summaryrefslogtreecommitdiff
path: root/mali_kbase/csf/mali_kbase_csf_firmware.c
blob: bd815c4181466d66040a417b877ad6a3b19363f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
 *
 * (C) COPYRIGHT 2018-2023 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU license.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 */

#include "mali_kbase.h"
#include "mali_kbase_csf_firmware_cfg.h"
#include "mali_kbase_csf_firmware_log.h"
#include "mali_kbase_csf_firmware_core_dump.h"
#include "mali_kbase_csf_trace_buffer.h"
#include "mali_kbase_csf_timeout.h"
#include "mali_kbase_mem.h"
#include "mali_kbase_mem_pool_group.h"
#include "mali_kbase_reset_gpu.h"
#include "mali_kbase_ctx_sched.h"
#include "mali_kbase_csf_scheduler.h"
#include <mali_kbase_hwaccess_time.h>
#include "device/mali_kbase_device.h"
#include "backend/gpu/mali_kbase_pm_internal.h"
#include "tl/mali_kbase_timeline_priv.h"
#include "tl/mali_kbase_tracepoints.h"
#include "mali_kbase_csf_tl_reader.h"
#include "backend/gpu/mali_kbase_clk_rate_trace_mgr.h"
#include <csf/ipa_control/mali_kbase_csf_ipa_control.h>
#include <csf/mali_kbase_csf_registers.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/firmware.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/ctype.h>
#if (KERNEL_VERSION(4, 13, 0) <= LINUX_VERSION_CODE)
#include <linux/set_memory.h>
#endif
#include <mmu/mali_kbase_mmu.h>
#include <asm/arch_timer.h>
#include <linux/delay.h>
#include <linux/version_compat_defs.h>

#define MALI_MAX_DEFAULT_FIRMWARE_NAME_LEN ((size_t)20)

static char default_fw_name[MALI_MAX_DEFAULT_FIRMWARE_NAME_LEN] = "mali_csffw.bin";
module_param_string(fw_name, default_fw_name, sizeof(default_fw_name), 0644);
MODULE_PARM_DESC(fw_name, "firmware image");

/* The waiting time for firmware to boot */
static unsigned int csf_firmware_boot_timeout_ms;
module_param(csf_firmware_boot_timeout_ms, uint, 0444);
MODULE_PARM_DESC(csf_firmware_boot_timeout_ms,
		 "Maximum time to wait for firmware to boot.");

#ifdef CONFIG_MALI_DEBUG
/* Makes Driver wait indefinitely for an acknowledgment for the different
 * requests it sends to firmware. Otherwise the timeouts interfere with the
 * use of debugger for source-level debugging of firmware as Driver initiates
 * a GPU reset when a request times out, which always happen when a debugger
 * is connected.
 */
bool fw_debug; /* Default value of 0/false */
module_param(fw_debug, bool, 0444);
MODULE_PARM_DESC(fw_debug,
	"Enables effective use of a debugger for debugging firmware code.");
#endif

#define FIRMWARE_HEADER_MAGIC		(0xC3F13A6Eul)
#define FIRMWARE_HEADER_VERSION_MAJOR	(0ul)
#define FIRMWARE_HEADER_VERSION_MINOR	(3ul)
#define FIRMWARE_HEADER_LENGTH		(0x14ul)

#define CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS \
	(CSF_FIRMWARE_ENTRY_READ | \
	 CSF_FIRMWARE_ENTRY_WRITE | \
	 CSF_FIRMWARE_ENTRY_EXECUTE | \
	 CSF_FIRMWARE_ENTRY_PROTECTED | \
	 CSF_FIRMWARE_ENTRY_SHARED | \
	 CSF_FIRMWARE_ENTRY_ZERO | \
	 CSF_FIRMWARE_ENTRY_CACHE_MODE)

#define CSF_FIRMWARE_ENTRY_TYPE_INTERFACE           (0)
#define CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION       (1)
#define CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER        (3)
#define CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA   (4)
#define CSF_FIRMWARE_ENTRY_TYPE_BUILD_INFO_METADATA (6)
#define CSF_FIRMWARE_ENTRY_TYPE_FUNC_CALL_LIST      (7)
#define CSF_FIRMWARE_ENTRY_TYPE_CORE_DUMP           (9)

#define CSF_FIRMWARE_CACHE_MODE_NONE              (0ul << 3)
#define CSF_FIRMWARE_CACHE_MODE_CACHED            (1ul << 3)
#define CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT (2ul << 3)
#define CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT   (3ul << 3)

#define INTERFACE_ENTRY_NAME_OFFSET (0x14)

#define TL_METADATA_ENTRY_NAME_OFFSET (0x8)

#define CSF_MAX_FW_STOP_LOOPS            (100000)

#define CSF_GLB_REQ_CFG_MASK                                                                       \
	(GLB_REQ_CFG_ALLOC_EN_MASK | GLB_REQ_CFG_PROGRESS_TIMER_MASK |                             \
	 GLB_REQ_CFG_PWROFF_TIMER_MASK | GLB_REQ_IDLE_ENABLE_MASK)

char fw_git_sha[BUILD_INFO_GIT_SHA_LEN];

static inline u32 input_page_read(const u32 *const input, const u32 offset)
{
	WARN_ON(offset % sizeof(u32));

	return input[offset / sizeof(u32)];
}

static inline void input_page_write(u32 *const input, const u32 offset,
			const u32 value)
{
	WARN_ON(offset % sizeof(u32));

	input[offset / sizeof(u32)] = value;
}

static inline void input_page_partial_write(u32 *const input, const u32 offset,
			u32 value, u32 mask)
{
	WARN_ON(offset % sizeof(u32));

	input[offset / sizeof(u32)] =
		(input_page_read(input, offset) & ~mask) | (value & mask);
}

static inline u32 output_page_read(const u32 *const output, const u32 offset)
{
	WARN_ON(offset % sizeof(u32));

	return output[offset / sizeof(u32)];
}

static unsigned int entry_type(u32 header)
{
	return header & 0xFF;
}
static unsigned int entry_size(u32 header)
{
	return (header >> 8) & 0xFF;
}
static bool entry_update(u32 header)
{
	return (header >> 30) & 0x1;
}
static bool entry_optional(u32 header)
{
	return (header >> 31) & 0x1;
}

/**
 * struct firmware_timeline_metadata - Timeline metadata item within the MCU firmware
 *
 * @node: List head linking all timeline metadata to
 *        kbase_device:csf.firmware_timeline_metadata.
 * @name: NUL-terminated string naming the metadata.
 * @data: Metadata content.
 * @size: Metadata size.
 */
struct firmware_timeline_metadata {
	struct list_head node;
	char *name;
	char *data;
	size_t size;
};

/* The shared interface area, used for communicating with firmware, is managed
 * like a virtual memory zone. Reserve the virtual space from that zone
 * corresponding to shared interface entry parsed from the firmware image.
 * The MCU_SHARED_ZONE should have been initialized before calling this
 * function.
 */
static int setup_shared_iface_static_region(struct kbase_device *kbdev)
{
	struct kbase_csf_firmware_interface *interface =
		kbdev->csf.shared_interface;
	struct kbase_va_region *reg;
	int ret = -ENOMEM;

	if (!interface)
		return -EINVAL;

	reg = kbase_alloc_free_region(&kbdev->csf.mcu_shared_zone, 0, interface->num_pages_aligned);
	if (reg) {
		mutex_lock(&kbdev->csf.reg_lock);
		ret = kbase_add_va_region_rbtree(kbdev, reg,
				interface->virtual, interface->num_pages_aligned, 1);
		mutex_unlock(&kbdev->csf.reg_lock);
		if (ret)
			kfree(reg);
		else
			reg->flags &= ~KBASE_REG_FREE;
	}

	return ret;
}

static int wait_mcu_status_value(struct kbase_device *kbdev, u32 val)
{
	u32 max_loops = CSF_MAX_FW_STOP_LOOPS;

	/* wait for the MCU_STATUS register to reach the given status value */
	while (--max_loops &&
	       (kbase_reg_read(kbdev, GPU_CONTROL_REG(MCU_STATUS)) != val)) {
	}

	return (max_loops == 0) ? -1 : 0;
}

void kbase_csf_firmware_disable_mcu(struct kbase_device *kbdev)
{
	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_DISABLING(kbdev, kbase_backend_get_cycle_cnt(kbdev));

	kbase_reg_write(kbdev, GPU_CONTROL_REG(MCU_CONTROL), MCU_CNTRL_DISABLE);
}

static void wait_for_firmware_stop(struct kbase_device *kbdev)
{
	if (wait_mcu_status_value(kbdev, MCU_CNTRL_DISABLE) < 0) {
		/* This error shall go away once MIDJM-2371 is closed */
		dev_err(kbdev->dev, "Firmware failed to stop");
	}

	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_OFF(kbdev, kbase_backend_get_cycle_cnt(kbdev));
}

void kbase_csf_firmware_disable_mcu_wait(struct kbase_device *kbdev)
{
	wait_for_firmware_stop(kbdev);
}

static void stop_csf_firmware(struct kbase_device *kbdev)
{
	/* Stop the MCU firmware */
	kbase_csf_firmware_disable_mcu(kbdev);

	wait_for_firmware_stop(kbdev);
}

static void wait_for_firmware_boot(struct kbase_device *kbdev)
{
	long wait_timeout;
	long remaining;

	if (!csf_firmware_boot_timeout_ms)
		csf_firmware_boot_timeout_ms =
			kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_BOOT_TIMEOUT);

	wait_timeout = kbase_csf_timeout_in_jiffies(csf_firmware_boot_timeout_ms);

	/* Firmware will generate a global interface interrupt once booting
	 * is complete
	 */
	remaining = wait_event_timeout(kbdev->csf.event_wait,
			kbdev->csf.interrupt_received == true, wait_timeout);

	if (!remaining)
		dev_err(kbdev->dev, "Timed out waiting for fw boot completion");

	kbdev->csf.interrupt_received = false;
}

static void boot_csf_firmware(struct kbase_device *kbdev)
{
	kbase_csf_firmware_enable_mcu(kbdev);

#if IS_ENABLED(CONFIG_MALI_CORESIGHT)
	kbase_debug_coresight_csf_state_request(kbdev, KBASE_DEBUG_CORESIGHT_CSF_ENABLED);

	if (!kbase_debug_coresight_csf_state_wait(kbdev, KBASE_DEBUG_CORESIGHT_CSF_ENABLED))
		dev_err(kbdev->dev, "Timeout waiting for CoreSight to be enabled");
#endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */

	wait_for_firmware_boot(kbdev);
}

/**
 * wait_ready() - Wait for previously issued MMU command to complete.
 *
 * @kbdev:        Kbase device to wait for a MMU command to complete.
 *
 * Reset GPU if the wait for previously issued command times out.
 *
 * Return:  0 on success, error code otherwise.
 */
static int wait_ready(struct kbase_device *kbdev)
{
	const ktime_t wait_loop_start = ktime_get_raw();
	const u32 mmu_as_inactive_wait_time_ms = kbdev->mmu_or_gpu_cache_op_wait_time_ms;
	s64 diff;

	do {
		unsigned int i;

		for (i = 0; i < 1000; i++) {
			/* Wait for the MMU status to indicate there is no active command */
			if (!(kbase_reg_read(kbdev,
					     MMU_STAGE1_REG(MMU_AS_REG(MCU_AS_NR, AS_STATUS))) &
			      AS_STATUS_AS_ACTIVE))
				return 0;
		}

		diff = ktime_to_ms(ktime_sub(ktime_get_raw(), wait_loop_start));
	} while (diff < mmu_as_inactive_wait_time_ms);

	dev_err(kbdev->dev,
		"AS_ACTIVE bit stuck for MCU AS. Might be caused by unstable GPU clk/pwr or faulty system");
	queue_work(system_highpri_wq, &kbdev->csf.coredump_work);

	if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
		kbase_reset_gpu_locked(kbdev);

	return -ETIMEDOUT;
}

static void unload_mmu_tables(struct kbase_device *kbdev)
{
	unsigned long irq_flags;

	mutex_lock(&kbdev->mmu_hw_mutex);
	spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
	if (kbdev->pm.backend.gpu_powered)
		kbase_mmu_disable_as(kbdev, MCU_AS_NR);
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
	mutex_unlock(&kbdev->mmu_hw_mutex);
}

static int load_mmu_tables(struct kbase_device *kbdev)
{
	unsigned long irq_flags;

	mutex_lock(&kbdev->mmu_hw_mutex);
	spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
	kbase_mmu_update(kbdev, &kbdev->csf.mcu_mmu, MCU_AS_NR);
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
	mutex_unlock(&kbdev->mmu_hw_mutex);

	/* Wait for a while for the update command to take effect */
	return wait_ready(kbdev);
}

/**
 * convert_mem_flags() - Convert firmware memory flags to GPU region flags
 *
 * Return: GPU memory region flags
 *
 * @kbdev: Instance of GPU platform device (used to determine system coherency)
 * @flags: Flags of an "interface memory setup" section in a firmware image
 * @cm:    appropriate cache mode chosen for the "interface memory setup"
 *         section, which could be different from the cache mode requested by
 *         firmware.
 */
static unsigned long convert_mem_flags(const struct kbase_device * const kbdev,
	const u32 flags, u32 *cm)
{
	unsigned long mem_flags = 0;
	u32 cache_mode = flags & CSF_FIRMWARE_ENTRY_CACHE_MODE;
	bool is_shared = (flags & CSF_FIRMWARE_ENTRY_SHARED) ? true : false;

	/* The memory flags control the access permissions for the MCU, the
	 * shader cores/tiler are not expected to access this memory
	 */
	if (flags & CSF_FIRMWARE_ENTRY_READ)
		mem_flags |= KBASE_REG_GPU_RD;

	if (flags & CSF_FIRMWARE_ENTRY_WRITE)
		mem_flags |= KBASE_REG_GPU_WR;

	if ((flags & CSF_FIRMWARE_ENTRY_EXECUTE) == 0)
		mem_flags |= KBASE_REG_GPU_NX;

	if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
		mem_flags |= KBASE_REG_PROTECTED;

	/* Substitute uncached coherent memory for cached coherent memory if
	 * the system does not support ACE coherency.
	 */
	if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) &&
		(kbdev->system_coherency != COHERENCY_ACE))
		cache_mode = CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT;

	/* Substitute uncached incoherent memory for uncached coherent memory
	 * if the system does not support ACE-Lite coherency.
	 */
	if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT) &&
		(kbdev->system_coherency == COHERENCY_NONE))
		cache_mode = CSF_FIRMWARE_CACHE_MODE_NONE;

