summaryrefslogtreecommitdiff
path: root/mali_kbase/mmu/mali_kbase_mmu.c
blob: 85e2d882521e60b616b91775520e583ca4302a3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
 *
 * (C) COPYRIGHT 2010-2021 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU license.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 */

/**
 * DOC: Base kernel MMU management.
 */

#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <mali_kbase.h>
#include <gpu/mali_kbase_gpu_fault.h>
#include <gpu/mali_kbase_gpu_regmap.h>
#include <tl/mali_kbase_tracepoints.h>
#include <backend/gpu/mali_kbase_instr_defs.h>
#include <mali_kbase_ctx_sched.h>
#include <mali_kbase_debug.h>
#include <mali_kbase_defs.h>
#include <mali_kbase_hw.h>
#include <mmu/mali_kbase_mmu_hw.h>
#include <mali_kbase_mem.h>
#include <mali_kbase_reset_gpu.h>
#include <mmu/mali_kbase_mmu.h>
#include <mmu/mali_kbase_mmu_internal.h>
#include <mali_kbase_cs_experimental.h>
#include <device/mali_kbase_device.h>

#include <mali_kbase_trace_gpu_mem.h>
#define KBASE_MMU_PAGE_ENTRIES 512

/**
 * kbase_mmu_flush_invalidate() - Flush and invalidate the GPU caches.
 * @kctx: The KBase context.
 * @vpfn: The virtual page frame number to start the flush on.
 * @nr: The number of pages to flush.
 * @sync: Set if the operation should be synchronous or not.
 *
 * Issue a cache flush + invalidate to the GPU caches and invalidate the TLBs.
 *
 * If sync is not set then transactions still in flight when the flush is issued
 * may use the old page tables and the data they write will not be written out
 * to memory, this function returns after the flush has been issued but
 * before all accesses which might effect the flushed region have completed.
 *
 * If sync is set then accesses in the flushed region will be drained
 * before data is flush and invalidated through L1, L2 and into memory,
 * after which point this function will return.
 */
static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
		u64 vpfn, size_t nr, bool sync);

/**
 * kbase_mmu_flush_invalidate_no_ctx() - Flush and invalidate the GPU caches.
 * @kbdev: Device pointer.
 * @vpfn: The virtual page frame number to start the flush on.
 * @nr: The number of pages to flush.
 * @sync: Set if the operation should be synchronous or not.
 * @as_nr: GPU address space number for which flush + invalidate is required.
 *
 * This is used for MMU tables which do not belong to a user space context.
 */
static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev,
		u64 vpfn, size_t nr, bool sync, int as_nr);

/**
 * kbase_mmu_sync_pgd() - sync page directory to memory when needed.
 * @kbdev:	Device pointer.
 * @handle:	Address of DMA region.
 * @size:       Size of the region to sync.
 *
 * This should be called after each page directory update.
 */
static void kbase_mmu_sync_pgd(struct kbase_device *kbdev,
		dma_addr_t handle, size_t size)
{
	/* In non-coherent system, ensure the GPU can read
	 * the pages from memory
	 */
	if (kbdev->system_coherency == COHERENCY_NONE)
		dma_sync_single_for_device(kbdev->dev, handle, size,
				DMA_TO_DEVICE);
}

/*
 * Definitions:
 * - PGD: Page Directory.
 * - PTE: Page Table Entry. A 64bit value pointing to the next
 *        level of translation
 * - ATE: Address Translation Entry. A 64bit value pointing to
 *        a 4kB physical page.
 */

static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
					struct tagged_addr *phys, size_t nr,
					unsigned long flags, int group_id);

/**
 * reg_grow_calc_extra_pages() - Calculate the number of backed pages to add to
 *                               a region on a GPU page fault
 * @kbdev:         KBase device
 * @reg:           The region that will be backed with more pages
 * @fault_rel_pfn: PFN of the fault relative to the start of the region
 *
 * This calculates how much to increase the backing of a region by, based on
 * where a GPU page fault occurred and the flags in the region.
 *
 * This can be more than the minimum number of pages that would reach
 * @fault_rel_pfn, for example to reduce the overall rate of page fault
 * interrupts on a region, or to ensure that the end address is aligned.
 *
 * Return: the number of backed pages to increase by
 */
static size_t reg_grow_calc_extra_pages(struct kbase_device *kbdev,
		struct kbase_va_region *reg, size_t fault_rel_pfn)
{
	size_t multiple = reg->extension;
	size_t reg_current_size = kbase_reg_current_backed_size(reg);
	size_t minimum_extra = fault_rel_pfn - reg_current_size + 1;
	size_t remainder;

	if (!multiple) {
		dev_warn(
			kbdev->dev,
			"VA Region 0x%llx extension was 0, allocator needs to set this properly for KBASE_REG_PF_GROW\n",
			((unsigned long long)reg->start_pfn) << PAGE_SHIFT);
		return minimum_extra;
	}

	/* Calculate the remainder to subtract from minimum_extra to make it
	 * the desired (rounded down) multiple of the extension.
	 * Depending on reg's flags, the base used for calculating multiples is
	 * different
	 */

	/* multiple is based from the current backed size, even if the
	 * current backed size/pfn for end of committed memory are not
	 * themselves aligned to multiple
	 */
	remainder = minimum_extra % multiple;

#if !MALI_USE_CSF
	if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
		/* multiple is based from the top of the initial commit, which
		 * has been allocated in such a way that (start_pfn +
		 * initial_commit) is already aligned to multiple. Hence the
		 * pfn for the end of committed memory will also be aligned to
		 * multiple
		 */
		size_t initial_commit = reg->initial_commit;

		if (fault_rel_pfn < initial_commit) {
			/* this case is just to catch in case it's been
			 * recommitted by userspace to be smaller than the
			 * initial commit
			 */
			minimum_extra = initial_commit - reg_current_size;
			remainder = 0;
		} else {
			/* same as calculating
			 * (fault_rel_pfn - initial_commit + 1)
			 */
			size_t pages_after_initial = minimum_extra +
				reg_current_size - initial_commit;

			remainder = pages_after_initial % multiple;
		}
	}
#endif /* !MALI_USE_CSF */

	if (remainder == 0)
		return minimum_extra;

	return minimum_extra + multiple - remainder;
}

#ifdef CONFIG_MALI_CINSTR_GWT
static void kbase_gpu_mmu_handle_write_faulting_as(
				struct kbase_device *kbdev,
				struct kbase_as *faulting_as,
				u64 start_pfn, size_t nr, u32 op)
{
	mutex_lock(&kbdev->mmu_hw_mutex);

	kbase_mmu_hw_clear_fault(kbdev, faulting_as,
			KBASE_MMU_FAULT_TYPE_PAGE);
	kbase_mmu_hw_do_operation(kbdev, faulting_as, start_pfn,
			nr, op, 1);

	mutex_unlock(&kbdev->mmu_hw_mutex);

	kbase_mmu_hw_enable_fault(kbdev, faulting_as,
			KBASE_MMU_FAULT_TYPE_PAGE);
}

static void kbase_gpu_mmu_handle_write_fault(struct kbase_context *kctx,
			struct kbase_as *faulting_as)
{
	struct kbasep_gwt_list_element *pos;
	struct kbase_va_region *region;
	struct kbase_device *kbdev;
	struct kbase_fault *fault;
	u64 fault_pfn, pfn_offset;
	u32 op;
	int ret;
	int as_no;

	as_no = faulting_as->number;
	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
	fault = &faulting_as->pf_data;
	fault_pfn = fault->addr >> PAGE_SHIFT;

	kbase_gpu_vm_lock(kctx);

	/* Find region and check if it should be writable. */
	region = kbase_region_tracker_find_region_enclosing_address(kctx,
			fault->addr);
	if (kbase_is_region_invalid_or_free(region)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not mapped on the GPU",
				&faulting_as->pf_data);
		return;
	}

	if (!(region->flags & KBASE_REG_GPU_WR)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Region does not have write permissions",
				&faulting_as->pf_data);
		return;
	}

