// SPDX-License-Identifier: /* * Copyright (C) 2016 ST Microelectronics S.A. * Copyright (C) 2010 Stollmann E+V GmbH * Copyright (C) 2010 Trusted Logic S.A. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "st21nfc.h" #define MAX_BUFFER_SIZE 260 #define HEADER_LENGTH 3 #define IDLE_CHARACTER 0x7e #define ST21NFC_POWER_STATE_MAX 3 #define WAKEUP_SRC_TIMEOUT (2000) #define EXYNOS_CLK_MASK 0x01 #define DRIVER_VERSION "2.0.19" #define PROP_PWR_MON_RW_ON_NTF nci_opcode_pack(NCI_GID_PROPRIETARY, 5) #define PROP_PWR_MON_RW_OFF_NTF nci_opcode_pack(NCI_GID_PROPRIETARY, 6) /*The enum is used to index a pw_states array, the values matter here*/ enum st21nfc_power_state { ST21NFC_IDLE = 0, ST21NFC_ACTIVE = 1, ST21NFC_ACTIVE_RW = 2 }; static const char *const st21nfc_power_state_name[] = { "IDLE", "ACTIVE", "ACTIVE_RW" }; enum st21nfc_read_state { ST21NFC_HEADER, ST21NFC_PAYLOAD }; struct nfc_sub_power_stats { uint64_t count; uint64_t duration; uint64_t last_entry; uint64_t last_exit; }; struct nfc_sub_power_stats_error { /* error transition header --> payload state machine */ uint64_t header_payload; /* error transition from an active state when not in idle state */ uint64_t active_not_idle; /* error transition from idle state to idle state */ uint64_t idle_to_idle; /* warning transition from active_rw state to idle state */ uint64_t active_rw_to_idle; /* error transition from active state to active state */ uint64_t active_to_active; /* error transition from idle state to active state with notification */ uint64_t idle_to_active_ntf; /* error transition from active_rw state to active_rw state */ uint64_t act_rw_to_act_rw; /* error transition from idle state to */ /* active_rw state with notification */ uint64_t idle_to_active_rw_ntf; }; /* * The member 'polarity_mode' defines * how the wakeup pin is configured and handled. * it can take the following values : * IRQF_TRIGGER_RISING * IRQF_TRIGGER_HIGH */ struct st21nfc_device { wait_queue_head_t read_wq; struct mutex read_mutex; struct mutex pidle_mutex; struct i2c_client *client; struct miscdevice st21nfc_device; uint8_t buffer[MAX_BUFFER_SIZE]; bool irq_enabled; bool irq_wake_up; bool irq_is_attached; bool device_open; /* Is device open? */ spinlock_t irq_enabled_lock; enum st21nfc_power_state pw_current; enum st21nfc_read_state r_state_current; int irq_pw_stats_idle; struct nfc_sub_power_stats pw_states[ST21NFC_POWER_STATE_MAX]; struct nfc_sub_power_stats_error pw_states_err; struct workqueue_struct *st_p_wq; struct work_struct st_p_work; /*Power state shadow copies for reading*/ enum st21nfc_power_state c_pw_current; struct nfc_sub_power_stats c_pw_states[ST21NFC_POWER_STATE_MAX]; struct nfc_sub_power_stats_error c_pw_states_err; /* CLK control */ bool clk_run; struct clk *s_clk; uint8_t pinctrl_en; bool pidle_active_low; int irq_clkreq; unsigned int clk_pad; /* GPIO for NFCC IRQ pin (input) */ struct gpio_desc *gpiod_irq; /* GPIO for NFCC Reset pin (output) */ struct gpio_desc *gpiod_reset; /* GPIO for NFCC CLK_REQ pin (input) */ struct gpio_desc *gpiod_clkreq; /* GPIO for NFCC CLF_MONITOR_PWR (input) */ struct gpio_desc *gpiod_pidle; /* irq_gpio polarity to be used */ unsigned int polarity_mode; }; /* * Routine to enable clock. * this routine can be extended to select from multiple * sources based on clk_src_name. */ static int st21nfc_clock_select(struct st21nfc_device *st21nfc_dev) { int ret = 0; st21nfc_dev->s_clk = clk_get(&st21nfc_dev->client->dev, "nfc_ref_clk"); /* if NULL we assume external crystal and dont fail */ if ((st21nfc_dev->s_clk == NULL) || IS_ERR(st21nfc_dev->s_clk)) return 0; if (st21nfc_dev->clk_run == false) { ret = clk_prepare_enable(st21nfc_dev->s_clk); if (ret) goto err_clk; st21nfc_dev->clk_run = true; } return ret; err_clk: return -EINVAL; } /* * Routine to disable clocks */ static int st21nfc_clock_deselect(struct st21nfc_device *st21nfc_dev) { /* if NULL we assume external crystal and dont fail */ if ((st21nfc_dev->s_clk == NULL) || IS_ERR(st21nfc_dev->s_clk)) return 0; if (st21nfc_dev->clk_run == true) { clk_disable_unprepare(st21nfc_dev->s_clk); st21nfc_dev->clk_run = false; } return 0; } static void st21nfc_exynos_clk_control(struct st21nfc_device *st21nfc_dev, bool enable) { if (st21nfc_dev->clk_pad) { exynos_pmu_update(st21nfc_dev->clk_pad, EXYNOS_CLK_MASK, enable ? 1 : 0); } } static irqreturn_t st21nfc_clkreq_irq_handler(int irq, void *dev_id) { struct st21nfc_device *st21nfc_dev = dev_id; int value = gpiod_get_value(st21nfc_dev->gpiod_clkreq); if (st21nfc_dev->pinctrl_en) { st21nfc_exynos_clk_control(st21nfc_dev, value ? true : false); } return IRQ_HANDLED; } static void st21nfc_disable_irq(struct st21nfc_device *st21nfc_dev) { unsigned long flags; spin_lock_irqsave(&st21nfc_dev->irq_enabled_lock, flags); if (st21nfc_dev->irq_enabled) { disable_irq_nosync(st21nfc_dev->client->irq); st21nfc_dev->irq_enabled = false; } spin_unlock_irqrestore(&st21nfc_dev->irq_enabled_lock, flags); } static void st21nfc_enable_irq(struct st21nfc_device *st21nfc_dev) { unsigned long flags; spin_lock_irqsave(&st21nfc_dev->irq_enabled_lock, flags); if (!st21nfc_dev->irq_enabled) { st21nfc_dev->irq_enabled = true; enable_irq(st21nfc_dev->client->irq); } spin_unlock_irqrestore(&st21nfc_dev->irq_enabled_lock, flags); } static irqreturn_t st21nfc_dev_irq_handler(int irq, void *dev_id) { struct st21nfc_device *st21nfc_dev = dev_id; if (device_may_wakeup(&st21nfc_dev->client->dev)) pm_wakeup_event(&st21nfc_dev->client->dev, WAKEUP_SRC_TIMEOUT); st21nfc_disable_irq(st21nfc_dev); /* Wake up waiting readers */ wake_up(&st21nfc_dev->read_wq); return IRQ_HANDLED; } static int st21nfc_loc_set_polaritymode(struct st21nfc_device *st21nfc_dev, int mode) { struct i2c_client *client = st21nfc_dev->client; struct device *dev = &client->dev; unsigned int irq_type; int ret; st21nfc_dev->polarity_mode = mode; /* setup irq_flags */ switch (mode) { case IRQF_TRIGGER_RISING: irq_type = IRQ_TYPE_EDGE_RISING; break; case IRQF_TRIGGER_HIGH: irq_type = IRQ_TYPE_LEVEL_HIGH; break; default: irq_type = IRQ_TYPE_EDGE_RISING; break; } if (st21nfc_dev->irq_is_attached) { devm_free_irq(dev, client->irq, st21nfc_dev); st21nfc_dev->irq_is_attached = false; } ret = irq_set_irq_type(client->irq, irq_type); if (ret) { dev_err(dev, "%s : set_irq_type failed\n", __func__); return -ENODEV; } /* request irq. the irq is set whenever the chip has data available * for reading. it is cleared when all data has been read. */ dev_dbg(dev, "%s : requesting IRQ %d\n", __func__, client->irq); st21nfc_dev->irq_enabled = true; ret = devm_request_irq(dev, client->irq, st21nfc_dev_irq_handler, st21nfc_dev->polarity_mode, client->name, st21nfc_dev); if (ret) { dev_err(dev, "%s : devm_request_irq failed\n", __func__); return -ENODEV; } st21nfc_dev->irq_is_attached = true; st21nfc_disable_irq(st21nfc_dev); return ret; } static void st21nfc_power_stats_switch( struct st21nfc_device *st21nfc_dev, uint64_t current_time_ms, enum st21nfc_power_state old_state, enum st21nfc_power_state new_state, bool is_ntf) { mutex_lock(&st21nfc_dev->pidle_mutex); if (new_state == old_state) { if ((st21nfc_dev->pw_states[ST21NFC_IDLE].last_entry != 0) || (old_state != ST21NFC_IDLE)) { dev_err(&st21nfc_dev->client->dev, "%s Error: Switched from %s to %s!: %llx, ntf=%d\n", __func__, st21nfc_power_state_name[old_state], st21nfc_power_state_name[new_state], current_time_ms, is_ntf); if (new_state == ST21NFC_IDLE) st21nfc_dev->pw_states_err.idle_to_idle++; else if (new_state == ST21NFC_ACTIVE) st21nfc_dev->pw_states_err.active_to_active++; else if (new_state == ST21NFC_ACTIVE_RW) st21nfc_dev->pw_states_err.act_rw_to_act_rw++; mutex_unlock(&st21nfc_dev->pidle_mutex); return; } } else if (!is_ntf && new_state == ST21NFC_ACTIVE && old_state != ST21NFC_IDLE) { st21nfc_dev->pw_states_err.active_not_idle++; } else if (!is_ntf && new_state == ST21NFC_IDLE && old_state == ST21NFC_ACTIVE_RW) { st21nfc_dev->pw_states_err.active_rw_to_idle++; } else if (is_ntf && new_state == ST21NFC_ACTIVE && old_state == ST21NFC_IDLE) { st21nfc_dev->pw_states_err.idle_to_active_ntf++; } else if (is_ntf && new_state == ST21NFC_ACTIVE_RW && old_state == ST21NFC_IDLE) { st21nfc_dev->pw_states_err.idle_to_active_rw_ntf++; } dev_dbg(&st21nfc_dev->client->dev, "%s Switching from %s to %s: %llx, ntf=%d\n", __func__, st21nfc_power_state_name[old_state], st21nfc_power_state_name[new_state], current_time_ms, is_ntf); st21nfc_dev->pw_states[old_state].last_exit = current_time_ms; st21nfc_dev->pw_states[old_state].duration += st21nfc_dev->pw_states[old_state].last_exit - st21nfc_dev->pw_states[old_state].last_entry; st21nfc_dev->pw_states[new_state].count++; st21nfc_dev->pw_current = new_state; st21nfc_dev->pw_states[new_state].last_entry = current_time_ms; mutex_unlock(&st21nfc_dev->pidle_mutex); } static void st21nfc_power_stats_idle_signal(struct st21nfc_device *st21nfc_dev) { uint64_t current_time_ms = ktime_to_ms(ktime_get_boottime()); bool is_active = (bool) gpiod_get_value(st21nfc_dev->gpiod_pidle); is_active = st21nfc_dev->pidle_active_low ? !is_active : is_active; st21nfc_power_stats_switch(st21nfc_dev, current_time_ms, st21nfc_dev->pw_current, is_active ? ST21NFC_ACTIVE : ST21NFC_IDLE, false); } static void st21nfc_pstate_wq(struct work_struct *work) { struct st21nfc_device *st21nfc_dev = container_of(work, struct st21nfc_device, st_p_work); st21nfc_power_stats_idle_signal(st21nfc_dev); } static irqreturn_t st21nfc_dev_power_stats_handler(int irq, void *dev_id) { struct st21nfc_device *st21nfc_dev = dev_id; queue_work(st21nfc_dev->st_p_wq, &(st21nfc_dev->st_p_work)); return IRQ_HANDLED; } static void st21nfc_power_stats_filter( struct st21nfc_device *st21nfc_dev, char *buf, size_t count) { uint64_t current_time_ms = ktime_to_ms(ktime_get_boottime()); __u16 ntf_opcode = nci_opcode(buf); if (IS_ERR(st21nfc_dev->gpiod_pidle)) return; /* In order to avoid counting active state on PAYLOAD where it would * match a possible header, power states are filtered only on NCI * headers. */ if (st21nfc_dev->r_state_current != ST21NFC_HEADER) return; if (count != HEADER_LENGTH) { dev_err(&st21nfc_dev->client->dev, "Warning: expect previous one was idle data\n"); st21nfc_dev->pw_states_err.header_payload++; return; } if (nci_mt(buf) != NCI_MT_NTF_PKT && nci_opcode_gid(ntf_opcode) != NCI_GID_PROPRIETARY) return; switch (ntf_opcode) { case PROP_PWR_MON_RW_OFF_NTF: st21nfc_power_stats_switch(st21nfc_dev, current_time_ms, st21nfc_dev->pw_current, ST21NFC_ACTIVE, true); break; case PROP_PWR_MON_RW_ON_NTF: st21nfc_power_stats_switch(st21nfc_dev, current_time_ms, st21nfc_dev->pw_current, ST21NFC_ACTIVE_RW, true); break; default: return; } return; } static ssize_t st21nfc_dev_read(struct file *filp, char __user *buf, size_t count, loff_t *offset) { struct st21nfc_device *st21nfc_dev = container_of(filp->private_data, struct st21nfc_device, st21nfc_device); int ret, idle = 0; if (count == 0) return 0; if (count > MAX_BUFFER_SIZE) count = MAX_BUFFER_SIZE; dev_dbg(&st21nfc_dev->client->dev, "%s : reading %zu bytes.