	*cm = cache_mode;

	switch (cache_mode) {
	case CSF_FIRMWARE_CACHE_MODE_NONE:
		mem_flags |=
			KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
		break;
	case CSF_FIRMWARE_CACHE_MODE_CACHED:
		mem_flags |=
			KBASE_REG_MEMATTR_INDEX(
			AS_MEMATTR_INDEX_IMPL_DEF_CACHE_POLICY);
		break;
	case CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT:
	case CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT:
		WARN_ON(!is_shared);
		mem_flags |= KBASE_REG_SHARE_BOTH |
			KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_SHARED);
		break;
	default:
		dev_err(kbdev->dev,
			"Firmware contains interface with unsupported cache mode\n");
		break;
	}
	return mem_flags;
}

static void load_fw_image_section(struct kbase_device *kbdev, const u8 *data,
		struct tagged_addr *phys, u32 num_pages, u32 flags,
		u32 data_start, u32 data_end)
{
	u32 data_pos = data_start;
	u32 data_len = data_end - data_start;
	u32 page_num;
	u32 page_limit;

	if (flags & CSF_FIRMWARE_ENTRY_ZERO)
		page_limit = num_pages;
	else
		page_limit = (data_len + PAGE_SIZE - 1) / PAGE_SIZE;

	for (page_num = 0; page_num < page_limit; ++page_num) {
		struct page *const page = as_page(phys[page_num]);
		char *const p = kbase_kmap_atomic(page);
		u32 const copy_len = min_t(u32, PAGE_SIZE, data_len);

		if (copy_len > 0) {
			memcpy(p, data + data_pos, copy_len);
			data_pos += copy_len;
			data_len -= copy_len;
		}

		if (flags & CSF_FIRMWARE_ENTRY_ZERO) {
			u32 const zi_len = PAGE_SIZE - copy_len;

			memset(p + copy_len, 0, zi_len);
		}

		kbase_sync_single_for_device(kbdev, kbase_dma_addr_from_tagged(phys[page_num]),
					     PAGE_SIZE, DMA_TO_DEVICE);
		kbase_kunmap_atomic(p);
	}
}

static int reload_fw_image(struct kbase_device *kbdev)
{
	const u32 magic = FIRMWARE_HEADER_MAGIC;
	struct kbase_csf_firmware_interface *interface;
	struct kbase_csf_mcu_fw *const mcu_fw = &kbdev->csf.fw;
	int ret = 0;

	if (WARN_ON(mcu_fw->data == NULL)) {
		dev_err(kbdev->dev, "Firmware image copy not loaded\n");
		ret = -EINVAL;
		goto out;
	}

	/* Do a basic sanity check on MAGIC signature */
	if (memcmp(mcu_fw->data, &magic, sizeof(magic)) != 0) {
		dev_err(kbdev->dev, "Incorrect magic value, firmware image could have been corrupted\n");
		ret = -EINVAL;
		goto out;
	}

	list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
		/* Dont skip re-loading any section if full reload was requested */
		if (!kbdev->csf.firmware_full_reload_needed) {
			/* Skip reload of text & read only data sections */
			if ((interface->flags & CSF_FIRMWARE_ENTRY_EXECUTE) ||
			    !(interface->flags & CSF_FIRMWARE_ENTRY_WRITE))
				continue;
		}

		load_fw_image_section(kbdev, mcu_fw->data, interface->phys, interface->num_pages,
				      interface->flags, interface->data_start, interface->data_end);
	}

	kbdev->csf.firmware_full_reload_needed = false;

	kbase_csf_firmware_reload_trace_buffers_data(kbdev);
out:
	return ret;
}

/**
 * entry_find_large_page_to_reuse() - Find if the large page of previously parsed
 *                                    FW interface entry can be reused to store
 *                                    the contents of new FW interface entry.
 *
 * @kbdev: Kbase device structure
 * @virtual_start: Start of the virtual address range required for an entry allocation
 * @virtual_end: End of the virtual address range required for an entry allocation
 * @flags: Firmware entry flags for comparison with the reusable pages found
 * @phys: Pointer to the array of physical (tagged) addresses making up the new
 *        FW interface entry. It is an output parameter which would be made to
 *        point to an already existing array allocated for the previously parsed
 *        FW interface entry using large page(s). If no appropriate entry is
 *        found it is set to NULL.
 * @pma:  Pointer to a protected memory allocation. It is an output parameter
 *        which would be made to the protected memory allocation of a previously
 *        parsed FW interface entry using large page(s) from protected memory.
 *        If no appropriate entry is found it is set to NULL.
 * @num_pages: Number of pages requested.
 * @num_pages_aligned: This is an output parameter used to carry the number of 4KB pages
 *                     within the 2MB pages aligned allocation.
 * @is_small_page: This is an output flag used to select between the small and large page
 *                 to be used for the FW entry allocation.
 * @force_small_page: Use 4kB pages to allocate memory needed for FW loading
 *
 * Go through all the already initialized interfaces and find if a previously
 * allocated large page can be used to store contents of new FW interface entry.
 *
 * Return: true if a large page can be reused, false otherwise.
 */
static inline bool entry_find_large_page_to_reuse(struct kbase_device *kbdev,
						  const u32 virtual_start, const u32 virtual_end,
						  const u32 flags, struct tagged_addr **phys,
						  struct protected_memory_allocation ***pma,
						  u32 num_pages, u32 *num_pages_aligned,
						  bool *is_small_page, bool force_small_page)
{
	struct kbase_csf_firmware_interface *interface = NULL;
	struct kbase_csf_firmware_interface *target_interface = NULL;
	u32 virtual_diff_min = U32_MAX;
	bool reuse_large_page = false;

	CSTD_UNUSED(interface);
	CSTD_UNUSED(target_interface);
	CSTD_UNUSED(virtual_diff_min);

	*num_pages_aligned = num_pages;
	*is_small_page = true;
	*phys = NULL;
	*pma = NULL;

	if (force_small_page)
		goto out;

	/* If the section starts at 2MB aligned boundary,
	 * then use 2MB page(s) for it.
	 */
	if (!(virtual_start & (SZ_2M - 1))) {
		*num_pages_aligned =
			round_up(*num_pages_aligned, NUM_4K_PAGES_IN_2MB_PAGE);
		*is_small_page = false;
		goto out;
	}

	/* If the section doesn't lie within the same 2MB aligned boundary,
	 * then use 4KB pages as it would be complicated to use a 2MB page
	 * for such section.
	 */
	if ((virtual_start & ~(SZ_2M - 1)) != (virtual_end & ~(SZ_2M - 1)))
		goto out;

	/* Find the nearest 2MB aligned section which comes before the current
	 * section.
	 */
	list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
		const u32 virtual_diff = virtual_start - interface->virtual;

		if (interface->virtual > virtual_end)
			continue;

		if (interface->virtual & (SZ_2M - 1))
			continue;

		if ((virtual_diff < virtual_diff_min) && (interface->flags == flags)) {
			target_interface = interface;
			virtual_diff_min = virtual_diff;
		}
	}

	if (target_interface) {
		const u32 page_index = virtual_diff_min >> PAGE_SHIFT;

		if (page_index >= target_interface->num_pages_aligned)
			goto out;

		if (target_interface->phys)
			*phys = &target_interface->phys[page_index];

		if (target_interface->pma)
			*pma = &target_interface->pma[page_index / NUM_4K_PAGES_IN_2MB_PAGE];

		*is_small_page = false;
		reuse_large_page = true;
	}

out:
	return reuse_large_page;
}

/**
 * parse_memory_setup_entry() - Process an "interface memory setup" section
 *
 * @kbdev: Kbase device structure
 * @fw: The firmware image containing the section
 * @entry: Pointer to the start of the section
 * @size: Size (in bytes) of the section
 *
 * Read an "interface memory setup" section from the firmware image and create
 * the necessary memory region including the MMU page tables. If successful
 * the interface will be added to the kbase_device:csf.firmware_interfaces list.
 *
 * Return: 0 if successful, negative error code on failure
 */
static int parse_memory_setup_entry(struct kbase_device *kbdev,
				    const struct kbase_csf_mcu_fw *const fw, const u32 *entry,
				    unsigned int size)
{
	int ret = 0;
	const u32 flags = entry[0];
	const u32 virtual_start = entry[1];
	const u32 virtual_end = entry[2];
	const u32 data_start = entry[3];
	const u32 data_end = entry[4];
	u32 num_pages;
	u32 num_pages_aligned;
	char *name;
	void *name_entry;
	unsigned int name_len;
	struct tagged_addr *phys = NULL;
	struct kbase_csf_firmware_interface *interface = NULL;
	bool allocated_pages = false, protected_mode = false;
	unsigned long mem_flags = 0;
	u32 cache_mode = 0;
	struct protected_memory_allocation **pma = NULL;
	bool reuse_pages = false;
	bool is_small_page = true;
	bool force_small_page = false;

	if (data_end < data_start) {
		dev_err(kbdev->dev, "Firmware corrupt, data_end < data_start (0x%x<0x%x)\n",
				data_end, data_start);
		return -EINVAL;
	}
	if (virtual_end < virtual_start) {
		dev_err(kbdev->dev, "Firmware corrupt, virtual_end < virtual_start (0x%x<0x%x)\n",
				virtual_end, virtual_start);
		return -EINVAL;
	}
	if (data_end > fw->size) {
		dev_err(kbdev->dev, "Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx\n",
				data_end, fw->size);
		return -EINVAL;
	}

	if ((virtual_start & ~PAGE_MASK) != 0 ||
			(virtual_end & ~PAGE_MASK) != 0) {
		dev_err(kbdev->dev, "Firmware corrupt: virtual addresses not page aligned: 0x%x-0x%x\n",
				virtual_start, virtual_end);
		return -EINVAL;
	}

	if ((flags & CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS) != flags) {
		dev_err(kbdev->dev, "Firmware contains interface with unsupported flags (0x%x)\n",
				flags);
		return -EINVAL;
	}

	if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
		protected_mode = true;

	if (protected_mode && kbdev->csf.pma_dev == NULL) {
		dev_warn(kbdev->dev,
			"Protected memory allocator not found, Firmware protected mode entry will not be supported");
		return 0;
	}

	num_pages = (virtual_end - virtual_start)
		>> PAGE_SHIFT;

	if(protected_mode) {
		force_small_page = true;
		dev_warn(kbdev->dev, "Protected memory allocation requested for %u bytes (%u pages), serving with small pages and tight allocation.", (virtual_end - virtual_start), num_pages);
	}

retry_alloc:
	reuse_pages = entry_find_large_page_to_reuse(kbdev, virtual_start, virtual_end, flags,
						     &phys, &pma, num_pages, &num_pages_aligned,
						     &is_small_page, force_small_page);
	if (!reuse_pages)
		phys = kmalloc_array(num_pages_aligned, sizeof(*phys), GFP_KERNEL);

	if (!phys)
		return -ENOMEM;

	if (protected_mode) {
		if (!reuse_pages) {
			pma = kbase_csf_protected_memory_alloc(
				kbdev, phys, num_pages_aligned, is_small_page);
			if (!pma) {
				/* If we can't allocate sufficient memory for FW - bail out and leave protected execution unsupported by termintating the allocator. */
				dev_warn(kbdev->dev,
				"Protected memory allocation failed during FW initialization - Firmware protected mode entry will not be supported");
				kbase_csf_protected_memory_term(kbdev);
				kbdev->csf.pma_dev = NULL;
				kfree(phys);
				return 0;
			}
		} else if (WARN_ON(!pma)) {
			ret = -EINVAL;
			goto out;
		}
	} else {
		if (!reuse_pages) {
			ret = kbase_mem_pool_alloc_pages(
				kbase_mem_pool_group_select(kbdev, KBASE_MEM_GROUP_CSF_FW,
							    is_small_page),
				num_pages_aligned, phys, false, NULL);
		}
	}

	if (ret < 0) {
		dev_warn(
			kbdev->dev,
			"Failed to allocate %u physical pages for the firmware interface entry at VA 0x%x using %s ",
			num_pages_aligned, virtual_start,
			is_small_page ? "small pages" : "large page");
		WARN_ON(reuse_pages);
		if (!is_small_page) {
			dev_warn(kbdev->dev, "Retrying by using small pages");
			force_small_page = true;
			kfree(phys);
			goto retry_alloc;
		}
		goto out;
	}

	allocated_pages = true;
	load_fw_image_section(kbdev, fw->data, phys, num_pages, flags,
			data_start, data_end);

	/* Allocate enough memory for the struct kbase_csf_firmware_interface and
	 * the name of the interface.
	 */
	name_entry = (void *)entry + INTERFACE_ENTRY_NAME_OFFSET;
	name_len = strnlen(name_entry, size - INTERFACE_ENTRY_NAME_OFFSET);
	if (size < (INTERFACE_ENTRY_NAME_OFFSET + name_len + 1 + sizeof(u32))) {
		dev_err(kbdev->dev, "Memory setup entry too short to contain virtual_exe_start");
		ret = -EINVAL;
		goto out;
	}

	interface = kmalloc(sizeof(*interface) + name_len + 1, GFP_KERNEL);
	if (!interface) {
		ret = -ENOMEM;
		goto out;
	}
	name = (void *)(interface + 1);
	memcpy(name, name_entry, name_len);
	name[name_len] = 0;

	interface->name = name;
	interface->phys = phys;
	interface->reuse_pages = reuse_pages;
	interface->is_small_page = is_small_page;
	interface->num_pages = num_pages;
	interface->num_pages_aligned = num_pages_aligned;
	interface->virtual = virtual_start;
	interface->kernel_map = NULL;
	interface->flags = flags;
	interface->data_start = data_start;
	interface->data_end = data_end;
	interface->pma = pma;

	/* Discover the virtual execution address field after the end of the name
	 * field taking into account the NULL-termination character.
	 */
	interface->virtual_exe_start = *((u32 *)(name_entry + name_len + 1));

	mem_flags = convert_mem_flags(kbdev, flags, &cache_mode);

	if (flags & CSF_FIRMWARE_ENTRY_SHARED) {
		struct page **page_list;
		u32 i;
		pgprot_t cpu_map_prot;
		u32 mem_attr_index = KBASE_REG_MEMATTR_VALUE(mem_flags);

