smbe e e e e sabe e e e e ssbeeeessnbeeeessnneeaenan 4
COMMON AP EITOIS .o 5
Files DESCHDING the AP ...t e e e e e s e e e e e e s st e e e e e e e s snnrreeees 5
3. HiFi Speech Codec APl SPECIFICSuiiiiiiiiiiieiiee e 6
3.1 COdEC SPECIFIC FlES....ceiiiiiieeeie e 6
3.2 (@00 [cToST o 1= Tod ol = o] g @0 o L= PSR 6
3.3 APT FUNCLIONS ...ttt ettt e e e e e e s abb et e e e e e e e sanbnbeeeaaeeaannes 6
G0 Tt - 1o (8o 0= T [, 7
3.3.2 Memory AlIOCAtION STAGE ..cceoei ittt e e e eea e 8
3.3.3 INItIAliZAtION STAGE ... a e 9
.34 EXECULION STAQGE ..o ieeiieeeee e ettt ettt et e e e e e e s et e e e e e e e e e e e sanbbeeeaaaeeas 10

I N T O o [=Tol = =T = 10 1] (] £ PP 15

4. RETEIBNCES ...ttt e e e e e e et e e e e e e s ranbbeeeeaaeeeaannes 16

Cd d ence HiFi Speech Codec API Definition

Figures
Figure 1 HiFi Audio Processing Component INterfaces........ccccooviiiiiiiiieiiniiiiiiiece e 2
Figure 2 Audio Processing Component FIOW OVEIVIEWccoiicuivieiieeeiniiiiiieeee e e s s sniineneeeeens 3

Table 3-1 Library Identification FUNCHONSccoiiiiiiiiiiei et e e sree e e e e 7
Table 3-2 Memory Management FUNCLIONSooouuiiiiiiiiiiiiiiee e 8
Table 3-3 HiFi Codec Initialization FUNCLION DELAIIScoveevveieeeiiiiieeeeeee e 9
Table 3-4 Execution Stage FUNCLONSooiiiiiiiiii et a e 10
Table 3-5 HiFi Codec Process FUNCLION DELAIISoiiiveeiiiiie et 11
Table 3-6 HiFi Codec Set Parameter Function Details...........ccovveiiiiiieiiiieiiieeieeeee e, 13
Table 3-7 HiFi Codec Get Parameter Function Detailsovvviieiiiiieii e 14
Document Change History
Version Changes
1.0 = Initial release.

HiFi Speech Codec API Definition Cd d ence

1. Introduction to the
HiFi Speech Codec API

The HiFi Speech Codec Application Programming Interface (API) is a light-weight C-callable
API that is exposed by all the HiFi-based Speech Codecs developed by Cadence. A “speech
codec” is a generic term for any audio processing component and is not restricted to speech
encoders and decoders. The speech codec is created using the Xtensa® Software
Development Toolkit [and is targeted to a specific HiFi core 2.

A more complex version of the API called the “HiFi Audio Codec API” 8l is used for larger
components (for example, complex audio codec) that require additional functionality.

The API has gone through several revisions; this document covers the latest revision, that is,
Revision 1.1.

Document Overview

The HiFi codec libraries implement a simple API to encapsulate the complexities of the coding
operations and simplify the application and system implementation. Parts of the API are
common to all the HiFi codecs, these are described in Section 2 after the introduction. Section
3 covers optional additional features that may be implemented by a particular HiFi codec.

Cad d ence HiFi Speech Codec API Definition

2. Generic HiFi Speech Codec API

This section describes the API, which is common to all the HiFi speech processing libraries.
The API facilitates any component that works in the overall method shown in the following
diagram.

Figure 1 HiFi Audio Processing Component Interfaces

Section 2.1 discusses all the types of run-time memory required by the components. There is
no state information held in static memory, therefore a single thread can perform time division
processing of multiple components. Additionally, multiple threads can perform concurrent
component processing.

Memory Management

The HiFi audio processing API supports a flexible memory scheme and a simple interface that
eases the integration into the final application. The API allows the components to request the
required memory for their operations during run time.