	/* Capture addresses of faulting write location
	 * for job dumping if write tracking is enabled.
	 */
	if (kctx->gwt_enabled) {
		u64 page_addr = fault->addr & PAGE_MASK;
		bool found = false;
		/* Check if this write was already handled. */
		list_for_each_entry(pos, &kctx->gwt_current_list, link) {
			if (page_addr == pos->page_addr) {
				found = true;
				break;
			}
		}

		if (!found) {
			pos = kmalloc(sizeof(*pos), GFP_KERNEL);
			if (pos) {
				pos->region = region;
				pos->page_addr = page_addr;
				pos->num_pages = 1;
				list_add(&pos->link, &kctx->gwt_current_list);
			} else {
				dev_warn(kbdev->dev, "kmalloc failure");
			}
		}
	}

	pfn_offset = fault_pfn - region->start_pfn;
	/* Now make this faulting page writable to GPU. */
	ret = kbase_mmu_update_pages_no_flush(kctx, fault_pfn,
				&kbase_get_gpu_phy_pages(region)[pfn_offset],
				1, region->flags, region->gpu_alloc->group_id);

	/* flush L2 and unlock the VA (resumes the MMU) */
	op = AS_COMMAND_FLUSH_PT;

	kbase_gpu_mmu_handle_write_faulting_as(kbdev, faulting_as,
			fault_pfn, 1, op);

	kbase_gpu_vm_unlock(kctx);
}

static void kbase_gpu_mmu_handle_permission_fault(struct kbase_context *kctx,
			struct kbase_as	*faulting_as)
{
	struct kbase_fault *fault = &faulting_as->pf_data;

	switch (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault->status)) {
	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
		kbase_gpu_mmu_handle_write_fault(kctx, faulting_as);
		break;
	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Execute Permission fault", fault);
		break;
	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Read Permission fault", fault);
		break;
	default:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Unknown Permission fault", fault);
		break;
	}
}
#endif

#define MAX_POOL_LEVEL 2

/**
 * page_fault_try_alloc - Try to allocate memory from a context pool
 * @kctx:          Context pointer
 * @region:        Region to grow
 * @new_pages:     Number of 4 kB pages to allocate
 * @pages_to_grow: Pointer to variable to store number of outstanding pages on
 *                 failure. This can be either 4 kB or 2 MB pages, depending on
 *                 the number of pages requested.
 * @grow_2mb_pool: Pointer to variable to store which pool needs to grow - true
 *                 for 2 MB, false for 4 kB.
 * @prealloc_sas:  Pointer to kbase_sub_alloc structures
 *
 * This function will try to allocate as many pages as possible from the context
 * pool, then if required will try to allocate the remaining pages from the
 * device pool.
 *
 * This function will not allocate any new memory beyond that that is already
 * present in the context or device pools. This is because it is intended to be
 * called with the vm_lock held, which could cause recursive locking if the
 * allocation caused the out-of-memory killer to run.
 *
 * If 2 MB pages are enabled and new_pages is >= 2 MB then pages_to_grow will be
 * a count of 2 MB pages, otherwise it will be a count of 4 kB pages.
 *
 * Return: true if successful, false on failure
 */
static bool page_fault_try_alloc(struct kbase_context *kctx,
		struct kbase_va_region *region, size_t new_pages,
		int *pages_to_grow, bool *grow_2mb_pool,
		struct kbase_sub_alloc **prealloc_sas)
{
	struct tagged_addr *gpu_pages[MAX_POOL_LEVEL] = {NULL};
	struct tagged_addr *cpu_pages[MAX_POOL_LEVEL] = {NULL};
	size_t pages_alloced[MAX_POOL_LEVEL] = {0};
	struct kbase_mem_pool *pool, *root_pool;
	int pool_level = 0;
	bool alloc_failed = false;
	size_t pages_still_required;

	if (WARN_ON(region->gpu_alloc->group_id >=
		MEMORY_GROUP_MANAGER_NR_GROUPS)) {
		/* Do not try to grow the memory pool */
		*pages_to_grow = 0;
		return false;
	}

#ifdef CONFIG_MALI_2MB_ALLOC
	if (new_pages >= (SZ_2M / SZ_4K)) {
		root_pool = &kctx->mem_pools.large[region->gpu_alloc->group_id];
		*grow_2mb_pool = true;
	} else {
#endif
		root_pool = &kctx->mem_pools.small[region->gpu_alloc->group_id];
		*grow_2mb_pool = false;
#ifdef CONFIG_MALI_2MB_ALLOC
	}
#endif

	if (region->gpu_alloc != region->cpu_alloc)
		new_pages *= 2;

	pages_still_required = new_pages;

	/* Determine how many pages are in the pools before trying to allocate.
	 * Don't attempt to allocate & free if the allocation can't succeed.
	 */
	for (pool = root_pool; pool != NULL; pool = pool->next_pool) {
		size_t pool_size_4k;

		kbase_mem_pool_lock(pool);

		pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
		if (pool_size_4k >= pages_still_required)
			pages_still_required = 0;
		else
			pages_still_required -= pool_size_4k;

		kbase_mem_pool_unlock(pool);

		if (!pages_still_required)
			break;
	}

	if (pages_still_required) {
		/* Insufficient pages in pools. Don't try to allocate - just
		 * request a grow.
		 */
		*pages_to_grow = pages_still_required;

		return false;
	}

	/* Since we've dropped the pool locks, the amount of memory in the pools
	 * may change between the above check and the actual allocation.
	 */
	pool = root_pool;
	for (pool_level = 0; pool_level < MAX_POOL_LEVEL; pool_level++) {
		size_t pool_size_4k;
		size_t pages_to_alloc_4k;
		size_t pages_to_alloc_4k_per_alloc;

		kbase_mem_pool_lock(pool);

		/* Allocate as much as possible from this pool*/
		pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
		pages_to_alloc_4k = MIN(new_pages, pool_size_4k);
		if (region->gpu_alloc == region->cpu_alloc)
			pages_to_alloc_4k_per_alloc = pages_to_alloc_4k;
		else
			pages_to_alloc_4k_per_alloc = pages_to_alloc_4k >> 1;

		pages_alloced[pool_level] = pages_to_alloc_4k;
		if (pages_to_alloc_4k) {
			gpu_pages[pool_level] =
					kbase_alloc_phy_pages_helper_locked(
						region->gpu_alloc, pool,
						pages_to_alloc_4k_per_alloc,
						&prealloc_sas[0]);

			if (!gpu_pages[pool_level]) {
				alloc_failed = true;
			} else if (region->gpu_alloc != region->cpu_alloc) {
				cpu_pages[pool_level] =
					kbase_alloc_phy_pages_helper_locked(
						region->cpu_alloc, pool,
						pages_to_alloc_4k_per_alloc,
						&prealloc_sas[1]);

				if (!cpu_pages[pool_level])
					alloc_failed = true;
			}
		}

		kbase_mem_pool_unlock(pool);

		if (alloc_failed) {
			WARN_ON(!new_pages);
			WARN_ON(pages_to_alloc_4k >= new_pages);
			WARN_ON(pages_to_alloc_4k_per_alloc >= new_pages);
			break;
		}

		new_pages -= pages_to_alloc_4k;

		if (!new_pages)
			break;

		pool = pool->next_pool;
		if (!pool)
			break;
	}

	if (new_pages) {
		/* Allocation was unsuccessful */
		int max_pool_level = pool_level;

		pool = root_pool;

		/* Free memory allocated so far */
		for (pool_level = 0; pool_level <= max_pool_level;
				pool_level++) {
			kbase_mem_pool_lock(pool);

			if (region->gpu_alloc != region->cpu_alloc) {
				if (pages_alloced[pool_level] &&
						cpu_pages[pool_level])
					kbase_free_phy_pages_helper_locked(
						region->cpu_alloc,
						pool, cpu_pages[pool_level],
						pages_alloced[pool_level]);
			}

			if (pages_alloced[pool_level] && gpu_pages[pool_level])
				kbase_free_phy_pages_helper_locked(
						region->gpu_alloc,
						pool, gpu_pages[pool_level],
						pages_alloced[pool_level]);

			kbase_mem_pool_unlock(pool);

			pool = pool->next_pool;
		}

		/*
		 * If the allocation failed despite there being enough memory in
		 * the pool, then just fail. Otherwise, try to grow the memory
		 * pool.
		 */
		if (alloc_failed)
			*pages_to_grow = 0;
		else
			*pages_to_grow = new_pages;

		return false;
	}

	/* Allocation was successful. No pages to grow, return success. */
	*pages_to_grow = 0;

	return true;
}

/* Small wrapper function to factor out GPU-dependent context releasing */
static void release_ctx(struct kbase_device *kbdev,
		struct kbase_context *kctx)
{
#if MALI_USE_CSF
	CSTD_UNUSED(kbdev);
	kbase_ctx_sched_release_ctx_lock(kctx);
#else /* MALI_USE_CSF */
	kbasep_js_runpool_release_ctx(kbdev, kctx);
#endif /* MALI_USE_CSF */
}

void kbase_mmu_page_fault_worker(struct work_struct *data)
{
	u64 fault_pfn;
	u32 fault_status;
	size_t new_pages;
	size_t fault_rel_pfn;
	struct kbase_as *faulting_as;
	int as_no;
	struct kbase_context *kctx;
	struct kbase_device *kbdev;
	struct kbase_va_region *region;
	struct kbase_fault *fault;
	int err;
	bool grown = false;
	int pages_to_grow;
	bool grow_2mb_pool;
	struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
	int i;
	size_t current_backed_size;
#if MALI_JIT_PRESSURE_LIMIT_BASE
	size_t pages_trimmed = 0;
#endif

	faulting_as = container_of(data, struct kbase_as, work_pagefault);
	fault = &faulting_as->pf_data;
	fault_pfn = fault->addr >> PAGE_SHIFT;
	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
	dev_dbg(kbdev->dev,
		"Entering %s %pK, fault_pfn %lld, as_no %d\n",
		__func__, (void *)data, fault_pfn, as_no);