		/* Since SHARED memory type was used for mapping shared memory
		 * on GPU side, it can be mapped as cached on CPU side on both
		 * types of coherent platforms.
		 */
		if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) ||
		    (cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT)) {
			WARN_ON(mem_attr_index !=
					AS_MEMATTR_INDEX_SHARED);
			cpu_map_prot = PAGE_KERNEL;
		} else {
			WARN_ON(mem_attr_index !=
					AS_MEMATTR_INDEX_NON_CACHEABLE);
			cpu_map_prot = pgprot_writecombine(PAGE_KERNEL);
		}

		page_list = kmalloc_array(num_pages, sizeof(*page_list),
				GFP_KERNEL);
		if (!page_list) {
			ret = -ENOMEM;
			goto out;
		}

		for (i = 0; i < num_pages; i++)
			page_list[i] = as_page(phys[i]);

		interface->kernel_map = vmap(page_list, num_pages, VM_MAP,
				cpu_map_prot);

		kfree(page_list);

		if (!interface->kernel_map) {
			ret = -ENOMEM;
			goto out;
		}
	}

	/* Start location of the shared interface area is fixed and is
	 * specified in firmware spec, and so there shall only be a
	 * single entry with that start address.
	 */
	if (virtual_start == (KBASE_REG_ZONE_MCU_SHARED_BASE << PAGE_SHIFT))
		kbdev->csf.shared_interface = interface;

	list_add(&interface->node, &kbdev->csf.firmware_interfaces);

	if (!reuse_pages) {
		ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu,
						      virtual_start >> PAGE_SHIFT, phys,
						      num_pages_aligned, mem_flags,
						      KBASE_MEM_GROUP_CSF_FW, NULL, NULL);

		if (ret != 0) {
			dev_err(kbdev->dev, "Failed to insert firmware pages\n");
			/* The interface has been added to the list, so cleanup will
			 * be handled by firmware unloading
			 */
		}
	}

	dev_dbg(kbdev->dev, "Processed section '%s'", name);

	return ret;

out:
	if (allocated_pages) {
		if (!reuse_pages) {
			if (protected_mode) {
				kbase_csf_protected_memory_free(
					kbdev, pma, num_pages_aligned, is_small_page);
			} else {
				kbase_mem_pool_free_pages(
					kbase_mem_pool_group_select(
						kbdev, KBASE_MEM_GROUP_CSF_FW, is_small_page),
					num_pages_aligned, phys, false, false);
			}
		}
	}

	if (!reuse_pages)
		kfree(phys);

	kfree(interface);
	return ret;
}

/**
 * parse_timeline_metadata_entry() - Process a "timeline metadata" section
 *
 * Return: 0 if successful, negative error code on failure
 *
 * @kbdev: Kbase device structure
 * @fw:    Firmware image containing the section
 * @entry: Pointer to the section
 * @size:  Size (in bytes) of the section
 */
static int parse_timeline_metadata_entry(struct kbase_device *kbdev,
					 const struct kbase_csf_mcu_fw *const fw, const u32 *entry,
					 unsigned int size)
{
	const u32 data_start = entry[0];
	const u32 data_size = entry[1];
	const u32 data_end = data_start + data_size;
	const char *name = (char *)&entry[2];
	struct firmware_timeline_metadata *metadata;
	const unsigned int name_len =
		size - TL_METADATA_ENTRY_NAME_OFFSET;
	size_t allocation_size = sizeof(*metadata) + name_len + 1 + data_size;

	if (data_end > fw->size) {
		dev_err(kbdev->dev,
			"Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx",
			data_end, fw->size);
		return -EINVAL;
	}

	/* Allocate enough space for firmware_timeline_metadata,
	 * its name and the content.
	 */
	metadata = kmalloc(allocation_size, GFP_KERNEL);
	if (!metadata)
		return -ENOMEM;

	metadata->name = (char *)(metadata + 1);
	metadata->data = (char *)(metadata + 1) + name_len + 1;
	metadata->size = data_size;

	memcpy(metadata->name, name, name_len);
	metadata->name[name_len] = 0;

	/* Copy metadata's content. */
	memcpy(metadata->data, fw->data + data_start, data_size);

	list_add(&metadata->node, &kbdev->csf.firmware_timeline_metadata);

	dev_dbg(kbdev->dev, "Timeline metadata '%s'", metadata->name);

	return 0;
}

/**
 * parse_build_info_metadata_entry() - Process a "build info metadata" section
 * @kbdev: Kbase device structure
 * @fw:    Firmware image containing the section
 * @entry: Pointer to the section
 * @size:  Size (in bytes) of the section
 *
 * This prints the git SHA of the firmware on frimware load.
 *
 * Return: 0 if successful, negative error code on failure
 */
static int parse_build_info_metadata_entry(struct kbase_device *kbdev,
					   const struct kbase_csf_mcu_fw *const fw,
					   const u32 *entry, unsigned int size)
{
	const u32 meta_start_addr = entry[0];
	char *ptr = NULL;
	size_t sha_pattern_len = strlen(BUILD_INFO_GIT_SHA_PATTERN);

	/* Only print git SHA to avoid releasing sensitive information */
	ptr = strstr(fw->data + meta_start_addr, BUILD_INFO_GIT_SHA_PATTERN);
	/* Check that we won't overrun the found string  */
	if (ptr &&
	    strlen(ptr) >= BUILD_INFO_GIT_SHA_LEN + BUILD_INFO_GIT_DIRTY_LEN + sha_pattern_len) {
		char git_sha[BUILD_INFO_GIT_SHA_LEN + BUILD_INFO_GIT_DIRTY_LEN + 1];
		int i = 0;

		/* Move ptr to start of SHA */
		ptr += sha_pattern_len;
		for (i = 0; i < BUILD_INFO_GIT_SHA_LEN; i++) {
			/* Ensure that the SHA is made up of hex digits */
			if (!isxdigit(ptr[i]))
				break;

			git_sha[i] = ptr[i];
		}

		/* Check if the next char indicates git SHA is dirty */
		if (ptr[i] == ' ' || ptr[i] == '+') {
			git_sha[i] = ptr[i];
			i++;
		}
		git_sha[i] = '\0';

		memcpy(fw_git_sha, git_sha, BUILD_INFO_GIT_SHA_LEN);

		dev_info(kbdev->dev, "Mali firmware git_sha: %s\n", git_sha);
	} else
		dev_info(kbdev->dev, "Mali firmware git_sha not found or invalid\n");

	return 0;
}

/**
 * load_firmware_entry() - Process an entry from a firmware image
 *
 * @kbdev:  Kbase device
 * @fw:     Firmware image containing the entry
 * @offset: Byte offset within the image of the entry to load
 * @header: Header word of the entry
 *
 * Read an entry from a firmware image and do any necessary work (e.g. loading
 * the data into page accessible to the MCU).
 *
 * Unknown entries are ignored if the 'optional' flag is set within the entry,
 * otherwise the function will fail with -EINVAL
 *
 * Return: 0 if successful, negative error code on failure
 */
static int load_firmware_entry(struct kbase_device *kbdev, const struct kbase_csf_mcu_fw *const fw,
			       u32 offset, u32 header)
{
	const unsigned int type = entry_type(header);
	unsigned int size = entry_size(header);
	const bool optional = entry_optional(header);
	/* Update is used with configuration and tracebuffer entries to
	 * initiate a FIRMWARE_CONFIG_UPDATE, instead of triggering a
	 * silent reset.
	 */
	const bool updatable = entry_update(header);
	const u32 *entry = (void *)(fw->data + offset);

	if ((offset % sizeof(*entry)) || (size % sizeof(*entry))) {
		dev_err(kbdev->dev, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n",
				offset, size);
		return -EINVAL;
	}

	if (size < sizeof(*entry)) {
		dev_err(kbdev->dev, "Size field too small: %u\n", size);
		return -EINVAL;
	}

	/* Remove the header */
	entry++;
	size -= sizeof(*entry);

	switch (type) {
	case CSF_FIRMWARE_ENTRY_TYPE_INTERFACE:
		/* Interface memory setup */
		if (size < INTERFACE_ENTRY_NAME_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Interface memory setup entry too short (size=%u)\n",
					size);
			return -EINVAL;
		}
		return parse_memory_setup_entry(kbdev, fw, entry, size);
	case CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION:
		/* Configuration option */
		if (size < CONFIGURATION_ENTRY_NAME_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Configuration option entry too short (size=%u)\n",
					size);
			return -EINVAL;
		}
		return kbase_csf_firmware_cfg_option_entry_parse(
			kbdev, fw, entry, size, updatable);
	case CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER:
		/* Trace buffer */
		if (size < TRACE_BUFFER_ENTRY_NAME_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Trace Buffer entry too short (size=%u)\n",
				size);
			return -EINVAL;
		}
		return kbase_csf_firmware_parse_trace_buffer_entry(
			kbdev, entry, size, updatable);
	case CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA:
		/* Meta data section */
		if (size < TL_METADATA_ENTRY_NAME_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Timeline metadata entry too short (size=%u)\n",
				size);
			return -EINVAL;
		}
		return parse_timeline_metadata_entry(kbdev, fw, entry, size);
	case CSF_FIRMWARE_ENTRY_TYPE_BUILD_INFO_METADATA:
		if (size < BUILD_INFO_METADATA_SIZE_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Build info metadata entry too short (size=%u)\n",
				size);
			return -EINVAL;
		}
		return parse_build_info_metadata_entry(kbdev, fw, entry, size);
	case CSF_FIRMWARE_ENTRY_TYPE_FUNC_CALL_LIST:
		/* Function call list section */
		if (size < FUNC_CALL_LIST_ENTRY_NAME_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "Function call list entry too short (size=%u)\n",
				size);
			return -EINVAL;
		}
		kbase_csf_firmware_log_parse_logging_call_list_entry(kbdev, entry);
		return 0;
	case CSF_FIRMWARE_ENTRY_TYPE_CORE_DUMP:
		/* Core Dump section */
		if (size < CORE_DUMP_ENTRY_START_ADDR_OFFSET + sizeof(*entry)) {
			dev_err(kbdev->dev, "FW Core dump entry too short (size=%u)\n", size);
			return -EINVAL;
		}
		return kbase_csf_firmware_core_dump_entry_parse(kbdev, entry);
	default:
		if (!optional) {
			dev_err(kbdev->dev, "Unsupported non-optional entry type %u in firmware\n",
				type);
			return -EINVAL;
		}
	}

	return 0;
}

static void free_global_iface(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;

	if (iface->groups) {
		unsigned int gid;

		for (gid = 0; gid < iface->group_num; ++gid)
			kfree(iface->groups[gid].streams);

		kfree(iface->groups);
		iface->groups = NULL;
	}
}

/**
 * iface_gpu_va_to_cpu - Convert a GPU VA address within the shared interface
 *                       region to a CPU address, using the existing mapping.
 * @kbdev: Device pointer
 * @gpu_va: GPU VA to convert
 *
 * Return: A CPU pointer to the location within the shared interface region, or
 *         NULL on failure.
 */
static inline void *iface_gpu_va_to_cpu(struct kbase_device *kbdev, u32 gpu_va)
{
	struct kbase_csf_firmware_interface *interface =
		kbdev->csf.shared_interface;
	u8 *kernel_base = interface->kernel_map;

	if (gpu_va < interface->virtual ||
	    gpu_va >= interface->virtual + interface->num_pages * PAGE_SIZE) {
		dev_err(kbdev->dev,
				"Interface address 0x%x not within %u-page region at 0x%x",
				gpu_va, interface->num_pages,
				interface->virtual);
		return NULL;
	}

	return (void *)(kernel_base + (gpu_va - interface->virtual));
}

static int parse_cmd_stream_info(struct kbase_device *kbdev,
		struct kbase_csf_cmd_stream_info *sinfo,
		u32 *stream_base)
{
	sinfo->kbdev = kbdev;
	sinfo->features = stream_base[STREAM_FEATURES/4];
	sinfo->input = iface_gpu_va_to_cpu(kbdev,
			stream_base[STREAM_INPUT_VA/4]);
	sinfo->output = iface_gpu_va_to_cpu(kbdev,
			stream_base[STREAM_OUTPUT_VA/4]);

	if (sinfo->input == NULL || sinfo->output == NULL)
		return -EINVAL;

	return 0;
}

static int parse_cmd_stream_group_info(struct kbase_device *kbdev,
		struct kbase_csf_cmd_stream_group_info *ginfo,
		u32 *group_base, u32 group_stride)
{
	unsigned int sid;

	ginfo->kbdev = kbdev;
	ginfo->features = group_base[GROUP_FEATURES/4];
	ginfo->input = iface_gpu_va_to_cpu(kbdev,
			group_base[GROUP_INPUT_VA/4]);
	ginfo->output = iface_gpu_va_to_cpu(kbdev,
			group_base[GROUP_OUTPUT_VA/4]);

	if (ginfo->input == NULL || ginfo->output == NULL)
		return -ENOMEM;

	ginfo->suspend_size = group_base[GROUP_SUSPEND_SIZE/4];
	ginfo->protm_suspend_size = group_base[GROUP_PROTM_SUSPEND_SIZE/4];
	ginfo->stream_num = group_base[GROUP_STREAM_NUM/4];

	if (ginfo->stream_num < MIN_SUPPORTED_STREAMS_PER_GROUP ||
			ginfo->stream_num > MAX_SUPPORTED_STREAMS_PER_GROUP) {
		dev_err(kbdev->dev, "CSG with %u CSs out of range %u-%u",
				ginfo->stream_num,
				MIN_SUPPORTED_STREAMS_PER_GROUP,
				MAX_SUPPORTED_STREAMS_PER_GROUP);
		return -EINVAL;
	}

	ginfo->stream_stride = group_base[GROUP_STREAM_STRIDE/4];

	if (ginfo->stream_num * ginfo->stream_stride > group_stride) {
		dev_err(kbdev->dev,
				"group stride of 0x%x exceeded by %u CSs with stride 0x%x",
				group_stride, ginfo->stream_num,
				ginfo->stream_stride);
		return -EINVAL;
	}

	ginfo->streams = kmalloc_array(ginfo->stream_num,
			sizeof(*ginfo->streams), GFP_KERNEL);

	if (!ginfo->streams)
		return -ENOMEM;

	for (sid = 0; sid < ginfo->stream_num; sid++) {
		int err;
		u32 *stream_base = group_base + (STREAM_CONTROL_0 +
				ginfo->stream_stride * sid) / 4;

		err = parse_cmd_stream_info(kbdev, &ginfo->streams[sid],
				stream_base);
		if (err < 0) {
			/* caller will free the memory for CSs array */
			return err;
		}
	}

	return 0;
}

static u32 get_firmware_version(struct kbase_device *kbdev)
{
	struct kbase_csf_firmware_interface *interface =
		kbdev->csf.shared_interface;
	u32 *shared_info = interface->kernel_map;

	return shared_info[GLB_VERSION/4];
}

static int parse_capabilities(struct kbase_device *kbdev)
{
	struct kbase_csf_firmware_interface *interface =
		kbdev->csf.shared_interface;
	u32 *shared_info = interface->kernel_map;
	struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
	unsigned int gid;