The run time memory requirement consists primarily of the scratch and persistent memory. The
components also require an input buffer and output buffer for the passing of data into and out
of the component.

2.1.1 API Handle / Persistent Memory

The component API stores persistent state information in a structure that is referenced via an
opaque handle. The handle is passed by the application for each API call. This object contains
all state and history information that is maintained from one component frame invocation to the
next within the same thread or instance. The components expect that the contents of the
persistent memory be unchanged by the system apart from the component library itself for the
complete lifetime of the component operation.

2 © CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL

HiFi Speech Codec API Definition Cd d ence

2.1.2 Scratch Memory

This is the temporary buffer used by the component during a single frame processing call. The
contents of this memory region should not be changed if the actual component execution
process is active, that is, if the thread running the component is inside any API call. This region
can be used freely by the system between successive calls to the component.

2.1.3 Input Buffer

This is the buffer used by the algorithm for accepting input data. Before the call to the
component, the input buffer needs to be completely filled with input data.

2.1.4 Output Buffer

This is the buffer in which the algorithm writes the output. This buffer needs to be made
available for the component before its execution call. The output buffer pointer can be changed
by the application between calls to the component. This allows the component to write directly
to the required output area.

C Language AP/

An overview of the component flow is shown in Figure 2. The audio processing component API
consists of query, initialization, and execution functions.

//7\ \\
\()

Startup API

Memory Allocation

Initialize Codec

—> Execute Codec

/

/

/
\/
\ /
\V/

-

// R \\
()

Figure 2 Audio Processing Component Flow Overview

Cd d ence HiFi Speech Codec API Definition

2.1.5 Query Functions: xa_<codec>_get_<data>

The query functions are used in the startup and the memory allocation component stages to
obtain information about the version and the memory requirements of the component library.

2.1.6 Initialization Functions: xa_<codec>_init

The initialization functions are used to reset the component to its initial state. Because the
component library is fully reentrant, a process can initialize the component library multiple times
and multiple processes can initialize the same component library as appropriate.

2.1.7 Execution Functions: xa_<codec>_process

The execution functions are used to process the audio frames.
The audio component sequence, as well as the functions associated with each stage, is

described in detail in Section 3. Setting or querying component parameters is not shown in the
figure below. This can happen any time after the component is initialized.

Generic APl Errors

Audio Processing API functions return an error code of type XA_ERRORCODE, which is of type
signed int. The format of the error codes are defined in the following table.

31 30-15 14 — 11 10 - 6 5-0

Fatal Reserved Class Component Sub code

The errors that can be returned from the API are subdivided into those that are fatal, which
require the restarting of the whole component and those that are nonfatal and are provided for
information to the application.

The class of an error can be API, Config, or Execution. The API category errors are concerned
with the incorrect use of the API. The Config errors are produced when the component
parameters are incorrect or outside the supported usage. The Execution errors are returned
after a call to the main encoding or decoding process and indicate situations that have arisen
due to the input data.

HiFi Speech Codec API Definition Cd d ence

Common APl Errors

All these errors are fatal and should not be encountered during a normal application operation.
They signal that a serious error has occurred in the application that is calling the component.

= XA_API_FATAL_MEM_ALLOC

At least one of the pointers passed into the API function is NULL

. XA_API_FATAL_MEM_ALIGN
At least one of the pointers passed into the API function is not properly aligned

Files Describing the AP/

The common include files (include) are:
m Xa_error_standards.h
The macros and definitions for all the generic errors

m Xxa_type_def.h
All the types required for the API calls

Cd d ence HiFi Speech Codec API Definition

3. HiFi Speech Codec API Specifics

A HiFi Speech Codec must conform to the generic codec API. However, it can have optional
codec-specific additions.

Section 3.1 shows the files and details of API calls that may be specific to a particular codec.
Section 3.2 describes codec-specific error codes. Configuration parameters, usage notes, and
codec specific commands are described in Section 3.3.