	/* Grab the context that was already refcounted in kbase_mmu_interrupt()
	 * Therefore, it cannot be scheduled out of this AS until we explicitly
	 * release it
	 */
	kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
	if (!kctx) {
		atomic_dec(&kbdev->faults_pending);
		return;
	}

	KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);

#if MALI_JIT_PRESSURE_LIMIT_BASE
#if !MALI_USE_CSF
	mutex_lock(&kctx->jctx.lock);
#endif
#endif

#ifdef CONFIG_MALI_ARBITER_SUPPORT
	/* check if we still have GPU */
	if (unlikely(kbase_is_gpu_removed(kbdev))) {
		dev_dbg(kbdev->dev,
				"%s: GPU has been removed\n", __func__);
		goto fault_done;
	}
#endif

	if (unlikely(fault->protected_mode)) {
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Protected mode fault", fault);
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);

		goto fault_done;
	}

	fault_status = fault->status;
	switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) {

	case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT:
		/* need to check against the region to handle this one */
		break;

	case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT:
#ifdef CONFIG_MALI_CINSTR_GWT
		/* If GWT was ever enabled then we need to handle
		 * write fault pages even if the feature was disabled later.
		 */
		if (kctx->gwt_was_enabled) {
			kbase_gpu_mmu_handle_permission_fault(kctx,
							faulting_as);
			goto fault_done;
		}
#endif

		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Permission failure", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Translation table bus fault", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG:
		/* nothing to do, but we don't expect this fault currently */
		dev_warn(kbdev->dev, "Access flag unexpectedly set");
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Address size fault", fault);
		goto fault_done;

	case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory attributes fault", fault);
		goto fault_done;

	default:
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Unknown fault code", fault);
		goto fault_done;
	}

#ifdef CONFIG_MALI_2MB_ALLOC
	/* Preallocate memory for the sub-allocation structs if necessary */
	for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
		prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);
		if (!prealloc_sas[i]) {
			kbase_mmu_report_fault_and_kill(kctx, faulting_as,
					"Failed pre-allocating memory for sub-allocations' metadata",
					fault);
			goto fault_done;
		}
	}
#endif /* CONFIG_MALI_2MB_ALLOC */

page_fault_retry:
	/* so we have a translation fault,
	 * let's see if it is for growable memory
	 */
	kbase_gpu_vm_lock(kctx);

	region = kbase_region_tracker_find_region_enclosing_address(kctx,
			fault->addr);
	if (kbase_is_region_invalid_or_free(region)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not mapped on the GPU", fault);
		goto fault_done;
	}

	if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"DMA-BUF is not mapped on the GPU", fault);
		goto fault_done;
	}

	if (region->gpu_alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Bad physical memory group ID", fault);
		goto fault_done;
	}

	if ((region->flags & GROWABLE_FLAGS_REQUIRED)
			!= GROWABLE_FLAGS_REQUIRED) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Memory is not growable", fault);
		goto fault_done;
	}

	if ((region->flags & KBASE_REG_DONT_NEED)) {
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Don't need memory can't be grown", fault);
		goto fault_done;
	}

	if (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault_status) ==
		AS_FAULTSTATUS_ACCESS_TYPE_READ)
		dev_warn(kbdev->dev, "Grow on pagefault while reading");

	/* find the size we need to grow it by
	 * we know the result fit in a size_t due to
	 * kbase_region_tracker_find_region_enclosing_address
	 * validating the fault_address to be within a size_t from the start_pfn
	 */
	fault_rel_pfn = fault_pfn - region->start_pfn;

	current_backed_size = kbase_reg_current_backed_size(region);

	if (fault_rel_pfn < current_backed_size) {
		dev_dbg(kbdev->dev,
			"Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring",
				fault->addr, region->start_pfn,
				region->start_pfn +
				current_backed_size);

		mutex_lock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		/* [1] in case another page fault occurred while we were
		 * handling the (duplicate) page fault we need to ensure we
		 * don't loose the other page fault as result of us clearing
		 * the MMU IRQ. Therefore, after we clear the MMU IRQ we send
		 * an UNLOCK command that will retry any stalled memory
		 * transaction (which should cause the other page fault to be
		 * raised again).
		 */
		kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0,
				AS_COMMAND_UNLOCK, 1);

		mutex_unlock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		kbase_gpu_vm_unlock(kctx);

		goto fault_done;
	}

	new_pages = reg_grow_calc_extra_pages(kbdev, region, fault_rel_pfn);

	/* cap to max vsize */
	new_pages = min(new_pages, region->nr_pages - current_backed_size);
	dev_dbg(kctx->kbdev->dev, "Allocate %zu pages on page fault\n",
		new_pages);

	if (new_pages == 0) {
		mutex_lock(&kbdev->mmu_hw_mutex);

		/* Duplicate of a fault we've already handled, nothing to do */
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		/* See comment [1] about UNLOCK usage */
		kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0,
				AS_COMMAND_UNLOCK, 1);

		mutex_unlock(&kbdev->mmu_hw_mutex);

		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_PAGE);
		kbase_gpu_vm_unlock(kctx);
		goto fault_done;
	}

	pages_to_grow = 0;

#if MALI_JIT_PRESSURE_LIMIT_BASE
	if ((region->flags & KBASE_REG_ACTIVE_JIT_ALLOC) && !pages_trimmed) {
		kbase_jit_request_phys_increase(kctx, new_pages);
		pages_trimmed = new_pages;
	}
#endif

	spin_lock(&kctx->mem_partials_lock);
	grown = page_fault_try_alloc(kctx, region, new_pages, &pages_to_grow,
			&grow_2mb_pool, prealloc_sas);
	spin_unlock(&kctx->mem_partials_lock);

	if (grown) {
		u64 pfn_offset;
		u32 op;

		/* alloc success */
		WARN_ON(kbase_reg_current_backed_size(region) >
			region->nr_pages);

		/* set up the new pages */
		pfn_offset = kbase_reg_current_backed_size(region) - new_pages;
		/*
		 * Note:
		 * Issuing an MMU operation will unlock the MMU and cause the
		 * translation to be replayed. If the page insertion fails then
		 * rather then trying to continue the context should be killed
		 * so the no_flush version of insert_pages is used which allows
		 * us to unlock the MMU as we see fit.
		 */
		err = kbase_mmu_insert_pages_no_flush(kbdev, &kctx->mmu,
			region->start_pfn + pfn_offset,
			&kbase_get_gpu_phy_pages(region)[pfn_offset],
			new_pages, region->flags, region->gpu_alloc->group_id);
		if (err) {
			kbase_free_phy_pages_helper(region->gpu_alloc,
					new_pages);
			if (region->gpu_alloc != region->cpu_alloc)
				kbase_free_phy_pages_helper(region->cpu_alloc,
						new_pages);
			kbase_gpu_vm_unlock(kctx);
			/* The locked VA region will be unlocked and the cache
			 * invalidated in here
			 */
			kbase_mmu_report_fault_and_kill(kctx, faulting_as,
					"Page table update failure", fault);
			goto fault_done;
		}
		KBASE_TLSTREAM_AUX_PAGEFAULT(kbdev, kctx->id, as_no,
				(u64)new_pages);
		trace_mali_mmu_page_fault_grow(region, fault, new_pages);