	/* All offsets are in bytes, so divide by 4 for access via a u32 pointer
	 */

	/* The version number of the global interface is expected to be a
	 * non-zero value. If it's not, the firmware may not have booted.
	 */
	iface->version = get_firmware_version(kbdev);
	if (!iface->version) {
		dev_err(kbdev->dev, "Version check failed. Firmware may have failed to boot.");
		return -EINVAL;
	}


	iface->kbdev = kbdev;
	iface->features = shared_info[GLB_FEATURES/4];
	iface->input = iface_gpu_va_to_cpu(kbdev, shared_info[GLB_INPUT_VA/4]);
	iface->output = iface_gpu_va_to_cpu(kbdev,
			shared_info[GLB_OUTPUT_VA/4]);

	if (iface->input == NULL || iface->output == NULL)
		return -ENOMEM;

	iface->group_num = shared_info[GLB_GROUP_NUM/4];

	if (iface->group_num < MIN_SUPPORTED_CSGS ||
			iface->group_num > MAX_SUPPORTED_CSGS) {
		dev_err(kbdev->dev,
				"Interface containing %u CSGs outside of range %u-%u",
				iface->group_num, MIN_SUPPORTED_CSGS,
				MAX_SUPPORTED_CSGS);
		return -EINVAL;
	}

	iface->group_stride = shared_info[GLB_GROUP_STRIDE/4];
	iface->prfcnt_size = shared_info[GLB_PRFCNT_SIZE/4];

	if (iface->version >= kbase_csf_interface_version(1, 1, 0))
		iface->instr_features = shared_info[GLB_INSTR_FEATURES / 4];
	else
		iface->instr_features = 0;

	if ((GROUP_CONTROL_0 +
		(unsigned long)iface->group_num * iface->group_stride) >
			(interface->num_pages * PAGE_SIZE)) {
		dev_err(kbdev->dev,
				"interface size of %u pages exceeded by %u CSGs with stride 0x%x",
				interface->num_pages, iface->group_num,
				iface->group_stride);
		return -EINVAL;
	}

	WARN_ON(iface->groups);

	iface->groups = kcalloc(iface->group_num, sizeof(*iface->groups),
				GFP_KERNEL);
	if (!iface->groups)
		return -ENOMEM;

	for (gid = 0; gid < iface->group_num; gid++) {
		int err;
		u32 *group_base = shared_info + (GROUP_CONTROL_0 +
				iface->group_stride * gid) / 4;

		err = parse_cmd_stream_group_info(kbdev, &iface->groups[gid],
				group_base, iface->group_stride);
		if (err < 0) {
			free_global_iface(kbdev);
			return err;
		}
	}

	return 0;
}

static inline void access_firmware_memory_common(struct kbase_device *kbdev,
		struct kbase_csf_firmware_interface *interface, u32 offset_bytes,
		u32 *value, const bool read)
{
	u32 page_num = offset_bytes >> PAGE_SHIFT;
	u32 offset_in_page = offset_bytes & ~PAGE_MASK;
	struct page *target_page = as_page(interface->phys[page_num]);
	uintptr_t cpu_addr = (uintptr_t)kbase_kmap_atomic(target_page);
	u32 *addr = (u32 *)(cpu_addr + offset_in_page);

	if (read) {
		kbase_sync_single_for_device(kbdev,
			kbase_dma_addr_from_tagged(interface->phys[page_num]) + offset_in_page,
			sizeof(u32), DMA_BIDIRECTIONAL);
		*value = *addr;
	} else {
		*addr = *value;
		kbase_sync_single_for_device(kbdev,
			kbase_dma_addr_from_tagged(interface->phys[page_num]) + offset_in_page,
			sizeof(u32), DMA_BIDIRECTIONAL);
	}

	kbase_kunmap_atomic((u32 *)cpu_addr);
}

static inline void access_firmware_memory(struct kbase_device *kbdev,
	u32 gpu_addr, u32 *value, const bool read)
{
	struct kbase_csf_firmware_interface *interface, *access_interface = NULL;
	u32 offset_bytes = 0;

	list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
		if ((gpu_addr >= interface->virtual) &&
			(gpu_addr < interface->virtual + (interface->num_pages << PAGE_SHIFT))) {
			offset_bytes = gpu_addr - interface->virtual;
			access_interface = interface;
			break;
		}
	}

	if (access_interface)
		access_firmware_memory_common(kbdev, access_interface, offset_bytes, value, read);
	else
		dev_warn(kbdev->dev, "Invalid GPU VA %x passed", gpu_addr);
}

static inline void access_firmware_memory_exe(struct kbase_device *kbdev,
	u32 gpu_addr, u32 *value, const bool read)
{
	struct kbase_csf_firmware_interface *interface, *access_interface = NULL;
	u32 offset_bytes = 0;

	list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
		if ((gpu_addr >= interface->virtual_exe_start) &&
			(gpu_addr < interface->virtual_exe_start +
				(interface->num_pages << PAGE_SHIFT))) {
			offset_bytes = gpu_addr - interface->virtual_exe_start;
			access_interface = interface;

			/* If there's an overlap in execution address range between a moved and a
			 * non-moved areas, always prefer the moved one. The idea is that FW may
			 * move sections around during init time, but after the layout is settled,
			 * any moved sections are going to override non-moved areas at the same
			 * location.
			 */
			if (interface->virtual_exe_start != interface->virtual)
				break;
		}
	}

	if (access_interface)
		access_firmware_memory_common(kbdev, access_interface, offset_bytes, value, read);
	else
		dev_warn(kbdev->dev, "Invalid GPU VA %x passed", gpu_addr);
}

void kbase_csf_read_firmware_memory(struct kbase_device *kbdev,
	u32 gpu_addr, u32 *value)
{
	access_firmware_memory(kbdev, gpu_addr, value, true);
}

void kbase_csf_update_firmware_memory(struct kbase_device *kbdev,
	u32 gpu_addr, u32 value)
{
	access_firmware_memory(kbdev, gpu_addr, &value, false);
}

void kbase_csf_read_firmware_memory_exe(struct kbase_device *kbdev,
	u32 gpu_addr, u32 *value)
{
	access_firmware_memory_exe(kbdev, gpu_addr, value, true);
}

void kbase_csf_update_firmware_memory_exe(struct kbase_device *kbdev,
	u32 gpu_addr, u32 value)
{
	access_firmware_memory_exe(kbdev, gpu_addr, &value, false);
}

void kbase_csf_firmware_cs_input(
	const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
	const u32 value)
{
	const struct kbase_device * const kbdev = info->kbdev;

	dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x\n", offset, value);
	input_page_write(info->input, offset, value);
}

u32 kbase_csf_firmware_cs_input_read(
	const struct kbase_csf_cmd_stream_info *const info,
	const u32 offset)
{
	const struct kbase_device * const kbdev = info->kbdev;
	u32 const val = input_page_read(info->input, offset);

	dev_dbg(kbdev->dev, "cs input r: reg %08x val %08x\n", offset, val);
	return val;
}

void kbase_csf_firmware_cs_input_mask(
	const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
	const u32 value, const u32 mask)
{
	const struct kbase_device * const kbdev = info->kbdev;

	dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x mask %08x\n",
			offset, value, mask);
	input_page_partial_write(info->input, offset, value, mask);
}

u32 kbase_csf_firmware_cs_output(
	const struct kbase_csf_cmd_stream_info *const info, const u32 offset)
{
	const struct kbase_device * const kbdev = info->kbdev;
	u32 const val = output_page_read(info->output, offset);

	dev_dbg(kbdev->dev, "cs output r: reg %08x val %08x\n", offset, val);
	return val;
}

void kbase_csf_firmware_csg_input(
	const struct kbase_csf_cmd_stream_group_info *const info,
	const u32 offset, const u32 value)
{
	const struct kbase_device * const kbdev = info->kbdev;

	dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x\n",
			offset, value);
	input_page_write(info->input, offset, value);
}

u32 kbase_csf_firmware_csg_input_read(
	const struct kbase_csf_cmd_stream_group_info *const info,
	const u32 offset)
{
	const struct kbase_device * const kbdev = info->kbdev;
	u32 const val = input_page_read(info->input, offset);

	dev_dbg(kbdev->dev, "csg input r: reg %08x val %08x\n", offset, val);
	return val;
}

void kbase_csf_firmware_csg_input_mask(
	const struct kbase_csf_cmd_stream_group_info *const info,
	const u32 offset, const u32 value, const u32 mask)
{
	const struct kbase_device * const kbdev = info->kbdev;

	dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x mask %08x\n",
			offset, value, mask);
	input_page_partial_write(info->input, offset, value, mask);
}

u32 kbase_csf_firmware_csg_output(
	const struct kbase_csf_cmd_stream_group_info *const info,
	const u32 offset)
{
	const struct kbase_device * const kbdev = info->kbdev;
	u32 const val = output_page_read(info->output, offset);

	dev_dbg(kbdev->dev, "csg output r: reg %08x val %08x\n", offset, val);
	return val;
}
KBASE_EXPORT_TEST_API(kbase_csf_firmware_csg_output);

void kbase_csf_firmware_global_input(
	const struct kbase_csf_global_iface *const iface, const u32 offset,
	const u32 value)
{
	const struct kbase_device * const kbdev = iface->kbdev;

	dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x\n", offset, value);
	input_page_write(iface->input, offset, value);
}
KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_input);

void kbase_csf_firmware_global_input_mask(
	const struct kbase_csf_global_iface *const iface, const u32 offset,
	const u32 value, const u32 mask)
{
	const struct kbase_device * const kbdev = iface->kbdev;

	dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x mask %08x\n",
			offset, value, mask);
	input_page_partial_write(iface->input, offset, value, mask);
}
KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_input_mask);

u32 kbase_csf_firmware_global_input_read(
	const struct kbase_csf_global_iface *const iface, const u32 offset)
{
	const struct kbase_device * const kbdev = iface->kbdev;
	u32 const val = input_page_read(iface->input, offset);

	dev_dbg(kbdev->dev, "glob input r: reg %08x val %08x\n", offset, val);
	return val;
}

u32 kbase_csf_firmware_global_output(
	const struct kbase_csf_global_iface *const iface, const u32 offset)
{
	const struct kbase_device * const kbdev = iface->kbdev;
	u32 const val = output_page_read(iface->output, offset);

	dev_dbg(kbdev->dev, "glob output r: reg %08x val %08x\n", offset, val);
	return val;
}
KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_output);

/**
 * csf_doorbell_offset() - Calculate the offset to the CSF host doorbell
 * @doorbell_nr: Doorbell number
 *
 * Return: CSF host register offset for the specified doorbell number.
 */
static u32 csf_doorbell_offset(int doorbell_nr)
{
	WARN_ON(doorbell_nr < 0);
	WARN_ON(doorbell_nr >= CSF_NUM_DOORBELL);

	return CSF_HW_DOORBELL_PAGE_OFFSET + (doorbell_nr * CSF_HW_DOORBELL_PAGE_SIZE);
}

void kbase_csf_ring_doorbell(struct kbase_device *kbdev, int doorbell_nr)
{
	kbase_reg_write(kbdev, csf_doorbell_offset(doorbell_nr), (u32)1);
}
EXPORT_SYMBOL(kbase_csf_ring_doorbell);

/**
 * handle_internal_firmware_fatal - Handler for CS internal firmware fault.
 *
 * @kbdev:  Pointer to kbase device
 *
 * Report group fatal error to user space for all GPU command queue groups
 * in the device, terminate them and reset GPU.
 */
static void handle_internal_firmware_fatal(struct kbase_device *const kbdev)
{
	int as;

	kbasep_platform_event_core_dump(kbdev, "Internal firmware error");

	for (as = 0; as < kbdev->nr_hw_address_spaces; as++) {
		unsigned long flags;
		struct kbase_context *kctx;
		struct kbase_fault fault;

		if (as == MCU_AS_NR)
			continue;

		/* Only handle the fault for an active address space. Lock is
		 * taken here to atomically get reference to context in an
		 * active address space and retain its refcount.
		 */
		spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
		kctx = kbase_ctx_sched_as_to_ctx_nolock(kbdev, as);

		if (kctx) {
			kbase_ctx_sched_retain_ctx_refcount(kctx);
			spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
		} else {
			spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
			continue;
		}

		fault = (struct kbase_fault) {
			.status = GPU_EXCEPTION_TYPE_SW_FAULT_1,
		};

		kbase_csf_ctx_handle_fault(kctx, &fault);
		kbase_ctx_sched_release_ctx_lock(kctx);
	}

	if (kbase_prepare_to_reset_gpu(kbdev,
				       RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
		kbase_reset_gpu(kbdev);
}

/**
 * firmware_error_worker - Worker function for handling firmware internal error
 *
 * @data: Pointer to a work_struct embedded in kbase device.
 *
 * Handle the CS internal firmware error
 */
static void firmware_error_worker(struct work_struct *const data)
{
	struct kbase_device *const kbdev =
		container_of(data, struct kbase_device, csf.fw_error_work);

	handle_internal_firmware_fatal(kbdev);
}

static bool global_request_complete(struct kbase_device *const kbdev,
				    u32 const req_mask)
{
	struct kbase_csf_global_iface *global_iface =
				&kbdev->csf.global_iface;
	bool complete = false;
	unsigned long flags;

	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	if ((kbase_csf_firmware_global_output(global_iface, GLB_ACK) &
	     req_mask) ==
	    (kbase_csf_firmware_global_input_read(global_iface, GLB_REQ) &
	     req_mask))
		complete = true;

	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	return complete;
}

static int wait_for_global_request_with_timeout(struct kbase_device *const kbdev,
						u32 const req_mask, unsigned int timeout_ms)
{
	const long wait_timeout = kbase_csf_timeout_in_jiffies(timeout_ms);
	long remaining;
	int err = 0;

	remaining = wait_event_timeout(kbdev->csf.event_wait,
				       global_request_complete(kbdev, req_mask),
				       wait_timeout);

	if (!remaining) {
		dev_warn(kbdev->dev,
			 "[%llu] Timeout (%d ms) waiting for global request %x to complete",
			 kbase_backend_get_cycle_cnt(kbdev), timeout_ms, req_mask);
		err = -ETIMEDOUT;