3.1 Codec Specific Files

The codec API is required to be delivered in the form of a single header file (typically called
xa_<codec>_api -h) and a single library file (typically called xa_<codec>.a). The library is
built using a specific version of the Xtensa tools on a specific core.

3.2 Codec Specific Error Codes

Other than common error codes explained in Section 2, the codec may also report error codes
specific to itself. These could be fatal or non-fatal errors.

3.3 APl Functions

The codec API functions relevant to each stage in the component flow are specified in the
following sections.

HiFi Speech Codec API Definition Cd d ence

3.3.1 Startup Stage

The API startup functions described below get the various identification strings from the
component library. They are for information only and their usage is optional. These functions
do not take any input arguments and return const char *.

Table 3-1 Library Identification Functions

Function Description
xa_<codec>_get_lib_name_string Gets the name of the library
xa_<codec>_get_lib_version_string Gets the version of the library
xa_<codec>_get_lib_api_version_string | Gets the version of the API

Example

For a hypothetical codec called SIMPLE_PROC:
const char *name = xa_simple_proc_get_lib_name_string();
const char *ver = xa_simple_proc_get_lib_version_string();
const char *aver = xa_simple_proc_get_lib_api_version_string();

Errors

= None

Cd d ence HiFi Speech Codec API Definition

3.3.2 Memory Allocation Stage

During the memory allocation stage, the application needs to reserve the necessary memory
for the HiFi codec library handles (persistent state) and scratch buffers. The required alignment
of the handles and the scratch buffers is eight bytes. The application can use the functions
listed in Table 3-2 to query the library for the required size of each buffer. The functions take a
pointer of type xa_<codec>_init_cfg_t and return WORD32.

xa_<codec>_init_cfg_t is a structure that contains the initialization parameters for this
instance of the library. The default initial configuration parameters are used if NULL is passed,
instead of a valid pointer.

While input and output frame buffers are required for the operation of the component, they do
not need to be reserved at this stage. Pointers to the frame buffers are passed in each
invocation of the main component execution function.

The size and alignment requirements of the I/O buffers are specified in Section 3.3.4.

Table 3-2 Memory Management Functions

Function Description

xa_<codec>_get_handle_byte_size | Returns the size of the HiFi Codec API handle
(persistent state) in bytes

xa_<codec>_get_scratch_byte_size | Returns the size of the HiFi Codec scratch memory

Example

For a hypothetical codec called SIMPLE_PROC, an example for default configuration
parameters:

WORD32 handle_size;

WORD32 scratch_size;

handle_size = xa_simple_proc_get_handle_byte_size(NULL);
scratch_size = xa_simple_proc_get_scratch_byte_size(NULL);

Errors

m Codec specific error, if the configuration parameters (passed in p_c¥fg) are not valid.

HiFi Speech Codec API Definition

3.3.3 Initialization Stage

In the initialization stage, the application points the HiFi codec component to its APl handle and
scratch buffer. The application also specifies various other parameters related to the operation
of the component and places the component in its initial state. The API functions for the HiFi

codec component initialization are specified in Table 3-3.

Table 3-3 HiFi Codec Initialization Function Details

Function Xa_<codec>_init
Syntax XA_ERRORCODE
xa_<codec>_init (
xa_codec_handle_t handle,
pWORD32 scratch,
xa_<codec>_init_cfg_t *p_cfg)
Description | Resets the HiFi codec API handle into its initial state. Sets up the component to run
using the supplied scratch buffer and the specified initial configuration parameters.
Parameters

Input: handle

Pointer to the component persistent memory. This is the opaque handle
Required size: See xa_<codec>_get_handle_byte_size

Required alignment: 8 bytes

Input: scratch

Pointer to the component scratch buffer

Required size: See xa_<codec>_get_scratch_byte_size
Required alignment: 8 bytes

Input: p_cfg

Initial configuration parameters (see Section 3.3.2). Note that the initial configuration
parameters MUST be identical to those passed during the memory allocation stage.