#if MALI_INCREMENTAL_RENDERING
		/* Switch to incremental rendering if we have nearly run out of
		 * memory in a JIT memory allocation.
		 */
		if (region->threshold_pages &&
			kbase_reg_current_backed_size(region) >
				region->threshold_pages) {

			dev_dbg(kctx->kbdev->dev,
				"%zu pages exceeded IR threshold %zu\n",
				new_pages + current_backed_size,
				region->threshold_pages);

			if (kbase_mmu_switch_to_ir(kctx, region) >= 0) {
				dev_dbg(kctx->kbdev->dev,
					"Get region %pK for IR\n",
					(void *)region);
				kbase_va_region_alloc_get(kctx, region);
			}
		}
#endif

		/* AS transaction begin */
		mutex_lock(&kbdev->mmu_hw_mutex);

		/* flush L2 and unlock the VA (resumes the MMU) */
		op = AS_COMMAND_FLUSH_PT;

		/* clear MMU interrupt - this needs to be done after updating
		 * the page tables but before issuing a FLUSH command. The
		 * FLUSH cmd has a side effect that it restarts stalled memory
		 * transactions in other address spaces which may cause
		 * another fault to occur. If we didn't clear the interrupt at
		 * this stage a new IRQ might not be raised when the GPU finds
		 * a MMU IRQ is already pending.
		 */
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
					 KBASE_MMU_FAULT_TYPE_PAGE);

		kbase_mmu_hw_do_operation(kbdev, faulting_as,
				fault->addr >> PAGE_SHIFT,
				new_pages, op, 1);

		mutex_unlock(&kbdev->mmu_hw_mutex);
		/* AS transaction end */

		/* reenable this in the mask */
		kbase_mmu_hw_enable_fault(kbdev, faulting_as,
					 KBASE_MMU_FAULT_TYPE_PAGE);

#ifdef CONFIG_MALI_CINSTR_GWT
		if (kctx->gwt_enabled) {
			/* GWT also tracks growable regions. */
			struct kbasep_gwt_list_element *pos;

			pos = kmalloc(sizeof(*pos), GFP_KERNEL);
			if (pos) {
				pos->region = region;
				pos->page_addr = (region->start_pfn +
							pfn_offset) <<
							 PAGE_SHIFT;
				pos->num_pages = new_pages;
				list_add(&pos->link,
					&kctx->gwt_current_list);
			} else {
				dev_warn(kbdev->dev, "kmalloc failure");
			}
		}
#endif

#if MALI_JIT_PRESSURE_LIMIT_BASE
		if (pages_trimmed) {
			kbase_jit_done_phys_increase(kctx, pages_trimmed);
			pages_trimmed = 0;
		}
#endif
		kbase_gpu_vm_unlock(kctx);
	} else {
		int ret = -ENOMEM;

		kbase_gpu_vm_unlock(kctx);

		/* If the memory pool was insufficient then grow it and retry.
		 * Otherwise fail the allocation.
		 */
		if (pages_to_grow > 0) {
#ifdef CONFIG_MALI_2MB_ALLOC
			if (grow_2mb_pool) {
				/* Round page requirement up to nearest 2 MB */
				struct kbase_mem_pool *const lp_mem_pool =
					&kctx->mem_pools.large[
					region->gpu_alloc->group_id];

				pages_to_grow = (pages_to_grow +
					((1 << lp_mem_pool->order) - 1))
						>> lp_mem_pool->order;

				ret = kbase_mem_pool_grow(lp_mem_pool,
					pages_to_grow);
			} else {
#endif
				struct kbase_mem_pool *const mem_pool =
					&kctx->mem_pools.small[
					region->gpu_alloc->group_id];

				ret = kbase_mem_pool_grow(mem_pool,
					pages_to_grow);
#ifdef CONFIG_MALI_2MB_ALLOC
			}
#endif
		}
		if (ret < 0) {
			/* failed to extend, handle as a normal PF */
			kbase_mmu_report_fault_and_kill(kctx, faulting_as,
					"Page allocation failure", fault);
		} else {
			dev_dbg(kbdev->dev, "Try again after pool_grow\n");
			goto page_fault_retry;
		}
	}

fault_done:
#if MALI_JIT_PRESSURE_LIMIT_BASE
	if (pages_trimmed) {
		kbase_gpu_vm_lock(kctx);
		kbase_jit_done_phys_increase(kctx, pages_trimmed);
		kbase_gpu_vm_unlock(kctx);
	}
#if !MALI_USE_CSF
	mutex_unlock(&kctx->jctx.lock);
#endif
#endif

	for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i)
		kfree(prealloc_sas[i]);

	/*
	 * By this point, the fault was handled in some way,
	 * so release the ctx refcount
	 */
	release_ctx(kbdev, kctx);

	atomic_dec(&kbdev->faults_pending);
	dev_dbg(kbdev->dev, "Leaving page_fault_worker %pK\n", (void *)data);
}

static phys_addr_t kbase_mmu_alloc_pgd(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut)
{
	u64 *page;
	int i;
	struct page *p;

#ifdef CONFIG_MALI_2MB_ALLOC
	p = kbase_mem_pool_alloc(&kbdev->mem_pools.large[mmut->group_id]);
#else /* CONFIG_MALI_2MB_ALLOC */
	p = kbase_mem_pool_alloc(&kbdev->mem_pools.small[mmut->group_id]);
#endif /* CONFIG_MALI_2MB_ALLOC */
	if (!p)
		return 0;

	page = kmap(p);
	if (page == NULL)
		goto alloc_free;

	/* If the MMU tables belong to a context then account the memory usage
	 * to that context, otherwise the MMU tables are device wide and are
	 * only accounted to the device.
	 */
	if (mmut->kctx) {
		int new_page_count;

		new_page_count = atomic_add_return(1,
			&mmut->kctx->used_pages);
		KBASE_TLSTREAM_AUX_PAGESALLOC(
			kbdev,
			mmut->kctx->id,
			(u64)new_page_count);
		kbase_process_page_usage_inc(mmut->kctx, 1);
	}

	atomic_add(1, &kbdev->memdev.used_pages);

	kbase_trace_gpu_mem_usage_inc(kbdev, mmut->kctx, 1);

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++)
		kbdev->mmu_mode->entry_invalidate(&page[i]);

	kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE);

	kunmap(p);
	return page_to_phys(p);

alloc_free:

#ifdef CONFIG_MALI_2MB_ALLOC
	kbase_mem_pool_free(&kbdev->mem_pools.large[mmut->group_id], p, false);
#else /* CONFIG_MALI_2MB_ALLOC */
	kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, false);
#endif /* CONFIG_MALI_2MB_ALLOC */

	return 0;
}

/* Given PGD PFN for level N, return PGD PFN for level N+1, allocating the
 * new table from the pool if needed and possible
 */
static int mmu_get_next_pgd(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut,
		phys_addr_t *pgd, u64 vpfn, int level)
{
	u64 *page;
	phys_addr_t target_pgd;
	struct page *p;

	KBASE_DEBUG_ASSERT(*pgd);

	lockdep_assert_held(&mmut->mmu_lock);

	/*
	 * Architecture spec defines level-0 as being the top-most.
	 * This is a bit unfortunate here, but we keep the same convention.
	 */
	vpfn >>= (3 - level) * 9;
	vpfn &= 0x1FF;

	p = pfn_to_page(PFN_DOWN(*pgd));
	page = kmap(p);
	if (page == NULL) {
		dev_warn(kbdev->dev, "%s: kmap failure\n", __func__);
		return -EINVAL;
	}

	target_pgd = kbdev->mmu_mode->pte_to_phy_addr(page[vpfn]);

	if (!target_pgd) {
		target_pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
		if (!target_pgd) {
			dev_dbg(kbdev->dev, "%s: kbase_mmu_alloc_pgd failure\n",
					__func__);
			kunmap(p);
			return -ENOMEM;
		}

		kbdev->mmu_mode->entry_set_pte(&page[vpfn], target_pgd);

		kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE);
		/* Rely on the caller to update the address space flags. */
	}

	kunmap(p);
	*pgd = target_pgd;

	return 0;
}

/*
 * Returns the PGD for the specified level of translation
 */
static int mmu_get_pgd_at_level(struct kbase_device *kbdev,
					struct kbase_mmu_table *mmut,
					u64 vpfn,
					int level,
					phys_addr_t *out_pgd)
{
	phys_addr_t pgd;
	int l;

	lockdep_assert_held(&mmut->mmu_lock);
	pgd = mmut->pgd;

	for (l = MIDGARD_MMU_TOPLEVEL; l < level; l++) {
		int err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);
		/* Handle failure condition */
		if (err) {
			dev_dbg(kbdev->dev,
				 "%s: mmu_get_next_pgd failure at level %d\n",
				 __func__, l);
			return err;
		}
	}