	}

	return err;
}

static int wait_for_global_request(struct kbase_device *const kbdev, u32 const req_mask)
{
	return wait_for_global_request_with_timeout(kbdev, req_mask, kbdev->csf.fw_timeout_ms);
}

static void set_global_request(
	const struct kbase_csf_global_iface *const global_iface,
	u32 const req_mask)
{
	u32 glb_req;

	kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);

	glb_req = kbase_csf_firmware_global_output(global_iface, GLB_ACK);
	glb_req ^= req_mask;
	kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, glb_req,
					     req_mask);
}

static void enable_endpoints_global(
	const struct kbase_csf_global_iface *const global_iface,
	u64 const shader_core_mask)
{
	kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_LO,
		shader_core_mask & U32_MAX);
	kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_HI,
		shader_core_mask >> 32);

	set_global_request(global_iface, GLB_REQ_CFG_ALLOC_EN_MASK);
}

static void enable_shader_poweroff_timer(struct kbase_device *const kbdev,
	const struct kbase_csf_global_iface *const global_iface)
{
	u32 pwroff_reg;

	if (kbdev->csf.firmware_hctl_core_pwr)
		pwroff_reg =
		    GLB_PWROFF_TIMER_TIMER_SOURCE_SET(DISABLE_GLB_PWROFF_TIMER,
			       GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
	else
		pwroff_reg = kbdev->csf.mcu_core_pwroff_dur_count;

	kbase_csf_firmware_global_input(global_iface, GLB_PWROFF_TIMER,
					pwroff_reg);

	kbase_csf_firmware_global_input_mask(global_iface, GLB_PWROFF_TIMER_CONFIG,
					     kbdev->csf.mcu_core_pwroff_dur_count_modifier,
					     GLB_PWROFF_TIMER_CONFIG_NO_MODIFIER_MASK);

	set_global_request(global_iface, GLB_REQ_CFG_PWROFF_TIMER_MASK);

	/* Save the programed reg value in its shadow field */
	kbdev->csf.mcu_core_pwroff_reg_shadow = pwroff_reg;

	dev_dbg(kbdev->dev, "GLB_PWROFF_TIMER set to 0x%.8x\n", pwroff_reg);
}

static void set_timeout_global(
	const struct kbase_csf_global_iface *const global_iface,
	u64 const timeout)
{
	kbase_csf_firmware_global_input(global_iface, GLB_PROGRESS_TIMER,
		timeout / GLB_PROGRESS_TIMER_TIMEOUT_SCALE);

	set_global_request(global_iface, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
}

static void enable_gpu_idle_timer(struct kbase_device *const kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;

	kbase_csf_scheduler_spin_lock_assert_held(kbdev);

	kbase_csf_firmware_global_input(global_iface, GLB_IDLE_TIMER,
					kbdev->csf.gpu_idle_dur_count);

	kbase_csf_firmware_global_input_mask(global_iface, GLB_IDLE_TIMER_CONFIG,
					     kbdev->csf.gpu_idle_dur_count_modifier,
					     GLB_IDLE_TIMER_CONFIG_NO_MODIFIER_MASK);

	kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, GLB_REQ_REQ_IDLE_ENABLE,
					     GLB_REQ_IDLE_ENABLE_MASK);
	dev_dbg(kbdev->dev, "Enabling GPU idle timer with count-value: 0x%.8x",
		kbdev->csf.gpu_idle_dur_count);
}

static bool global_debug_request_complete(struct kbase_device *const kbdev, u32 const req_mask)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	bool complete = false;
	unsigned long flags;

	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	if ((kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK) & req_mask) ==
	    (kbase_csf_firmware_global_input_read(global_iface, GLB_DEBUG_REQ) & req_mask))
		complete = true;

	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	return complete;
}

static void set_global_debug_request(const struct kbase_csf_global_iface *const global_iface,
				     u32 const req_mask)
{
	u32 glb_debug_req;

	kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);

	glb_debug_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
	glb_debug_req ^= req_mask;

	kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_debug_req, req_mask);
}

static void request_fw_core_dump(
	const struct kbase_csf_global_iface *const global_iface)
{
	uint32_t run_mode = GLB_DEBUG_REQ_RUN_MODE_SET(0, GLB_DEBUG_RUN_MODE_TYPE_CORE_DUMP);

	set_global_debug_request(global_iface, GLB_DEBUG_REQ_DEBUG_RUN_MASK | run_mode);

	set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);
}

int kbase_csf_firmware_req_core_dump(struct kbase_device *const kbdev)
{
	const struct kbase_csf_global_iface *const global_iface =
		&kbdev->csf.global_iface;
	unsigned long flags;
	int ret;

	/* Serialize CORE_DUMP requests. */
	mutex_lock(&kbdev->csf.reg_lock);

	/* Update GLB_REQ with CORE_DUMP request and make firmware act on it. */
	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	request_fw_core_dump(global_iface);
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	/* Wait for firmware to acknowledge completion of the CORE_DUMP request. */
	ret = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);
	if (!ret)
		WARN_ON(!global_debug_request_complete(kbdev, GLB_DEBUG_REQ_DEBUG_RUN_MASK));

	mutex_unlock(&kbdev->csf.reg_lock);

	return ret;
}

/**
 * kbasep_enable_rtu - Enable Ray Tracing Unit on powering up shader core
 *
 * @kbdev:     The kbase device structure of the device
 *
 * This function needs to be called to enable the Ray Tracing Unit
 * by writing SHADER_PWRFEATURES only when host controls shader cores power.
 */
static void kbasep_enable_rtu(struct kbase_device *kbdev)
{
	const u32 gpu_id = kbdev->gpu_props.props.raw_props.gpu_id;

	if (gpu_id < GPU_ID2_PRODUCT_MAKE(12, 8, 3, 0))
		return;

	if (kbdev->csf.firmware_hctl_core_pwr)
		kbase_reg_write(kbdev, GPU_CONTROL_REG(SHADER_PWRFEATURES), 1);
}

static void global_init(struct kbase_device *const kbdev, u64 core_mask)
{
	u32 const ack_irq_mask =
		GLB_ACK_IRQ_MASK_CFG_ALLOC_EN_MASK | GLB_ACK_IRQ_MASK_PING_MASK |
		GLB_ACK_IRQ_MASK_CFG_PROGRESS_TIMER_MASK | GLB_ACK_IRQ_MASK_PROTM_ENTER_MASK |
		GLB_ACK_IRQ_MASK_PROTM_EXIT_MASK | GLB_ACK_IRQ_MASK_FIRMWARE_CONFIG_UPDATE_MASK |
		GLB_ACK_IRQ_MASK_CFG_PWROFF_TIMER_MASK | GLB_ACK_IRQ_MASK_IDLE_EVENT_MASK |
		GLB_REQ_DEBUG_CSF_REQ_MASK | GLB_ACK_IRQ_MASK_IDLE_ENABLE_MASK;

	const struct kbase_csf_global_iface *const global_iface =
		&kbdev->csf.global_iface;
	unsigned long flags;

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	/* If the power_policy will grant host control over FW PM, we need to turn on the SC rail*/
	if (kbdev->csf.firmware_hctl_core_pwr) {
		queue_work(system_highpri_wq, &kbdev->pm.backend.sc_rails_on_work);
	}
#endif

	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	kbasep_enable_rtu(kbdev);

	/* Update shader core allocation enable mask */
	enable_endpoints_global(global_iface, core_mask);
	enable_shader_poweroff_timer(kbdev, global_iface);

#ifndef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	/* The GPU idle timer is always enabled for simplicity. Checks will be
	 * done before scheduling the GPU idle worker to see if it is
	 * appropriate for the current power policy.
	 */
	enable_gpu_idle_timer(kbdev);
#endif

	set_timeout_global(global_iface, kbase_csf_timeout_get(kbdev));

	/* Unmask the interrupts */
	kbase_csf_firmware_global_input(global_iface,
		GLB_ACK_IRQ_MASK, ack_irq_mask);

#if IS_ENABLED(CONFIG_MALI_CORESIGHT)
	/* Enable FW MCU read/write debug interfaces */
	kbase_csf_firmware_global_input_mask(
		global_iface, GLB_DEBUG_ACK_IRQ_MASK,
		GLB_DEBUG_REQ_FW_AS_READ_MASK | GLB_DEBUG_REQ_FW_AS_WRITE_MASK,
		GLB_DEBUG_REQ_FW_AS_READ_MASK | GLB_DEBUG_REQ_FW_AS_WRITE_MASK);
#endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */

	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);

	kbase_csf_scheduler_spin_unlock(kbdev, flags);
}

/**
 * global_init_on_boot - Sends a global request to control various features.
 *
 * @kbdev: Instance of a GPU platform device that implements a CSF interface
 *
 * Currently only the request to enable endpoints and timeout for GPU progress
 * timer is sent.
 *
 * Return: 0 on success, or negative on failure.
 */
static int global_init_on_boot(struct kbase_device *const kbdev)
{
	unsigned long flags;
	u64 core_mask;

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
	core_mask = kbase_pm_ca_get_core_mask(kbdev);
	kbdev->csf.firmware_hctl_core_pwr =
				kbase_pm_no_mcu_core_pwroff(kbdev);
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);

	global_init(kbdev, core_mask);

	return wait_for_global_request(kbdev, CSF_GLB_REQ_CFG_MASK);
}

void kbase_csf_firmware_global_reinit(struct kbase_device *kbdev,
				      u64 core_mask)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);

	kbdev->csf.glb_init_request_pending = true;
	kbdev->csf.firmware_hctl_core_pwr =
				kbase_pm_no_mcu_core_pwroff(kbdev);
	global_init(kbdev, core_mask);
}

bool kbase_csf_firmware_global_reinit_complete(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
#ifndef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	WARN_ON(!kbdev->csf.glb_init_request_pending);
#endif

	if (global_request_complete(kbdev, CSF_GLB_REQ_CFG_MASK))
		kbdev->csf.glb_init_request_pending = false;

	return !kbdev->csf.glb_init_request_pending;
}

void kbase_csf_firmware_update_core_attr(struct kbase_device *kbdev,
		bool update_core_pwroff_timer, bool update_core_mask, u64 core_mask)
{
	unsigned long flags;

	lockdep_assert_held(&kbdev->hwaccess_lock);

	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	if (update_core_mask)
		enable_endpoints_global(&kbdev->csf.global_iface, core_mask);
	if (update_core_pwroff_timer)
		enable_shader_poweroff_timer(kbdev, &kbdev->csf.global_iface);

	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);
}

bool kbase_csf_firmware_core_attr_updated(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);

	return global_request_complete(kbdev, GLB_REQ_CFG_ALLOC_EN_MASK |
					      GLB_REQ_CFG_PWROFF_TIMER_MASK);
}

/**
 * kbase_csf_firmware_reload_worker() - reload the fw image and re-enable the MCU
 * @work: CSF Work item for reloading the firmware.
 *
 * This helper function will reload the firmware image and re-enable the MCU.
 * It is supposed to be called after MCU(GPU) has been reset.
 * Unlike the initial boot the firmware binary image is not parsed completely.
 * Only the data sections, which were loaded in memory during the initial boot,
 * are re-initialized either by zeroing them or copying their data from the
 * firmware binary image. The memory allocation for the firmware pages and
 * MMU programming is not needed for the reboot, presuming the firmware binary
 * file on the filesystem would not change.
 */
static void kbase_csf_firmware_reload_worker(struct work_struct *work)
{
	struct kbase_device *kbdev = container_of(work, struct kbase_device,
						  csf.firmware_reload_work);
	int err;

	dev_info(kbdev->dev, "reloading firmware");

	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_RELOADING(kbdev, kbase_backend_get_cycle_cnt(kbdev));

	/* Reload just the data sections from firmware binary image */
	err = reload_fw_image(kbdev);
	if (err)
		return;

	kbase_csf_tl_reader_reset(&kbdev->timeline->csf_tl_reader);

	err = kbasep_platform_fw_config_init(kbdev);
	if (WARN_ON(err))
		return;

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	err = kbase_csf_firmware_cfg_enable_host_ctrl_sc_rails(kbdev);
	if (WARN_ON(err))
		return;
#endif

	err = kbase_csf_firmware_cfg_fw_wa_enable(kbdev);
	if (WARN_ON(err))
		return;

	/* Reboot the firmware */
	kbase_csf_firmware_enable_mcu(kbdev);
}

void kbase_csf_firmware_trigger_reload(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);

	kbdev->csf.firmware_reloaded = false;

	if (kbdev->csf.firmware_reload_needed) {
		kbdev->csf.firmware_reload_needed = false;
		queue_work(system_highpri_wq, &kbdev->csf.firmware_reload_work);
	} else {
		kbase_csf_firmware_enable_mcu(kbdev);
	}
}

void kbase_csf_firmware_reload_completed(struct kbase_device *kbdev)
{
	u32 version;

	lockdep_assert_held(&kbdev->hwaccess_lock);

	if (unlikely(!kbdev->csf.firmware_inited))
		return;

	/* Check firmware rebooted properly: we do not expect
	 * the version number to change with a running reboot.
	 */
	version = get_firmware_version(kbdev);

	if (version != kbdev->csf.global_iface.version)
		dev_err(kbdev->dev, "Version check failed in firmware reboot.");

	KBASE_KTRACE_ADD(kbdev, CSF_FIRMWARE_REBOOT, NULL, 0u);

	/* Tell MCU state machine to transit to next state */
	kbdev->csf.firmware_reloaded = true;
	kbase_pm_update_state(kbdev);
}

static u32 convert_dur_to_idle_count(struct kbase_device *kbdev, const u32 dur_ns, u32 *modifier)
{
#define MICROSECONDS_PER_SECOND 1000000u
#define HYSTERESIS_VAL_UNIT_SHIFT (10)
	/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
	u64 freq = arch_timer_get_cntfrq();
	u64 dur_val = dur_ns;
	u32 cnt_val_u32, reg_val_u32;
	bool src_system_timestamp = freq > 0;

	if (!src_system_timestamp) {
		/* Get the cycle_counter source alternative */
		spin_lock(&kbdev->pm.clk_rtm.lock);
		if (kbdev->pm.clk_rtm.clks[0])
			freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
		else
			dev_warn(kbdev->dev, "No GPU clock, unexpected intregration issue!");
		spin_unlock(&kbdev->pm.clk_rtm.lock);

		dev_info(
			kbdev->dev,
			"Can't get the timestamp frequency, use cycle counter format with firmware idle hysteresis!");
	}