cadence

Cd d ence HiFi Speech Codec API Definition

Example
For hypothetical codec, SIMPLE_PROC, an example for default configuration parameters is:
xa_codec_handle_t handle =
(xa_codec_handle_t)malloc(handle_size);
pWORD32 scratch = (pWORD32)malloc(scratch_size);
res = xa_simple_proc_init(handle, scratch, NULL);

Errors

= XA_API_FATAL_MEM_ALLOC

handle or scratch is NULL

= XA_API_FATAL_MEM_ALIGN

handle or scratch is not aligned correctly

m Codec specific error, if the configuration parameters (passed in p_cfg) are not valid

3.3.4 Execution Stage

The codec processes the input stream and generates the output stream frame-by-frame. Each
call to the component execution function requires one complete frame as input and produces
one complete frame as output. If partial input frames are presented, they are buffered internally
to the component.

The codec uses default parameters to perform the processing. These parameters can be
changed or queried at any time after the initialization stage.

Table 3-4 Execution Stage Functions

Function Description

xa_<C0d€C>_pr0cess Processes one frame of audio data

xa_<codec>_set_param | Sets the value of a particular parameter

xa_<codec>_get_param | Returns the value of a particular parameter

The syntax of the execution stage functions are specified in the following tables.

HiFi Speech Codec API Definition

cadence

Table 3-5 HiFi Codec Process Function Details

Function

xa_<codec>_process

Syntax

XA_ERRORCODE

Xa_<codec>_process (
xa_codec_handle_t handle,
pVOID p_in_data,
pVOID p_out_data,
pUWORD32 p_in_samples,
pUWORD32 p_out_samples)

Description

Processes one frame of audio using the current component state.

Parameters

Input: handle

The opague component handle

Input: p_in_data

A pointer to the input audio frame from which the input data will be read. This is
the input buffer

Required alignment: 4 bytes

Output: p_out_data

A pointer to the output audio frame into which the output data will be written.
This is the output buffer

Required alignment: 4 bytes

Input/Output: p_in_samples

Pointer to the number of input samples. This contains the amount of data to be
processed. On return, *p_in_samples is set to the actual amount of data
processed.

Input/Output: p_out_samples

Pointer to the number of output samples. This contains the space available in
the output buffer, in terms of samples. On return, *p_out_samples is set to
the actual number of output samples generated by the codec.

11

Cd d ence HiFi Speech Codec API Definition

Example

Following is an example for a hypothetical codec called SIMPLE_PROC, which processes 32-
bit PCM data and generates 32-bit PCM data. The filling of the data is not shown.

UWORD32 p_in_data[512];

UWORD32 p_out_data[512];

UWORD32 in_samples = 512;

UWORD32 out_samples = 512;

res = xa_simple_proc_process(handle, p_in_data, p_out_data,
&in_samples, &out_samples);

Errors

= XA_API_FATAL_MEM_ALLOC
One of the pointers (handle, p_in_data, p_out_data, p_in_samples or
p_out_samples) is NULL

. XA_API_FATAL_MEM_ALIGN

One of the pointers (handle, p_in_data, p_out_data, p_in_samples or
p_out_samples) is not aligned correctly

m Codec specific errors, returned if
Initialization function was not called

One of the buffer sizes (passed in p_in_samples or p_out_samples) is not
valid

Non-specific internal library error

HiFi Speech Codec API Definition Cd d ence

Table 3-6 HiFi Codec Set Parameter Function Details

Function xa_<codec>_set_param

Syntax XA_ERRORCODE

Xa_<codec>_set_param (
xa_codec_handle_t handle,
Xa_<codec>_param_id_t param_id,

pVOID p_param_value)

Description Sets the parameter specified by param_id to the value passed in the buffer pointed to
by p_param_value

Parameters Input: handle

The opaque component handle.

Input: param_id

Identifies the parameter to be written. Refer to Section 3.3.5 for the list of
parameters supported.