	*out_pgd = pgd;

	return 0;
}

static int mmu_get_bottom_pgd(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut,
		u64 vpfn,
		phys_addr_t *out_pgd)
{
	return mmu_get_pgd_at_level(kbdev, mmut, vpfn, MIDGARD_MMU_BOTTOMLEVEL,
			out_pgd);
}

static void mmu_insert_pages_failure_recovery(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut,
		u64 from_vpfn, u64 to_vpfn)
{
	phys_addr_t pgd;
	u64 vpfn = from_vpfn;
	struct kbase_mmu_mode const *mmu_mode;

	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
	KBASE_DEBUG_ASSERT(from_vpfn <= to_vpfn);

	lockdep_assert_held(&mmut->mmu_lock);

	mmu_mode = kbdev->mmu_mode;

	while (vpfn < to_vpfn) {
		unsigned int i;
		unsigned int idx = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - idx;
		unsigned int pcount = 0;
		unsigned int left = to_vpfn - vpfn;
		int level;
		u64 *page;

		if (count > left)
			count = left;

		/* need to check if this is a 2MB page or a 4kB */
		pgd = mmut->pgd;

		for (level = MIDGARD_MMU_TOPLEVEL;
				level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
			idx = (vpfn >> ((3 - level) * 9)) & 0x1FF;
			page = kmap(phys_to_page(pgd));
			if (mmu_mode->ate_is_valid(page[idx], level))
				break; /* keep the mapping */
			kunmap(phys_to_page(pgd));
			pgd = mmu_mode->pte_to_phy_addr(page[idx]);
		}

		switch (level) {
		case MIDGARD_MMU_LEVEL(2):
			/* remap to single entry to update */
			pcount = 1;
			break;
		case MIDGARD_MMU_BOTTOMLEVEL:
			/* page count is the same as the logical count */
			pcount = count;
			break;
		default:
			dev_warn(kbdev->dev, "%sNo support for ATEs at level %d\n",
			       __func__, level);
			goto next;
		}

		/* Invalidate the entries we added */
		for (i = 0; i < pcount; i++)
			mmu_mode->entry_invalidate(&page[idx + i]);

		kbase_mmu_sync_pgd(kbdev,
				   kbase_dma_addr(phys_to_page(pgd)) + 8 * idx,
				   8 * pcount);
		kunmap(phys_to_page(pgd));

next:
		vpfn += count;
	}
}

/*
 * Map the single page 'phys' 'nr' of times, starting at GPU PFN 'vpfn'
 */
int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn,
					struct tagged_addr phys, size_t nr,
					unsigned long flags, int const group_id)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	/* In case the insert_single_page only partially completes
	 * we need to be able to recover
	 */
	bool recover_required = false;
	u64 start_vpfn = vpfn;
	size_t recover_count = 0;
	size_t remain = nr;
	int err;
	struct kbase_device *kbdev;

	if (WARN_ON(kctx == NULL))
		return -EINVAL;

	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));

	kbdev = kctx->kbdev;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	mutex_lock(&kctx->mmu.mmu_lock);

	while (remain) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
		struct page *p;

		if (count > remain)
			count = remain;

		/*
		 * Repeatedly calling mmu_get_bottom_pte() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		do {
			err = mmu_get_bottom_pgd(kbdev, &kctx->mmu,
					vpfn, &pgd);
			if (err != -ENOMEM)
				break;
			/* Fill the memory pool with enough pages for
			 * the page walk to succeed
			 */
			mutex_unlock(&kctx->mmu.mmu_lock);
			err = kbase_mem_pool_grow(
#ifdef CONFIG_MALI_2MB_ALLOC
				&kbdev->mem_pools.large[
#else
				&kbdev->mem_pools.small[
#endif
					kctx->mmu.group_id],
				MIDGARD_MMU_BOTTOMLEVEL);
			mutex_lock(&kctx->mmu.mmu_lock);
		} while (!err);
		if (err) {
			dev_warn(kbdev->dev, "kbase_mmu_insert_pages: mmu_get_bottom_pgd failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed
				 */
				mmu_insert_pages_failure_recovery(kbdev,
						&kctx->mmu,
						start_vpfn,
						start_vpfn + recover_count);
			}
			goto fail_unlock;
		}

		p = pfn_to_page(PFN_DOWN(pgd));
		pgd_page = kmap(p);
		if (!pgd_page) {
			dev_warn(kbdev->dev, "kbase_mmu_insert_pages: kmap failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed
				 */
				mmu_insert_pages_failure_recovery(kbdev,
						&kctx->mmu,
						start_vpfn,
						start_vpfn + recover_count);
			}
			err = -ENOMEM;
			goto fail_unlock;
		}

		for (i = 0; i < count; i++) {
			unsigned int ofs = index + i;

			/* Fail if the current page is a valid ATE entry */
			KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));

			pgd_page[ofs] = kbase_mmu_create_ate(kbdev,
				phys, flags, MIDGARD_MMU_BOTTOMLEVEL, group_id);
		}

		vpfn += count;
		remain -= count;

		kbase_mmu_sync_pgd(kbdev,
				kbase_dma_addr(p) + (index * sizeof(u64)),
				count * sizeof(u64));

		kunmap(p);
		/* We have started modifying the page table.
		 * If further pages need inserting and fail we need to undo what
		 * has already taken place
		 */
		recover_required = true;
		recover_count += count;
	}
	mutex_unlock(&kctx->mmu.mmu_lock);
	kbase_mmu_flush_invalidate(kctx, start_vpfn, nr, false);
	return 0;

fail_unlock:
	mutex_unlock(&kctx->mmu.mmu_lock);
	kbase_mmu_flush_invalidate(kctx, start_vpfn, nr, false);
	return err;
}

static inline void cleanup_empty_pte(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut, u64 *pte)
{
	phys_addr_t tmp_pgd;
	struct page *tmp_p;

	tmp_pgd = kbdev->mmu_mode->pte_to_phy_addr(*pte);
	tmp_p = phys_to_page(tmp_pgd);
#ifdef CONFIG_MALI_2MB_ALLOC
	kbase_mem_pool_free(&kbdev->mem_pools.large[mmut->group_id],
#else
	kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id],
#endif
		tmp_p, false);

	/* If the MMU tables belong to a context then we accounted the memory
	 * usage to that context, so decrement here.
	 */
	if (mmut->kctx) {
		kbase_process_page_usage_dec(mmut->kctx, 1);
		atomic_sub(1, &mmut->kctx->used_pages);
	}
	atomic_sub(1, &kbdev->memdev.used_pages);

	kbase_trace_gpu_mem_usage_dec(kbdev, mmut->kctx, 1);
}

u64 kbase_mmu_create_ate(struct kbase_device *const kbdev,
	struct tagged_addr const phy, unsigned long const flags,
	int const level, int const group_id)
{
	u64 entry;

	kbdev->mmu_mode->entry_set_ate(&entry, phy, flags, level);
	return kbdev->mgm_dev->ops.mgm_update_gpu_pte(kbdev->mgm_dev,
		group_id, level, entry);
}

int kbase_mmu_insert_pages_no_flush(struct kbase_device *kbdev,
				    struct kbase_mmu_table *mmut,
				    const u64 start_vpfn,
				    struct tagged_addr *phys, size_t nr,
				    unsigned long flags,
				    int const group_id)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	u64 insert_vpfn = start_vpfn;
	size_t remain = nr;
	int err;
	struct kbase_mmu_mode const *mmu_mode;

	/* Note that 0 is a valid start_vpfn */
	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));

	mmu_mode = kbdev->mmu_mode;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	mutex_lock(&mmut->mmu_lock);

	while (remain) {
		unsigned int i;
		unsigned int vindex = insert_vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
		struct page *p;
		int cur_level;

		if (count > remain)
			count = remain;

		if (!vindex && is_huge_head(*phys))
			cur_level = MIDGARD_MMU_LEVEL(2);
		else
			cur_level = MIDGARD_MMU_BOTTOMLEVEL;