	/* Formula for dur_val = (dur/1e9) * freq_HZ) */
	dur_val = dur_val * freq;
	dur_val = div_u64(dur_val, NSEC_PER_SEC);
	if (dur_val < S32_MAX) {
		*modifier = 1;
	} else {
		dur_val = dur_val >> HYSTERESIS_VAL_UNIT_SHIFT;
		*modifier = 0;
	}

	/* Interface limits the value field to S32_MAX */
	cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;

	reg_val_u32 = GLB_IDLE_TIMER_TIMEOUT_SET(0, cnt_val_u32);
	/* add the source flag */
	reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(
		reg_val_u32, (src_system_timestamp ? GLB_IDLE_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP :
						     GLB_IDLE_TIMER_TIMER_SOURCE_GPU_COUNTER));

	return reg_val_u32;
}

u32 kbase_csf_firmware_get_gpu_idle_hysteresis_time(struct kbase_device *kbdev)
{
	unsigned long flags;
	u32 dur;

	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	dur = kbdev->csf.gpu_idle_hysteresis_ns;
	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	return dur;
}

u32 kbase_csf_firmware_set_gpu_idle_hysteresis_time(struct kbase_device *kbdev, u32 dur_ns)
{
	unsigned long flags;
	u32 modifier = 0;

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	const u32 hysteresis_val = convert_dur_to_idle_count(kbdev, MALI_HOST_CONTROLS_SC_RAILS_IDLE_TIMER_NS, &modifier);
#else
	const u32 hysteresis_val = convert_dur_to_idle_count(kbdev, dur_ns, &modifier);
#endif

	/* The 'fw_load_lock' is taken to synchronize against the deferred
	 * loading of FW, where the idle timer will be enabled.
	 */
	mutex_lock(&kbdev->fw_load_lock);
	if (unlikely(!kbdev->csf.firmware_inited)) {
		kbase_csf_scheduler_spin_lock(kbdev, &flags);
		kbdev->csf.gpu_idle_hysteresis_ns = dur_ns;
		kbdev->csf.gpu_idle_dur_count = hysteresis_val;
		kbdev->csf.gpu_idle_dur_count_modifier = modifier;
		kbase_csf_scheduler_spin_unlock(kbdev, flags);
		mutex_unlock(&kbdev->fw_load_lock);
		goto end;
	}
	mutex_unlock(&kbdev->fw_load_lock);

	if (kbase_reset_gpu_prevent_and_wait(kbdev)) {
		dev_warn(kbdev->dev,
			 "Failed to prevent GPU reset when updating idle_hysteresis_time");
		return kbdev->csf.gpu_idle_dur_count;
	}

	kbase_csf_scheduler_pm_active(kbdev);
	if (kbase_csf_scheduler_killable_wait_mcu_active(kbdev)) {
		dev_err(kbdev->dev,
			"Unable to activate the MCU, the idle hysteresis value shall remain unchanged");
		kbase_csf_scheduler_pm_idle(kbdev);
		kbase_reset_gpu_allow(kbdev);

		return kbdev->csf.gpu_idle_dur_count;
	}

#ifndef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	/* The 'reg_lock' is also taken and is held till the update is not
	 * complete, to ensure the update of idle timer value by multiple Users
	 * gets serialized.
	 */
	mutex_lock(&kbdev->csf.reg_lock);
	/* The firmware only reads the new idle timer value when the timer is
	 * disabled.
	 */
#endif

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	kbase_csf_scheduler_lock(kbdev);
	if (kbdev->csf.scheduler.gpu_idle_fw_timer_enabled) {
#endif
		/* The firmware only reads the new idle timer value when the timer is
		 * disabled.
		 */
		kbase_csf_scheduler_spin_lock(kbdev, &flags);
		kbase_csf_firmware_disable_gpu_idle_timer(kbdev);
		kbase_csf_scheduler_spin_unlock(kbdev, flags);
		/* Ensure that the request has taken effect */
		wait_for_global_request(kbdev, GLB_REQ_IDLE_DISABLE_MASK);

		kbase_csf_scheduler_spin_lock(kbdev, &flags);
		kbdev->csf.gpu_idle_hysteresis_ns = dur_ns;
		kbdev->csf.gpu_idle_dur_count = hysteresis_val;
		kbdev->csf.gpu_idle_dur_count_modifier = modifier;
		kbase_csf_firmware_enable_gpu_idle_timer(kbdev);
		kbase_csf_scheduler_spin_unlock(kbdev, flags);
		wait_for_global_request(kbdev, GLB_REQ_IDLE_ENABLE_MASK);
#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	} else {
		/* Record the new values. Would be used later when timer is
		 * enabled
		 */
		kbase_csf_scheduler_spin_lock(kbdev, &flags);
		kbdev->csf.gpu_idle_hysteresis_ns = dur_ns;
		kbdev->csf.gpu_idle_dur_count = hysteresis_val;
		kbdev->csf.gpu_idle_dur_count_modifier = modifier;
		kbase_csf_scheduler_spin_unlock(kbdev, flags);
	}
	kbase_csf_scheduler_unlock(kbdev);
#else
	mutex_unlock(&kbdev->csf.reg_lock);
#endif

	dev_dbg(kbdev->dev, "GPU suspend timeout updated: %i ns (0x%.8x)",
		kbdev->csf.gpu_idle_hysteresis_ns,
		kbdev->csf.gpu_idle_dur_count);
	kbase_csf_scheduler_pm_idle(kbdev);
	kbase_reset_gpu_allow(kbdev);
end:
	dev_dbg(kbdev->dev, "CSF set firmware idle hysteresis count-value: 0x%.8x",
		hysteresis_val);

	return hysteresis_val;
}

static u32 convert_dur_to_core_pwroff_count(struct kbase_device *kbdev, const u32 dur_ns,
					    u32 *modifier)
{
	/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
	u64 freq = arch_timer_get_cntfrq();
	u64 dur_val = dur_ns;
	u32 cnt_val_u32, reg_val_u32;
	bool src_system_timestamp = freq > 0;

	const struct kbase_pm_policy *current_policy = kbase_pm_get_policy(kbdev);
	bool always_on = current_policy == &kbase_pm_always_on_policy_ops;

	if (!src_system_timestamp) {
		/* Get the cycle_counter source alternative */
		spin_lock(&kbdev->pm.clk_rtm.lock);
		if (kbdev->pm.clk_rtm.clks[0])
			freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
		else
			dev_warn(kbdev->dev, "No GPU clock, unexpected integration issue!");
		spin_unlock(&kbdev->pm.clk_rtm.lock);

		dev_info(
			kbdev->dev,
			"Can't get the timestamp frequency, use cycle counter with MCU shader Core Poweroff timer!");
	}

	/* Formula for dur_val = (dur/1e9) * freq_HZ) */
	dur_val = dur_val * freq;
	dur_val = div_u64(dur_val, NSEC_PER_SEC);
	if (dur_val < S32_MAX) {
		*modifier = 1;
	} else {
		dur_val = dur_val >> HYSTERESIS_VAL_UNIT_SHIFT;
		*modifier = 0;
	}

	if (dur_val == 0 && !always_on) {
		/* Lower Bound - as 0 disables timeout and host controls shader-core power management. */
		cnt_val_u32 = 1;
	} else if (dur_val > S32_MAX) {
		/* Upper Bound - as interface limits the field to S32_MAX */
		cnt_val_u32 = S32_MAX;
	} else {
		cnt_val_u32 = (u32)dur_val;
	}

	reg_val_u32 = GLB_PWROFF_TIMER_TIMEOUT_SET(0, cnt_val_u32);
	/* add the source flag */
	reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(
				reg_val_u32,
				(src_system_timestamp ? GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP :
							GLB_PWROFF_TIMER_TIMER_SOURCE_GPU_COUNTER));

	return reg_val_u32;
}

u32 kbase_csf_firmware_get_mcu_core_pwroff_time(struct kbase_device *kbdev)
{
	u32 pwroff;
	unsigned long flags;

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
	pwroff = kbdev->csf.mcu_core_pwroff_dur_ns;
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);

	return pwroff;
}

u32 kbase_csf_firmware_set_mcu_core_pwroff_time(struct kbase_device *kbdev, u32 dur_ns)
{
	unsigned long flags;
	u32 modifier = 0;

	const u32 pwroff = convert_dur_to_core_pwroff_count(kbdev, dur_ns, &modifier);

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
	kbdev->csf.mcu_core_pwroff_dur_ns = dur_ns;
	kbdev->csf.mcu_core_pwroff_dur_count = pwroff;
	kbdev->csf.mcu_core_pwroff_dur_count_modifier = modifier;
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);

	dev_dbg(kbdev->dev, "MCU shader Core Poweroff input update: 0x%.8x", pwroff);

	return pwroff;
}

u32 kbase_csf_firmware_reset_mcu_core_pwroff_time(struct kbase_device *kbdev)
{
	return kbase_csf_firmware_set_mcu_core_pwroff_time(kbdev, DEFAULT_GLB_PWROFF_TIMEOUT_NS);
}

/**
 * kbase_device_csf_iterator_trace_init - Send request to enable iterator
 *                                        trace port.
 * @kbdev: Kernel base device pointer
 *
 * Return: 0 on success (or if enable request is not sent), or error
 *         code -EINVAL on failure of GPU to acknowledge enable request.
 */
static int kbase_device_csf_iterator_trace_init(struct kbase_device *kbdev)
{
	/* Enable the iterator trace port if supported by the GPU.
	 * It requires the GPU to have a nonzero "iter-trace-enable"
	 * property in the device tree, and the FW must advertise
	 * this feature in GLB_FEATURES.
	 */
	if (kbdev->pm.backend.gpu_powered) {
		/* check device tree for iterator trace enable property
		 * and fallback to "iter_trace_enable" if it is not found
		 */
		const void *iter_trace_param = of_get_property(
					       kbdev->dev->of_node,
					       "iter-trace-enable", NULL);

		const struct kbase_csf_global_iface *iface =
						&kbdev->csf.global_iface;

		if (!iter_trace_param)
			iter_trace_param =
				of_get_property(kbdev->dev->of_node, "iter_trace_enable", NULL);

		if (iter_trace_param) {
			u32 iter_trace_value = be32_to_cpup(iter_trace_param);

			if ((iface->features &
			     GLB_FEATURES_ITER_TRACE_SUPPORTED_MASK) &&
			    iter_trace_value) {
				long ack_timeout;

				ack_timeout = kbase_csf_timeout_in_jiffies(
					kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_TIMEOUT));

				/* write enable request to global input */
				kbase_csf_firmware_global_input_mask(
					iface, GLB_REQ,
					GLB_REQ_ITER_TRACE_ENABLE_MASK,
					GLB_REQ_ITER_TRACE_ENABLE_MASK);
				/* Ring global doorbell */
				kbase_csf_ring_doorbell(kbdev,
						    CSF_KERNEL_DOORBELL_NR);

				ack_timeout = wait_event_timeout(
					kbdev->csf.event_wait,
					!((kbase_csf_firmware_global_input_read(
						   iface, GLB_REQ) ^
					   kbase_csf_firmware_global_output(
						   iface, GLB_ACK)) &
					  GLB_REQ_ITER_TRACE_ENABLE_MASK),
					ack_timeout);

				return ack_timeout ? 0 : -EINVAL;

			}
		}

	}
	return 0;
}

static void coredump_worker(struct work_struct *data)
{
	struct kbase_device *kbdev = container_of(data, struct kbase_device, csf.coredump_work);

	kbasep_platform_event_core_dump(kbdev, "GPU hang");
}

int kbase_csf_firmware_early_init(struct kbase_device *kbdev)
{
	u32 modifier = 0;

	init_waitqueue_head(&kbdev->csf.event_wait);
	kbdev->csf.interrupt_received = false;

	kbdev->csf.fw_timeout_ms =
		kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_TIMEOUT);

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	/* Set to the lowest possible value for FW to immediately write
	 * to the power off register to disable the cores.
	 */
	kbdev->csf.mcu_core_pwroff_dur_count = 1;
#else
	kbdev->csf.mcu_core_pwroff_dur_ns = DEFAULT_GLB_PWROFF_TIMEOUT_NS;
	kbdev->csf.mcu_core_pwroff_dur_count = convert_dur_to_core_pwroff_count(
		kbdev, DEFAULT_GLB_PWROFF_TIMEOUT_NS, &modifier);
	kbdev->csf.mcu_core_pwroff_dur_count_modifier = modifier;
#endif

	kbase_csf_firmware_reset_mcu_core_pwroff_time(kbdev);
	INIT_LIST_HEAD(&kbdev->csf.firmware_interfaces);
	INIT_LIST_HEAD(&kbdev->csf.firmware_config);
	INIT_LIST_HEAD(&kbdev->csf.firmware_timeline_metadata);
	INIT_LIST_HEAD(&kbdev->csf.firmware_trace_buffers.list);
	INIT_LIST_HEAD(&kbdev->csf.user_reg.list);
	INIT_WORK(&kbdev->csf.firmware_reload_work,
		  kbase_csf_firmware_reload_worker);
	INIT_WORK(&kbdev->csf.fw_error_work, firmware_error_worker);
	INIT_WORK(&kbdev->csf.coredump_work, coredump_worker);

	mutex_init(&kbdev->csf.reg_lock);
	kbase_csf_pending_gpuq_kicks_init(kbdev);

	kbdev->csf.fw = (struct kbase_csf_mcu_fw){ .data = NULL };

	return 0;
}

void kbase_csf_firmware_early_term(struct kbase_device *kbdev)
{
	kbase_csf_pending_gpuq_kicks_term(kbdev);
	mutex_destroy(&kbdev->csf.reg_lock);
}

int kbase_csf_firmware_late_init(struct kbase_device *kbdev)
{
	u32 modifier = 0;

	kbdev->csf.gpu_idle_hysteresis_ns = FIRMWARE_IDLE_HYSTERESIS_TIME_NS;

#ifdef KBASE_PM_RUNTIME
	if (kbase_pm_gpu_sleep_allowed(kbdev))
		kbdev->csf.gpu_idle_hysteresis_ns /= FIRMWARE_IDLE_HYSTERESIS_GPU_SLEEP_SCALER;
#endif
	WARN_ON(!kbdev->csf.gpu_idle_hysteresis_ns);

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	kbdev->csf.gpu_idle_dur_count = convert_dur_to_idle_count(
		kbdev, MALI_HOST_CONTROLS_SC_RAILS_IDLE_TIMER_NS, &modifier);