Input: p_param_value
A pointer to a buffer that contains the parameter value

Required alignment: 4 bytes

Example

For a hypothetical codec called SIMPLE_PROC, an example to set the sampling rate is:
WORD32 param_id = XA_SIMPLE_PROC_SAMPLE_RATE;
WORD32 sampling_rate = 48000;

res = xa_simple_proc_set_param(handle, param_id,
&sampling_rate);

Errors

= XA_API_FATAL_MEM_ALLOC

One of the pointers (handle or p_param_value) is NULL
. XA_API_FATAL_MEM_ALIGN
One of the pointers (handle or p_param_value) is not aligned correctly

m Codec specific errors, returned if
Parameter identifier (param_id) is not valid

Parameter values (passed in p_param_value) are not valid

13

cadence

HiFi Speech Codec API Definition

Table 3-7 HiFi Codec Get Parameter Function Details

Function

xa_<codec>_get_param

Syntax

XA_ERRORCODE

xa_<codec>_get_param (
xa_codec_handle_t handle,
xa_<codec>_param_id_t param_id,

pVOID p_param_value)

Description

Gets the value of the parameter specified by param_id in the buffer pointed
to by p_param_value

Parameters

Input: handle

The opaque component handle.

Input: param_id

Identifies the parameter to be read. Refer to Section 3.3.5 for the list of
parameters supported

Output: p_param_value

A pointer to a buffer that is filled with the parameter value when the function
returns

Required alignment: 4 bytes

Example

For a hypothetical codec called SIMPLE_PROC, an example to GET the sampling rate is:

WORD32
WORD32
res =

param_id = XA_SIMPLE_PROC_SAMPLE_RATE;
sampling_rate;

xa_simple_proc_get_param(handle, param_id,

&sampling_rate);

Errors

= XA_API_FATAL_MEM_ALLOC

One of the pointers (handle or p_param_value) is NULL

= XA_API_FATAL_MEM_ALIGN

One of the pointers (handle or p_param_value) is not aligned correctly

m Codec specific errors, returned if

Parameter identifier (param_id) is not valid

HiFi Speech Codec API Definition Cd d ence

3.3.5 Codec Parameters

The Programmer’s Guide for a specific codec describes the parameters that are supported by
the get_param and set_param functions described in Section 3.3.4.

The following information is typically included:

Parameter ID: Parameter identifier (param_id)

Value type: A pointer (p_param_value) to a variable of this type is to be passed
RW: Indicates whether the parameter can be read (get) and/or written (set)
Range: Valid values of the parameter

Default: Default value of the parameter

Description: Brief description of the parameter

15

Cd d ence HiFi Speech Codec API Definition

4. References

[1] Xtensa® Software Development Toolkit User’s Guide.
<TOOLS_PATH>\XtDevTools\downloads\<sTOOLS_VERSION>\docs\sw_dev_toolkit
_ug.pdf

[2] HiFi Audio Engine User’'s Guide

<TOOLS_PATH>\XtDevTools\downloads\<sTOOLS_VERSION>\docs\HiFi*_ug.pdf

[3] HiFi Audio Codec API Definition

HiFi-Audio-Codec-API-Definition.docx, available in the same directory.

	HiFi Speech Codec
	1. Introduction to the HiFi Speech Codec API
	2. Generic HiFi Speech Codec API
	2.1.1 API Handle / Persistent Memory
	2.1.2 Scratch Memory
	2.1.3 Input Buffer
	2.1.4 Output Buffer
	2.1.5 Query Functions: xa_<codec>_get_<data>
	2.1.6 Initialization Functions: xa_<codec>_init
	2.1.7 Execution Functions: xa_<codec>_process
	Generic API Errors
	Common API Errors
	Files Describing the API

	3. HiFi Speech Codec API Specifics
	3.1 Codec Specific Files
	3.2 Codec Specific Error Codes
	3.3 API Functions
	3.3.1 Startup Stage
	3.3.2 Memory Allocation Stage
	3.3.3 Initialization Stage
	3.3.4 Execution Stage
	3.3.5 Codec Parameters

	4. References

		2016-05-02T11:06:35-0700
	Cadence IPG Tensilica Technical Publications
	Certified original document May 2016