		/*
		 * Repeatedly calling mmu_get_pgd_at_level() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		do {
			err = mmu_get_pgd_at_level(kbdev, mmut, insert_vpfn,
						   cur_level, &pgd);
			if (err != -ENOMEM)
				break;
			/* Fill the memory pool with enough pages for
			 * the page walk to succeed
			 */
			mutex_unlock(&mmut->mmu_lock);
			err = kbase_mem_pool_grow(
#ifdef CONFIG_MALI_2MB_ALLOC
				&kbdev->mem_pools.large[mmut->group_id],
#else
				&kbdev->mem_pools.small[mmut->group_id],
#endif
				cur_level);
			mutex_lock(&mmut->mmu_lock);
		} while (!err);

		if (err) {
			dev_warn(kbdev->dev,
				 "%s: mmu_get_bottom_pgd failure\n", __func__);
			if (insert_vpfn != start_vpfn) {
				/* Invalidate the pages we have partially
				 * completed
				 */
				mmu_insert_pages_failure_recovery(kbdev,
						mmut, start_vpfn, insert_vpfn);
			}
			goto fail_unlock;
		}

		p = pfn_to_page(PFN_DOWN(pgd));
		pgd_page = kmap(p);
		if (!pgd_page) {
			dev_warn(kbdev->dev, "%s: kmap failure\n",
				 __func__);
			if (insert_vpfn != start_vpfn) {
				/* Invalidate the pages we have partially
				 * completed
				 */
				mmu_insert_pages_failure_recovery(kbdev,
						mmut, start_vpfn, insert_vpfn);
			}
			err = -ENOMEM;
			goto fail_unlock;
		}

		if (cur_level == MIDGARD_MMU_LEVEL(2)) {
			int level_index = (insert_vpfn >> 9) & 0x1FF;
			u64 *target = &pgd_page[level_index];

			if (mmu_mode->pte_is_valid(*target, cur_level))
				cleanup_empty_pte(kbdev, mmut, target);
			*target = kbase_mmu_create_ate(kbdev, *phys, flags,
				cur_level, group_id);
		} else {
			for (i = 0; i < count; i++) {
				unsigned int ofs = vindex + i;
				u64 *target = &pgd_page[ofs];

				/* Warn if the current page is a valid ATE
				 * entry. The page table shouldn't have anything
				 * in the place where we are trying to put a
				 * new entry. Modification to page table entries
				 * should be performed with
				 * kbase_mmu_update_pages()
				 */
				WARN_ON((*target & 1UL) != 0);

				*target = kbase_mmu_create_ate(kbdev,
					phys[i], flags, cur_level, group_id);
			}
		}

		phys += count;
		insert_vpfn += count;
		remain -= count;

		kbase_mmu_sync_pgd(kbdev,
				kbase_dma_addr(p) + (vindex * sizeof(u64)),
				count * sizeof(u64));

		kunmap(p);
	}

	err = 0;

fail_unlock:
	mutex_unlock(&mmut->mmu_lock);
	return err;
}

/*
 * Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn' for GPU address space
 * number 'as_nr'.
 */
int kbase_mmu_insert_pages(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut, u64 vpfn,
		struct tagged_addr *phys, size_t nr,
		unsigned long flags, int as_nr, int const group_id)
{
	int err;

	err = kbase_mmu_insert_pages_no_flush(kbdev, mmut, vpfn,
			phys, nr, flags, group_id);

	if (mmut->kctx)
		kbase_mmu_flush_invalidate(mmut->kctx, vpfn, nr, false);
	else
		kbase_mmu_flush_invalidate_no_ctx(kbdev, vpfn, nr, false,
				as_nr);

	return err;
}

KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages);

/**
 * kbase_mmu_flush_invalidate_noretain() - Flush and invalidate the GPU caches
 * without retaining the kbase context.
 * @kctx: The KBase context.
 * @vpfn: The virtual page frame number to start the flush on.
 * @nr: The number of pages to flush.
 * @sync: Set if the operation should be synchronous or not.
 *
 * As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any
 * other locking.
 */
static void kbase_mmu_flush_invalidate_noretain(struct kbase_context *kctx,
		u64 vpfn, size_t nr, bool sync)
{
	struct kbase_device *kbdev = kctx->kbdev;
	int err;
	u32 op;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return;

	if (sync)
		op = AS_COMMAND_FLUSH_MEM;
	else
		op = AS_COMMAND_FLUSH_PT;

	err = kbase_mmu_hw_do_operation(kbdev,
				&kbdev->as[kctx->as_nr],
				vpfn, nr, op, 0);
	if (err) {
		/* Flush failed to complete, assume the
		 * GPU has hung and perform a reset to recover
		 */
		dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover\n");

		if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_NONE))
			kbase_reset_gpu_locked(kbdev);
	}
}

/* Perform a flush/invalidate on a particular address space
 */
static void kbase_mmu_flush_invalidate_as(struct kbase_device *kbdev,
		struct kbase_as *as,
		u64 vpfn, size_t nr, bool sync)
{
	int err;
	u32 op;
	bool gpu_powered;
	unsigned long flags;

	spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
	gpu_powered = kbdev->pm.backend.gpu_powered;
	spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);

	/* GPU is off so there's no need to perform flush/invalidate.
	 * But even if GPU is not actually powered down, after gpu_powered flag
	 * was set to false, it is still safe to skip the flush/invalidate.
	 * The TLB invalidation will anyways be performed due to AS_COMMAND_UPDATE
	 * which is sent when address spaces are restored after gpu_powered flag
	 * is set to true. Flushing of L2 cache is certainly not required as L2
	 * cache is definitely off if gpu_powered is false.
	 */
	if (!gpu_powered)
		return;

	if (kbase_pm_context_active_handle_suspend(kbdev,
				KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
		/* GPU has just been powered off due to system suspend.
		 * So again, no need to perform flush/invalidate.
		 */
		return;
	}

	/* AS transaction begin */
	mutex_lock(&kbdev->mmu_hw_mutex);

	if (sync)
		op = AS_COMMAND_FLUSH_MEM;
	else
		op = AS_COMMAND_FLUSH_PT;

	err = kbase_mmu_hw_do_operation(kbdev,
			as, vpfn, nr, op, 0);

	if (err) {
		/* Flush failed to complete, assume the GPU has hung and
		 * perform a reset to recover
		 */
		dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover\n");

		if (kbase_prepare_to_reset_gpu(
			    kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
			kbase_reset_gpu(kbdev);
	}

	mutex_unlock(&kbdev->mmu_hw_mutex);
	/* AS transaction end */

	kbase_pm_context_idle(kbdev);
}

static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev,
		u64 vpfn, size_t nr, bool sync, int as_nr)
{
	/* Skip if there is nothing to do */
	if (nr) {
		kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[as_nr], vpfn,
					nr, sync);
	}
}

static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
		u64 vpfn, size_t nr, bool sync)
{
	struct kbase_device *kbdev;
	bool ctx_is_in_runpool;

	/* Early out if there is nothing to do */
	if (nr == 0)
		return;

	kbdev = kctx->kbdev;
#if !MALI_USE_CSF
	mutex_lock(&kbdev->js_data.queue_mutex);
	ctx_is_in_runpool = kbase_ctx_sched_inc_refcount(kctx);
	mutex_unlock(&kbdev->js_data.queue_mutex);
#else
	ctx_is_in_runpool = kbase_ctx_sched_inc_refcount_if_as_valid(kctx);
#endif /* !MALI_USE_CSF */

	if (ctx_is_in_runpool) {
		KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

		kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[kctx->as_nr],
				vpfn, nr, sync);

		release_ctx(kbdev, kctx);
	}
}

void kbase_mmu_update(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut,
		int as_nr)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
	lockdep_assert_held(&kbdev->mmu_hw_mutex);
	KBASE_DEBUG_ASSERT(as_nr != KBASEP_AS_NR_INVALID);

	kbdev->mmu_mode->update(kbdev, mmut, as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_update);

void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr)
{
	lockdep_assert_held(&kbdev->hwaccess_lock);
	lockdep_assert_held(&kbdev->mmu_hw_mutex);

	kbdev->mmu_mode->disable_as(kbdev, as_nr);
}

void kbase_mmu_disable(struct kbase_context *kctx)
{
	/* ASSERT that the context has a valid as_nr, which is only the case
	 * when it's scheduled in.
	 *
	 * as_nr won't change because the caller has the hwaccess_lock
	 */
	KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

	lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
	lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);

	/*
	 * The address space is being disabled, drain all knowledge of it out
	 * from the caches as pages and page tables might be freed after this.
	 *
	 * The job scheduler code will already be holding the locks and context
	 * so just do the flush.
	 */
	kbase_mmu_flush_invalidate_noretain(kctx, 0, ~0, true);

	kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_disable);