	/* Set to the lowest possible value for FW to immediately write
	 * to the power off register to disable the cores.
	 */
	kbdev->csf.mcu_core_pwroff_dur_count = 1;
#else
	kbdev->csf.gpu_idle_dur_count = convert_dur_to_idle_count(
		kbdev, kbdev->csf.gpu_idle_hysteresis_ns, &modifier);
	kbdev->csf.gpu_idle_dur_count_modifier = modifier;
	kbdev->csf.mcu_core_pwroff_dur_ns = DEFAULT_GLB_PWROFF_TIMEOUT_NS;
	kbdev->csf.mcu_core_pwroff_dur_count = convert_dur_to_core_pwroff_count(
		kbdev, DEFAULT_GLB_PWROFF_TIMEOUT_NS, &modifier);
	kbdev->csf.mcu_core_pwroff_dur_count_modifier = modifier;
#endif

	return 0;
}

int kbase_csf_firmware_load_init(struct kbase_device *kbdev)
{
	const struct firmware *firmware = NULL;
	struct kbase_csf_mcu_fw *const mcu_fw = &kbdev->csf.fw;
	const u32 magic = FIRMWARE_HEADER_MAGIC;
	u8 version_major, version_minor;
	u32 version_hash;
	u32 entry_end_offset;
	u32 entry_offset;
	int ret;
	const char *fw_name = default_fw_name;

	lockdep_assert_held(&kbdev->fw_load_lock);

	if (WARN_ON((kbdev->as_free & MCU_AS_BITMASK) == 0))
		return -EINVAL;
	kbdev->as_free &= ~MCU_AS_BITMASK;

	ret = kbase_mmu_init(kbdev, &kbdev->csf.mcu_mmu, NULL,
		BASE_MEM_GROUP_DEFAULT);

	if (ret != 0) {
		/* Release the address space */
		kbdev->as_free |= MCU_AS_BITMASK;
		return ret;
	}

	ret = kbase_mcu_shared_interface_region_tracker_init(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev,
			"Failed to setup the rb tree for managing shared interface segment\n");
		goto err_out;
	}

#if IS_ENABLED(CONFIG_OF)
	/* If we can't read CSF firmware name from DTB,
	 * fw_name is not modified and remains the default.
	 */
	ret = of_property_read_string(kbdev->dev->of_node, "firmware-name", &fw_name);
	if (ret == -EINVAL) {
		/* Property doesn't exist in DTB, and fw_name already points to default FW name
		 * so just reset return value and continue.
		 */
		ret = 0;
	} else if (ret == -ENODATA) {
		dev_warn(kbdev->dev,
			 "\"firmware-name\" DTB property contains no data, using default FW name");
		/* Reset return value so FW does not fail to load */
		ret = 0;
	} else if (ret == -EILSEQ) {
		/* This is reached when the size of the fw_name buffer is too small for the string
		 * stored in the DTB and the null terminator.
		 */
		dev_warn(kbdev->dev,
			 "\"firmware-name\" DTB property value too long, using default FW name.");
		/* Reset return value so FW does not fail to load */
		ret = 0;
	}

#endif /* IS_ENABLED(CONFIG_OF) */

	if (request_firmware(&firmware, fw_name, kbdev->dev) != 0) {
		dev_err(kbdev->dev,
				"Failed to load firmware image '%s'\n",
				fw_name);
		ret = -ENOENT;
	} else {
		/* Try to save a copy and then release the loaded firmware image */
		mcu_fw->size = firmware->size;
		mcu_fw->data = vmalloc((unsigned long)mcu_fw->size);

		if (mcu_fw->data == NULL) {
			ret = -ENOMEM;
		} else {
			memcpy(mcu_fw->data, firmware->data, mcu_fw->size);
			dev_dbg(kbdev->dev, "Firmware image (%zu-bytes) retained in csf.fw\n",
				mcu_fw->size);
		}

		release_firmware(firmware);
	}

	/* If error in loading or saving the image, branches to error out */
	if (ret)
		goto err_out;

	if (mcu_fw->size < FIRMWARE_HEADER_LENGTH) {
		dev_err(kbdev->dev, "Firmware too small\n");
		ret = -EINVAL;
		goto err_out;
	}

	if (memcmp(mcu_fw->data, &magic, sizeof(magic)) != 0) {
		dev_err(kbdev->dev, "Incorrect firmware magic\n");
		ret = -EINVAL;
		goto err_out;
	}

	version_minor = mcu_fw->data[4];
	version_major = mcu_fw->data[5];

	if (version_major != FIRMWARE_HEADER_VERSION_MAJOR ||
			version_minor != FIRMWARE_HEADER_VERSION_MINOR) {
		dev_err(kbdev->dev,
				"Firmware header version %d.%d not understood\n",
				version_major, version_minor);
		ret = -EINVAL;
		goto err_out;
	}

	memcpy(&version_hash, &mcu_fw->data[8], sizeof(version_hash));

	dev_notice(kbdev->dev, "Loading Mali firmware 0x%x", version_hash);

	memcpy(&entry_end_offset, &mcu_fw->data[0x10], sizeof(entry_end_offset));

	if (entry_end_offset > mcu_fw->size) {
		dev_err(kbdev->dev, "Firmware image is truncated\n");
		ret = -EINVAL;
		goto err_out;
	}

	entry_offset = FIRMWARE_HEADER_LENGTH;
	while (entry_offset < entry_end_offset) {
		u32 header;
		unsigned int size;

		memcpy(&header, &mcu_fw->data[entry_offset], sizeof(header));

		size = entry_size(header);

		ret = load_firmware_entry(kbdev, mcu_fw, entry_offset, header);
		if (ret != 0) {
			dev_err(kbdev->dev, "Failed to load firmware image\n");
			goto err_out;
		}
		entry_offset += size;
	}

	if (!kbdev->csf.shared_interface) {
		dev_err(kbdev->dev, "Shared interface region not found\n");
		ret = -EINVAL;
		goto err_out;
	} else {
		ret = setup_shared_iface_static_region(kbdev);
		if (ret != 0) {
			dev_err(kbdev->dev, "Failed to insert a region for shared iface entry parsed from fw image\n");
			goto err_out;
		}
	}

	ret = kbase_csf_firmware_trace_buffers_init(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev, "Failed to initialize trace buffers\n");
		goto err_out;
	}

	ret = kbasep_platform_fw_config_init(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev, "Failed to perform platform specific FW configuration");
		goto err_out;
	}

#ifdef CONFIG_MALI_HOST_CONTROLS_SC_RAILS
	ret = kbase_csf_firmware_cfg_enable_host_ctrl_sc_rails(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev, "Failed to enable SC PM WA");
		goto error;
	}
#endif

	ret = kbase_csf_firmware_cfg_fw_wa_init(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev, "Failed to initialize firmware workarounds");
		goto err_out;
	}

	/* Make sure L2 cache is powered up */
	kbase_pm_wait_for_l2_powered(kbdev);

	/* Load the MMU tables into the selected address space */
	ret = load_mmu_tables(kbdev);
	if (ret != 0)
		goto err_out;

	boot_csf_firmware(kbdev);

	ret = parse_capabilities(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_csf_doorbell_mapping_init(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_csf_scheduler_init(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_csf_setup_dummy_user_reg_page(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_csf_timeout_init(kbdev);
	if (ret != 0)
		goto err_out;

	ret = global_init_on_boot(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_csf_firmware_log_init(kbdev);
	if (ret != 0) {
		dev_err(kbdev->dev, "Failed to initialize FW trace (err %d)", ret);
		goto err_out;
	}

	ret = kbase_csf_firmware_cfg_init(kbdev);
	if (ret != 0)
		goto err_out;

	ret = kbase_device_csf_iterator_trace_init(kbdev);
	if (ret != 0)
		goto err_out;

	if (kbdev->csf.fw_core_dump.available)
		kbase_csf_firmware_core_dump_init(kbdev);

	/* Firmware loaded successfully, ret = 0 */
	KBASE_KTRACE_ADD(kbdev, CSF_FIRMWARE_BOOT, NULL,
			(((u64)version_hash) << 32) |
			(((u64)version_major) << 8) | version_minor);
	return 0;

err_out:
	kbase_csf_firmware_unload_term(kbdev);
	return ret;
}

void kbase_csf_firmware_unload_term(struct kbase_device *kbdev)
{
	unsigned long flags;
	int ret = 0;

	cancel_work_sync(&kbdev->csf.fw_error_work);

	ret = kbase_reset_gpu_wait(kbdev);

	WARN(ret, "failed to wait for GPU reset");

	kbase_csf_firmware_cfg_term(kbdev);

	kbase_csf_firmware_log_term(kbdev);

	kbase_csf_timeout_term(kbdev);

	kbase_csf_free_dummy_user_reg_page(kbdev);

	kbase_csf_scheduler_term(kbdev);

	kbase_csf_doorbell_mapping_term(kbdev);

	/* Explicitly trigger the disabling of MCU through the state machine and
	 * wait for its completion. It may not have been disabled yet due to the
	 * power policy.
	 */
	kbdev->pm.backend.mcu_desired = false;
	kbase_pm_wait_for_desired_state(kbdev);

	free_global_iface(kbdev);

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
	kbdev->csf.firmware_inited = false;
	if (WARN_ON(kbdev->pm.backend.mcu_state != KBASE_MCU_OFF)) {
		kbdev->pm.backend.mcu_state = KBASE_MCU_OFF;
		stop_csf_firmware(kbdev);
	}
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);

	unload_mmu_tables(kbdev);

	kbase_csf_firmware_cfg_fw_wa_term(kbdev);

	kbase_csf_firmware_trace_buffers_term(kbdev);

	while (!list_empty(&kbdev->csf.firmware_interfaces)) {
		struct kbase_csf_firmware_interface *interface;

		interface =
			list_first_entry(&kbdev->csf.firmware_interfaces,
					 struct kbase_csf_firmware_interface,
					 node);
		list_del(&interface->node);

		vunmap(interface->kernel_map);

		if (!interface->reuse_pages) {
			if (interface->flags & CSF_FIRMWARE_ENTRY_PROTECTED) {
				kbase_csf_protected_memory_free(
					kbdev, interface->pma, interface->num_pages_aligned,
					interface->is_small_page);
			} else {
				kbase_mem_pool_free_pages(
					kbase_mem_pool_group_select(
						kbdev, KBASE_MEM_GROUP_CSF_FW,
						interface->is_small_page),
					interface->num_pages_aligned,
					interface->phys,
					true, false);
			}

			kfree(interface->phys);
		}

		kfree(interface);
	}

	while (!list_empty(&kbdev->csf.firmware_timeline_metadata)) {
		struct firmware_timeline_metadata *metadata;

		metadata = list_first_entry(
			&kbdev->csf.firmware_timeline_metadata,
			struct firmware_timeline_metadata,
			node);
		list_del(&metadata->node);

		kfree(metadata);
	}

	if (kbdev->csf.fw.data) {
		/* Free the copy of the firmware image */
		vfree(kbdev->csf.fw.data);
		kbdev->csf.fw.data = NULL;
		dev_dbg(kbdev->dev, "Free retained image csf.fw (%zu-bytes)\n", kbdev->csf.fw.size);
	}

	/* This will also free up the region allocated for the shared interface
	 * entry parsed from the firmware image.
	 */
	kbase_mcu_shared_interface_region_tracker_term(kbdev);

	kbase_mmu_term(kbdev, &kbdev->csf.mcu_mmu);

	/* Release the address space */
	kbdev->as_free |= MCU_AS_BITMASK;
}

#if IS_ENABLED(CONFIG_MALI_CORESIGHT)
int kbase_csf_firmware_mcu_register_write(struct kbase_device *const kbdev, u32 const reg_addr,
					  u32 const reg_val)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	unsigned long flags;
	int err;
	u32 glb_req;

	mutex_lock(&kbdev->csf.reg_lock);
	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	/* Set the address and value to write */
	kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN0, reg_addr);
	kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN1, reg_val);

	/* Set the Global Debug request for FW MCU write */
	glb_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
	glb_req ^= GLB_DEBUG_REQ_FW_AS_WRITE_MASK;
	kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_req,
					     GLB_DEBUG_REQ_FW_AS_WRITE_MASK);

	set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);

	/* Notify FW about the Global Debug request */
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);

	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	err = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);

	mutex_unlock(&kbdev->csf.reg_lock);

	dev_dbg(kbdev->dev, "w: reg %08x val %08x", reg_addr, reg_val);

	return err;
}

int kbase_csf_firmware_mcu_register_read(struct kbase_device *const kbdev, u32 const reg_addr,
					 u32 *reg_val)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	unsigned long flags;
	int err;
	u32 glb_req;

	if (WARN_ON(reg_val == NULL))
		return -EINVAL;

	mutex_lock(&kbdev->csf.reg_lock);
	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	/* Set the address to read */
	kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN0, reg_addr);

	/* Set the Global Debug request for FW MCU read */
	glb_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
	glb_req ^= GLB_DEBUG_REQ_FW_AS_READ_MASK;
	kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_req,
					     GLB_DEBUG_REQ_FW_AS_READ_MASK);

	set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);

	/* Notify FW about the Global Debug request */
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);

	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	err = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);

	if (!err) {
		kbase_csf_scheduler_spin_lock(kbdev, &flags);
		*reg_val = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ARG_OUT0);
		kbase_csf_scheduler_spin_unlock(kbdev, flags);
	}

	mutex_unlock(&kbdev->csf.reg_lock);

	dev_dbg(kbdev->dev, "r: reg %08x val %08x", reg_addr, *reg_val);

	return err;
}

int kbase_csf_firmware_mcu_register_poll(struct kbase_device *const kbdev, u32 const reg_addr,
					 u32 const val_mask, u32 const reg_val)
{
	unsigned long remaining = kbase_csf_timeout_in_jiffies(kbdev->csf.fw_timeout_ms) + jiffies;
	u32 read_val;

	dev_dbg(kbdev->dev, "p: reg %08x val %08x mask %08x", reg_addr, reg_val, val_mask);

	while (time_before(jiffies, remaining)) {
		int err = kbase_csf_firmware_mcu_register_read(kbdev, reg_addr, &read_val);

		if (err) {
			dev_err(kbdev->dev,
				"Error reading MCU register value (read_val = %u, expect = %u)\n",
				read_val, reg_val);
			return err;
		}

		if ((read_val & val_mask) == reg_val)
			return 0;
	}

	dev_err(kbdev->dev,
		"Timeout waiting for MCU register value to be set (read_val = %u, expect = %u)\n",
		read_val, reg_val);

	return -ETIMEDOUT;
}
#endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */

void kbase_csf_firmware_enable_gpu_idle_timer(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	const u32 glb_req = kbase_csf_firmware_global_input_read(global_iface, GLB_REQ);

	kbase_csf_scheduler_spin_lock_assert_held(kbdev);
	/* The scheduler is assumed to only call the enable when its internal
	 * state indicates that the idle timer has previously been disabled. So
	 * on entry the expected field values are:
	 *   1. GLOBAL_INPUT_BLOCK.GLB_REQ.IDLE_ENABLE: 0
	 *   2. GLOBAL_OUTPUT_BLOCK.GLB_ACK.IDLE_ENABLE: 0, or, on 1 -> 0
	 */
	if (glb_req & GLB_REQ_IDLE_ENABLE_MASK)
		dev_err(kbdev->dev, "Incoherent scheduler state on REQ_IDLE_ENABLE!");

	enable_gpu_idle_timer(kbdev);
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
}

void kbase_csf_firmware_disable_gpu_idle_timer(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;

	kbase_csf_scheduler_spin_lock_assert_held(kbdev);

	kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
					GLB_REQ_REQ_IDLE_DISABLE,
					GLB_REQ_IDLE_DISABLE_MASK);
	dev_dbg(kbdev->dev, "Sending request to disable gpu idle timer");