/*
 * We actually only discard the ATE, and not the page table
 * pages. There is a potential DoS here, as we'll leak memory by
 * having PTEs that are potentially unused.  Will require physical
 * page accounting, so MMU pages are part of the process allocation.
 *
 * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
 * currently scheduled into the runpool, and so potentially uses a lot of locks.
 * These locks must be taken in the correct order with respect to others
 * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
 * information.
 */
int kbase_mmu_teardown_pages(struct kbase_device *kbdev,
	struct kbase_mmu_table *mmut, u64 vpfn, size_t nr, int as_nr)
{
	phys_addr_t pgd;
	u64 start_vpfn = vpfn;
	size_t requested_nr = nr;
	struct kbase_mmu_mode const *mmu_mode;
	int err = -EFAULT;

	if (nr == 0) {
		/* early out if nothing to do */
		return 0;
	}

	mutex_lock(&mmut->mmu_lock);

	mmu_mode = kbdev->mmu_mode;

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
		unsigned int pcount;
		int level;
		u64 *page;

		if (count > nr)
			count = nr;

		/* need to check if this is a 2MB or a 4kB page */
		pgd = mmut->pgd;

		for (level = MIDGARD_MMU_TOPLEVEL;
				level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
			phys_addr_t next_pgd;

			index = (vpfn >> ((3 - level) * 9)) & 0x1FF;
			page = kmap(phys_to_page(pgd));
			if (mmu_mode->ate_is_valid(page[index], level))
				break; /* keep the mapping */
			else if (!mmu_mode->pte_is_valid(page[index], level)) {
				/* nothing here, advance */
				switch (level) {
				case MIDGARD_MMU_LEVEL(0):
					count = 134217728;
					break;
				case MIDGARD_MMU_LEVEL(1):
					count = 262144;
					break;
				case MIDGARD_MMU_LEVEL(2):
					count = 512;
					break;
				case MIDGARD_MMU_LEVEL(3):
					count = 1;
					break;
				}
				if (count > nr)
					count = nr;
				goto next;
			}
			next_pgd = mmu_mode->pte_to_phy_addr(page[index]);
			kunmap(phys_to_page(pgd));
			pgd = next_pgd;
		}

		switch (level) {
		case MIDGARD_MMU_LEVEL(0):
		case MIDGARD_MMU_LEVEL(1):
			dev_warn(kbdev->dev,
				 "%s: No support for ATEs at level %d\n",
				 __func__, level);
			kunmap(phys_to_page(pgd));
			goto out;
		case MIDGARD_MMU_LEVEL(2):
			/* can only teardown if count >= 512 */
			if (count >= 512) {
				pcount = 1;
			} else {
				dev_warn(kbdev->dev,
					 "%s: limiting teardown as it tries to do a partial 2MB teardown, need 512, but have %d to tear down\n",
					 __func__, count);
				pcount = 0;
			}
			break;
		case MIDGARD_MMU_BOTTOMLEVEL:
			/* page count is the same as the logical count */
			pcount = count;
			break;
		default:
			dev_err(kbdev->dev,
				"%s: found non-mapped memory, early out\n",
				__func__);
			vpfn += count;
			nr -= count;
			continue;
		}

		/* Invalidate the entries we added */
		for (i = 0; i < pcount; i++)
			mmu_mode->entry_invalidate(&page[index + i]);

		kbase_mmu_sync_pgd(kbdev,
				   kbase_dma_addr(phys_to_page(pgd)) +
				   8 * index, 8*pcount);

next:
		kunmap(phys_to_page(pgd));
		vpfn += count;
		nr -= count;
	}
	err = 0;
out:
	mutex_unlock(&mmut->mmu_lock);

	if (mmut->kctx)
		kbase_mmu_flush_invalidate(mmut->kctx, start_vpfn, requested_nr,
				true);
	else
		kbase_mmu_flush_invalidate_no_ctx(kbdev, start_vpfn, requested_nr,
				true, as_nr);

	return err;
}

KBASE_EXPORT_TEST_API(kbase_mmu_teardown_pages);

/**
 * kbase_mmu_update_pages_no_flush() - Update page table entries on the GPU
 *
 * This will update page table entries that already exist on the GPU based on
 * the new flags that are passed. It is used as a response to the changes of
 * the memory attributes
 *
 * The caller is responsible for validating the memory attributes
 *
 * @kctx:  Kbase context
 * @vpfn:  Virtual PFN (Page Frame Number) of the first page to update
 * @phys:  Tagged physical addresses of the physical pages to replace the
 *         current mappings
 * @nr:    Number of pages to update
 * @flags: Flags
 * @group_id: The physical memory group in which the page was allocated.
 *            Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
 */
static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
					struct tagged_addr *phys, size_t nr,
					unsigned long flags, int const group_id)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	int err;
	struct kbase_device *kbdev;

	if (WARN_ON(kctx == NULL))
		return -EINVAL;

	KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));

	/* Early out if there is nothing to do */
	if (nr == 0)
		return 0;

	mutex_lock(&kctx->mmu.mmu_lock);

	kbdev = kctx->kbdev;

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		size_t count = KBASE_MMU_PAGE_ENTRIES - index;
		struct page *p;

		if (count > nr)
			count = nr;

		do {
			err = mmu_get_bottom_pgd(kbdev, &kctx->mmu,
					vpfn, &pgd);
			if (err != -ENOMEM)
				break;
			/* Fill the memory pool with enough pages for
			 * the page walk to succeed
			 */
			mutex_unlock(&kctx->mmu.mmu_lock);
			err = kbase_mem_pool_grow(
#ifdef CONFIG_MALI_2MB_ALLOC
				&kbdev->mem_pools.large[
#else
				&kbdev->mem_pools.small[
#endif
					kctx->mmu.group_id],
				MIDGARD_MMU_BOTTOMLEVEL);
			mutex_lock(&kctx->mmu.mmu_lock);
		} while (!err);
		if (err) {
			dev_warn(kbdev->dev,
				 "mmu_get_bottom_pgd failure\n");
			goto fail_unlock;
		}

		p = pfn_to_page(PFN_DOWN(pgd));
		pgd_page = kmap(p);
		if (!pgd_page) {
			dev_warn(kbdev->dev, "kmap failure\n");
			err = -ENOMEM;
			goto fail_unlock;
		}

		for (i = 0; i < count; i++)
			pgd_page[index + i] = kbase_mmu_create_ate(kbdev,
				phys[i], flags, MIDGARD_MMU_BOTTOMLEVEL,
				group_id);

		phys += count;
		vpfn += count;
		nr -= count;

		kbase_mmu_sync_pgd(kbdev,
				kbase_dma_addr(p) + (index * sizeof(u64)),
				count * sizeof(u64));

		kunmap(pfn_to_page(PFN_DOWN(pgd)));
	}

	mutex_unlock(&kctx->mmu.mmu_lock);
	return 0;

fail_unlock:
	mutex_unlock(&kctx->mmu.mmu_lock);
	return err;
}

int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn,
			   struct tagged_addr *phys, size_t nr,
			   unsigned long flags, int const group_id)
{
	int err;

	err = kbase_mmu_update_pages_no_flush(kctx, vpfn, phys, nr, flags,
		group_id);
	kbase_mmu_flush_invalidate(kctx, vpfn, nr, true);
	return err;
}

static void mmu_teardown_level(struct kbase_device *kbdev,
		struct kbase_mmu_table *mmut, phys_addr_t pgd,
		int level, u64 *pgd_page_buffer)
{
	phys_addr_t target_pgd;
	struct page *p;
	u64 *pgd_page;
	int i;
	struct kbase_mmu_mode const *mmu_mode;

	lockdep_assert_held(&mmut->mmu_lock);

	pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
	/* kmap_atomic should NEVER fail. */
	if (WARN_ON(pgd_page == NULL))
		return;
	/* Copy the page to our preallocated buffer so that we can minimize
	 * kmap_atomic usage
	 */
	memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
	kunmap_atomic(pgd_page);
	pgd_page = pgd_page_buffer;

	mmu_mode = kbdev->mmu_mode;

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
		target_pgd = mmu_mode->pte_to_phy_addr(pgd_page[i]);

		if (target_pgd) {
			if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
				mmu_teardown_level(kbdev, mmut,
						   target_pgd,
						   level + 1,
						   pgd_page_buffer +
						   (PAGE_SIZE / sizeof(u64)));
			}
		}
	}

	p = pfn_to_page(PFN_DOWN(pgd));
#ifdef CONFIG_MALI_2MB_ALLOC
	kbase_mem_pool_free(&kbdev->mem_pools.large[mmut->group_id],
#else
	kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id],
#endif
		p, true);

	atomic_sub(1, &kbdev->memdev.used_pages);

	/* If MMU tables belong to a context then pages will have been accounted
	 * against it, so we must decrement the usage counts here.
	 */
	if (mmut->kctx) {
		kbase_process_page_usage_dec(mmut->kctx, 1);
		atomic_sub(1, &mmut->kctx->used_pages);
	}

	kbase_trace_gpu_mem_usage_dec(kbdev, mmut->kctx, 1);
}

int kbase_mmu_init(struct kbase_device *const kbdev,
	struct kbase_mmu_table *const mmut, struct kbase_context *const kctx,
	int const group_id)
{
	if (WARN_ON(group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) ||
	    WARN_ON(group_id < 0))
		return -EINVAL;

	mmut->group_id = group_id;
	mutex_init(&mmut->mmu_lock);
	mmut->kctx = kctx;

	/* Preallocate MMU depth of four pages for mmu_teardown_level to use */
	mmut->mmu_teardown_pages = kmalloc(PAGE_SIZE * 4, GFP_KERNEL);

	if (mmut->mmu_teardown_pages == NULL)
		return -ENOMEM;

	mmut->pgd = 0;
	/* We allocate pages into the kbdev memory pool, then
	 * kbase_mmu_alloc_pgd will allocate out of that pool. This is done to
	 * avoid allocations from the kernel happening with the lock held.
	 */
	while (!mmut->pgd) {
		int err;

		err = kbase_mem_pool_grow(
#ifdef CONFIG_MALI_2MB_ALLOC
			&kbdev->mem_pools.large[mmut->group_id],
#else
			&kbdev->mem_pools.small[mmut->group_id],
#endif
			MIDGARD_MMU_BOTTOMLEVEL);
		if (err) {
			kbase_mmu_term(kbdev, mmut);
			return -ENOMEM;
		}

		mutex_lock(&mmut->mmu_lock);
		mmut->pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
		mutex_unlock(&mmut->mmu_lock);
	}

	return 0;
}

void kbase_mmu_term(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
	if (mmut->pgd) {
		mutex_lock(&mmut->mmu_lock);
		mmu_teardown_level(kbdev, mmut, mmut->pgd, MIDGARD_MMU_TOPLEVEL,
				mmut->mmu_teardown_pages);
		mutex_unlock(&mmut->mmu_lock);

		if (mmut->kctx)
			KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, mmut->kctx->id, 0);
	}

	kfree(mmut->mmu_teardown_pages);
	mutex_destroy(&mmut->mmu_lock);
}

void kbase_mmu_as_term(struct kbase_device *kbdev, int i)
{
	destroy_workqueue(kbdev->as[i].pf_wq);
}

static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd,
		int level, char ** const buffer, size_t *size_left)
{
	phys_addr_t target_pgd;
	u64 *pgd_page;
	int i;
	size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
	size_t dump_size;
	struct kbase_device *kbdev;
	struct kbase_mmu_mode const *mmu_mode;

	if (WARN_ON(kctx == NULL))
		return 0;
	lockdep_assert_held(&kctx->mmu.mmu_lock);

	kbdev = kctx->kbdev;
	mmu_mode = kbdev->mmu_mode;

	pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
	if (!pgd_page) {
		dev_warn(kbdev->dev, "%s: kmap failure\n", __func__);
		return 0;
	}

	if (*size_left >= size) {
		/* A modified physical address that contains
		 * the page table level
		 */
		u64 m_pgd = pgd | level;

		/* Put the modified physical address in the output buffer */
		memcpy(*buffer, &m_pgd, sizeof(m_pgd));
		*buffer += sizeof(m_pgd);

		/* Followed by the page table itself */
		memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
		*buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;

		*size_left -= size;
	}

	if (level < MIDGARD_MMU_BOTTOMLEVEL) {
		for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
			if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
				target_pgd = mmu_mode->pte_to_phy_addr(
						pgd_page[i]);

				dump_size = kbasep_mmu_dump_level(kctx,
						target_pgd, level + 1,
						buffer, size_left);
				if (!dump_size) {
					kunmap(pfn_to_page(PFN_DOWN(pgd)));
					return 0;
				}
				size += dump_size;
			}
		}
	}

	kunmap(pfn_to_page(PFN_DOWN(pgd)));

	return size;
}

void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages)
{
	void *kaddr;
	size_t size_left;

	KBASE_DEBUG_ASSERT(kctx);

	if (nr_pages == 0) {
		/* can't dump in a 0 sized buffer, early out */
		return NULL;
	}

	size_left = nr_pages * PAGE_SIZE;

	if (WARN_ON(size_left == 0))
		return NULL;
	kaddr = vmalloc_user(size_left);

	mutex_lock(&kctx->mmu.mmu_lock);

	if (kaddr) {
		u64 end_marker = 0xFFULL;
		char *buffer;
		char *mmu_dump_buffer;
		u64 config[3];
		size_t dump_size, size = 0;
		struct kbase_mmu_setup as_setup;

		buffer = (char *)kaddr;
		mmu_dump_buffer = buffer;

		kctx->kbdev->mmu_mode->get_as_setup(&kctx->mmu,
				&as_setup);
		config[0] = as_setup.transtab;
		config[1] = as_setup.memattr;
		config[2] = as_setup.transcfg;
		memcpy(buffer, &config, sizeof(config));
		mmu_dump_buffer += sizeof(config);
		size_left -= sizeof(config);
		size += sizeof(config);

		dump_size = kbasep_mmu_dump_level(kctx,
				kctx->mmu.pgd,
				MIDGARD_MMU_TOPLEVEL,
				&mmu_dump_buffer,
				&size_left);

		if (!dump_size)
			goto fail_free;

		size += dump_size;

		/* Add on the size for the end marker */
		size += sizeof(u64);

		if (size > (nr_pages * PAGE_SIZE)) {
			/* The buffer isn't big enough - free the memory and
			 * return failure
			 */
			goto fail_free;
		}

		/* Add the end marker */
		memcpy(mmu_dump_buffer, &end_marker, sizeof(u64));
	}

	mutex_unlock(&kctx->mmu.mmu_lock);
	return kaddr;

fail_free:
	vfree(kaddr);
	mutex_unlock(&kctx->mmu.mmu_lock);
	return NULL;
}
KBASE_EXPORT_TEST_API(kbase_mmu_dump);

void kbase_mmu_bus_fault_worker(struct work_struct *data)
{
	struct kbase_as *faulting_as;
	int as_no;
	struct kbase_context *kctx;
	struct kbase_device *kbdev;
	struct kbase_fault *fault;

	faulting_as = container_of(data, struct kbase_as, work_busfault);
	fault = &faulting_as->bf_data;

	/* Ensure that any pending page fault worker has completed */
	flush_work(&faulting_as->work_pagefault);

	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);

	/* Grab the context, already refcounted in kbase_mmu_interrupt() on
	 * flagging of the bus-fault. Therefore, it cannot be scheduled out of
	 * this AS until we explicitly release it
	 */
	kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
	if (!kctx) {
		atomic_dec(&kbdev->faults_pending);
		return;
	}

#ifdef CONFIG_MALI_ARBITER_SUPPORT
	/* check if we still have GPU */
	if (unlikely(kbase_is_gpu_removed(kbdev))) {
		dev_dbg(kbdev->dev,
				"%s: GPU has been removed\n", __func__);
		release_ctx(kbdev, kctx);
		atomic_dec(&kbdev->faults_pending);
		return;
	}
#endif

	if (unlikely(fault->protected_mode)) {
		kbase_mmu_report_fault_and_kill(kctx, faulting_as,
				"Permission failure", fault);
		kbase_mmu_hw_clear_fault(kbdev, faulting_as,
				KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
		release_ctx(kbdev, kctx);
		atomic_dec(&kbdev->faults_pending);
		return;

	}

	/* NOTE: If GPU already powered off for suspend,
	 * we don't need to switch to unmapped
	 */
	if (!kbase_pm_context_active_handle_suspend(kbdev,
				KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
		kbase_gpu_report_bus_fault_and_kill(kctx, faulting_as, fault);
		kbase_pm_context_idle(kbdev);
	}

	release_ctx(kbdev, kctx);

	atomic_dec(&kbdev->faults_pending);
}

void kbase_flush_mmu_wqs(struct kbase_device *kbdev)
{
	int i;

	for (i = 0; i < kbdev->nr_hw_address_spaces; i++) {
		struct kbase_as *as = &kbdev->as[i];

		flush_workqueue(as->pf_wq);
	}
}