	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
}

void kbase_csf_firmware_ping(struct kbase_device *const kbdev)
{
	const struct kbase_csf_global_iface *const global_iface =
		&kbdev->csf.global_iface;
	unsigned long flags;

	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	set_global_request(global_iface, GLB_REQ_PING_MASK);
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);
}

int kbase_csf_firmware_ping_wait(struct kbase_device *const kbdev, unsigned int wait_timeout_ms)
{
	kbase_csf_firmware_ping(kbdev);

	return wait_for_global_request_with_timeout(kbdev, GLB_REQ_PING_MASK, wait_timeout_ms);
}

int kbase_csf_firmware_set_timeout(struct kbase_device *const kbdev,
	u64 const timeout)
{
	const struct kbase_csf_global_iface *const global_iface =
		&kbdev->csf.global_iface;
	unsigned long flags;
	int err;

	/* The 'reg_lock' is also taken and is held till the update is not
	 * complete, to ensure the update of timeout value by multiple Users
	 * gets serialized.
	 */
	mutex_lock(&kbdev->csf.reg_lock);
	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	set_timeout_global(global_iface, timeout);
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	err = wait_for_global_request(kbdev, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
	mutex_unlock(&kbdev->csf.reg_lock);

	return err;
}

void kbase_csf_enter_protected_mode(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;

	KBASE_TLSTREAM_AUX_PROTECTED_ENTER_START(kbdev, kbdev);

	kbase_csf_scheduler_spin_lock_assert_held(kbdev);
	set_global_request(global_iface, GLB_REQ_PROTM_ENTER_MASK);
	dev_dbg(kbdev->dev, "Sending request to enter protected mode");
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
}

int kbase_csf_wait_protected_mode_enter(struct kbase_device *kbdev)
{
	int err;

	lockdep_assert_held(&kbdev->mmu_hw_mutex);

	err = wait_for_global_request(kbdev, GLB_REQ_PROTM_ENTER_MASK);

	if (!err) {
#define WAIT_TIMEOUT 5000 /* 50ms timeout */
#define DELAY_TIME_IN_US 10
		const int max_iterations = WAIT_TIMEOUT;
		int loop;

		/* Wait for the GPU to actually enter protected mode */
		for (loop = 0; loop < max_iterations; loop++) {
			unsigned long flags;
			bool pmode_exited;

			if (kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_STATUS)) &
			    GPU_STATUS_PROTECTED_MODE_ACTIVE)
				break;

			/* Check if GPU already exited the protected mode */
			kbase_csf_scheduler_spin_lock(kbdev, &flags);
			pmode_exited =
				!kbase_csf_scheduler_protected_mode_in_use(kbdev);
			kbase_csf_scheduler_spin_unlock(kbdev, flags);
			if (pmode_exited)
				break;

			udelay(DELAY_TIME_IN_US);
		}

		if (loop == max_iterations) {
			dev_err(kbdev->dev, "Timeout for actual pmode entry after PROTM_ENTER ack");
			err = -ETIMEDOUT;
		}
	}

	if (unlikely(err)) {
		if (kbase_prepare_to_reset_gpu(kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
			kbase_reset_gpu(kbdev);
	}

	KBASE_TLSTREAM_AUX_PROTECTED_ENTER_END(kbdev, kbdev);

	return err;
}

void kbase_csf_firmware_trigger_mcu_halt(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	unsigned long flags;

	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_REQUEST_HALT(kbdev, kbase_backend_get_cycle_cnt(kbdev));

	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	/* Validate there are no on-slot groups when sending the
	 * halt request to firmware.
	 */
	WARN_ON(kbase_csf_scheduler_get_nr_active_csgs_locked(kbdev));
	set_global_request(global_iface, GLB_REQ_HALT_MASK);
	dev_dbg(kbdev->dev, "Sending request to HALT MCU");
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);
}

void kbase_csf_firmware_enable_mcu(struct kbase_device *kbdev)
{
	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_ENABLING(kbdev, kbase_backend_get_cycle_cnt(kbdev));

	/* Trigger the boot of MCU firmware, Use the AUTO mode as
	 * otherwise on fast reset, to exit protected mode, MCU will
	 * not reboot by itself to enter normal mode.
	 */
	kbase_reg_write(kbdev, GPU_CONTROL_REG(MCU_CONTROL), MCU_CNTRL_AUTO);
}

#ifdef KBASE_PM_RUNTIME
void kbase_csf_firmware_trigger_mcu_sleep(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	unsigned long flags;

	KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_REQUEST_SLEEP(kbdev, kbase_backend_get_cycle_cnt(kbdev));

	kbase_csf_scheduler_spin_lock(kbdev, &flags);
	set_global_request(global_iface, GLB_REQ_SLEEP_MASK);
	dev_dbg(kbdev->dev, "Sending sleep request to MCU");
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);
}

bool kbase_csf_firmware_is_mcu_in_sleep(struct kbase_device *kbdev)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);

	return (global_request_complete(kbdev, GLB_REQ_SLEEP_MASK) &&
		kbase_csf_firmware_mcu_halted(kbdev));
}
#endif

int kbase_csf_trigger_firmware_config_update(struct kbase_device *kbdev)
{
	struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
	unsigned long flags;
	int err = 0;

	/* Ensure GPU is powered-up until we complete config update.*/
	kbase_csf_scheduler_pm_active(kbdev);
	err = kbase_csf_scheduler_killable_wait_mcu_active(kbdev);
	if (err)
		goto exit;

	/* The 'reg_lock' is also taken and is held till the update is
	 * complete, to ensure the config update gets serialized.
	 */
	mutex_lock(&kbdev->csf.reg_lock);
	kbase_csf_scheduler_spin_lock(kbdev, &flags);

	set_global_request(global_iface, GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
	dev_dbg(kbdev->dev, "Sending request for FIRMWARE_CONFIG_UPDATE");
	kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
	kbase_csf_scheduler_spin_unlock(kbdev, flags);

	err = wait_for_global_request(kbdev,
				      GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
	mutex_unlock(&kbdev->csf.reg_lock);

exit:
	kbase_csf_scheduler_pm_idle(kbdev);
	return err;
}

/**
 * copy_grp_and_stm - Copy CS and/or group data
 *
 * @iface:                Global CSF interface provided by the firmware.
 * @group_data:           Pointer where to store all the group data
 *                        (sequentially).
 * @max_group_num:        The maximum number of groups to be read. Can be 0, in
 *                        which case group_data is unused.
 * @stream_data:          Pointer where to store all the CS data
 *                        (sequentially).
 * @max_total_stream_num: The maximum number of CSs to be read.
 *                        Can be 0, in which case stream_data is unused.
 *
 * Return: Total number of CSs, summed across all groups.
 */
static u32 copy_grp_and_stm(
	const struct kbase_csf_global_iface * const iface,
	struct basep_cs_group_control * const group_data,
	u32 max_group_num,
	struct basep_cs_stream_control * const stream_data,
	u32 max_total_stream_num)
{
	u32 i, total_stream_num = 0;

	if (WARN_ON((max_group_num > 0) && !group_data))
		max_group_num = 0;

	if (WARN_ON((max_total_stream_num > 0) && !stream_data))
		max_total_stream_num = 0;

	for (i = 0; i < iface->group_num; i++) {
		u32 j;

		if (i < max_group_num) {
			group_data[i].features = iface->groups[i].features;
			group_data[i].stream_num = iface->groups[i].stream_num;
			group_data[i].suspend_size =
				iface->groups[i].suspend_size;
		}
		for (j = 0; j < iface->groups[i].stream_num; j++) {
			if (total_stream_num < max_total_stream_num)
				stream_data[total_stream_num].features =
					iface->groups[i].streams[j].features;
			total_stream_num++;
		}
	}

	return total_stream_num;
}

u32 kbase_csf_firmware_get_glb_iface(
	struct kbase_device *kbdev,
	struct basep_cs_group_control *const group_data,
	u32 const max_group_num,
	struct basep_cs_stream_control *const stream_data,
	u32 const max_total_stream_num, u32 *const glb_version,
	u32 *const features, u32 *const group_num, u32 *const prfcnt_size,
	u32 *instr_features)
{
	const struct kbase_csf_global_iface * const iface =
		&kbdev->csf.global_iface;

	if (WARN_ON(!glb_version) || WARN_ON(!features) ||
	    WARN_ON(!group_num) || WARN_ON(!prfcnt_size) ||
	    WARN_ON(!instr_features))
		return 0;

	*glb_version = iface->version;
	*features = iface->features;
	*group_num = iface->group_num;
	*prfcnt_size = iface->prfcnt_size;
	*instr_features = iface->instr_features;

	return copy_grp_and_stm(iface, group_data, max_group_num,
		stream_data, max_total_stream_num);
}

const char *kbase_csf_firmware_get_timeline_metadata(
	struct kbase_device *kbdev, const char *name, size_t *size)
{
	struct firmware_timeline_metadata *metadata;

	list_for_each_entry(
		metadata, &kbdev->csf.firmware_timeline_metadata, node) {
		if (!strcmp(metadata->name, name)) {
			*size = metadata->size;
			return metadata->data;
		}
	}

	*size = 0;
	return NULL;
}

int kbase_csf_firmware_mcu_shared_mapping_init(
		struct kbase_device *kbdev,
		unsigned int num_pages,
		unsigned long cpu_map_properties,
		unsigned long gpu_map_properties,
		struct kbase_csf_mapping *csf_mapping)
{
	struct tagged_addr *phys;
	struct kbase_va_region *va_reg;
	struct page **page_list;
	void *cpu_addr;
	int i, ret = 0;
	pgprot_t cpu_map_prot = PAGE_KERNEL;
	unsigned long gpu_map_prot;

	if (cpu_map_properties & PROT_READ)
		cpu_map_prot = PAGE_KERNEL_RO;

	if (kbdev->system_coherency == COHERENCY_ACE) {
		gpu_map_prot =
			KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
	} else {
		gpu_map_prot =
			KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
		cpu_map_prot = pgprot_writecombine(cpu_map_prot);
	}

	phys = kmalloc_array(num_pages, sizeof(*phys), GFP_KERNEL);
	if (!phys)
		goto out;

	page_list = kmalloc_array(num_pages, sizeof(*page_list), GFP_KERNEL);
	if (!page_list)
		goto page_list_alloc_error;

	ret = kbase_mem_pool_alloc_pages(&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], num_pages,
					 phys, false, NULL);
	if (ret <= 0)
		goto phys_mem_pool_alloc_error;

	for (i = 0; i < num_pages; i++)
		page_list[i] = as_page(phys[i]);

	cpu_addr = vmap(page_list, num_pages, VM_MAP, cpu_map_prot);
	if (!cpu_addr)
		goto vmap_error;

	va_reg = kbase_alloc_free_region(&kbdev->csf.mcu_shared_zone, 0, num_pages);
	if (!va_reg)
		goto va_region_alloc_error;

	mutex_lock(&kbdev->csf.reg_lock);
	ret = kbase_add_va_region_rbtree(kbdev, va_reg, 0, num_pages, 1);
	va_reg->flags &= ~KBASE_REG_FREE;
	if (ret)
		goto va_region_add_error;
	mutex_unlock(&kbdev->csf.reg_lock);

	gpu_map_properties &= (KBASE_REG_GPU_RD | KBASE_REG_GPU_WR);
	gpu_map_properties |= gpu_map_prot;

	ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu, va_reg->start_pfn,
					      &phys[0], num_pages, gpu_map_properties,
					      KBASE_MEM_GROUP_CSF_FW, NULL, NULL);
	if (ret)
		goto mmu_insert_pages_error;

	kfree(page_list);
	csf_mapping->phys = phys;
	csf_mapping->cpu_addr = cpu_addr;
	csf_mapping->va_reg = va_reg;
	csf_mapping->num_pages = num_pages;

	return 0;

mmu_insert_pages_error:
	mutex_lock(&kbdev->csf.reg_lock);
	kbase_remove_va_region(kbdev, va_reg);
va_region_add_error:
	kbase_free_alloced_region(va_reg);
	mutex_unlock(&kbdev->csf.reg_lock);
va_region_alloc_error:
	vunmap(cpu_addr);
vmap_error:
	kbase_mem_pool_free_pages(
		&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
		num_pages, phys, false, false);

phys_mem_pool_alloc_error:
	kfree(page_list);
page_list_alloc_error:
	kfree(phys);
out:
	/* Zero-initialize the mapping to make sure that the termination
	 * function doesn't try to unmap or free random addresses.
	 */
	csf_mapping->phys = NULL;
	csf_mapping->cpu_addr = NULL;
	csf_mapping->va_reg = NULL;
	csf_mapping->num_pages = 0;

	return -ENOMEM;
}

void kbase_csf_firmware_mcu_shared_mapping_term(
		struct kbase_device *kbdev, struct kbase_csf_mapping *csf_mapping)
{
	if (csf_mapping->va_reg) {
		mutex_lock(&kbdev->csf.reg_lock);
		kbase_remove_va_region(kbdev, csf_mapping->va_reg);
		kbase_free_alloced_region(csf_mapping->va_reg);
		mutex_unlock(&kbdev->csf.reg_lock);
	}

	if (csf_mapping->phys) {
		kbase_mem_pool_free_pages(
			&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
			csf_mapping->num_pages, csf_mapping->phys, false,
			false);
	}

	vunmap(csf_mapping->cpu_addr);
	kfree(csf_mapping->phys);
}