\n", __func__, count); mutex_lock(&st21nfc_dev->read_mutex); /* Read data */ ret = i2c_master_recv(st21nfc_dev->client, st21nfc_dev->buffer, count); if (ret < 0) { dev_err(&st21nfc_dev->client->dev, "%s: i2c_master_recv returned %d\n", __func__, ret); mutex_unlock(&st21nfc_dev->read_mutex); return ret; } if (st21nfc_dev->r_state_current == ST21NFC_HEADER) { /* Counting idle index */ for (idle = 0; idle < ret && st21nfc_dev->buffer[idle] == IDLE_CHARACTER; idle++) ; if (idle > 0 && idle < HEADER_LENGTH) { memmove(st21nfc_dev->buffer, st21nfc_dev->buffer + idle, ret - idle); ret = i2c_master_recv(st21nfc_dev->client, st21nfc_dev->buffer + ret - idle, idle); if (ret < 0) { dev_err(&st21nfc_dev->client->dev, "%s: i2c_master_recv returned %d\n", __func__, ret); mutex_unlock(&st21nfc_dev->read_mutex); return ret; } ret = count; } } mutex_unlock(&st21nfc_dev->read_mutex); if (ret < 0) { dev_err(&st21nfc_dev->client->dev, "%s: i2c_master_recv returned %d\n", __func__, ret); return ret; } if (ret > count) { dev_err(&st21nfc_dev->client->dev, "%s: received too many bytes from i2c (%d)\n", __func__, ret); return -EIO; } if (idle < HEADER_LENGTH) { st21nfc_power_stats_filter(st21nfc_dev, st21nfc_dev->buffer, ret); /* change state only if a payload is detected, i.e. size > 0*/ if ((st21nfc_dev->r_state_current == ST21NFC_HEADER) && (st21nfc_dev->buffer[2] > 0)) { st21nfc_dev->r_state_current = ST21NFC_PAYLOAD; dev_dbg(&st21nfc_dev->client->dev, "%s : new state = ST21NFC_PAYLOAD\n", __func__); } else { st21nfc_dev->r_state_current = ST21NFC_HEADER; dev_dbg(&st21nfc_dev->client->dev, "%s : new state = ST21NFC_HEADER\n", __func__); } } if (copy_to_user(buf, st21nfc_dev->buffer, ret)) { dev_warn(&st21nfc_dev->client->dev, "%s : failed to copy to user space\n", __func__); return -EFAULT; } return ret; } static ssize_t st21nfc_dev_write(struct file *filp, const char __user *buf, size_t count, loff_t *offset) { struct st21nfc_device *st21nfc_dev = container_of(filp->private_data, struct st21nfc_device, st21nfc_device); char *tmp = NULL; int ret = count; dev_dbg(&st21nfc_dev->client->dev, "%s: st21nfc_dev ptr %p\n", __func__, st21nfc_dev); if (count > MAX_BUFFER_SIZE) count = MAX_BUFFER_SIZE; tmp = memdup_user(buf, count); if (IS_ERR(tmp)) { dev_err(&st21nfc_dev->client->dev, "%s : memdup_user failed\n", __func__); return -EFAULT; } dev_dbg(&st21nfc_dev->client->dev, "%s : writing %zu bytes.\n", __func__, count); /* Write data */ ret = i2c_master_send(st21nfc_dev->client, tmp, count); if (ret != count) { dev_err(&st21nfc_dev->client->dev, "%s : i2c_master_send returned %d\n", __func__, ret); ret = -EIO; } kfree(tmp); return ret; } static int st21nfc_dev_open(struct inode *inode, struct file *filp) { int ret = 0; struct st21nfc_device *st21nfc_dev = container_of(filp->private_data, struct st21nfc_device, st21nfc_device); if (st21nfc_dev->device_open) { ret = -EBUSY; } else { st21nfc_dev->device_open = true; if (st21nfc_dev->clk_pad) st21nfc_exynos_clk_control(st21nfc_dev, true); } return ret; } static int st21nfc_release(struct inode *inode, struct file *file) { struct st21nfc_device *st21nfc_dev = container_of(file->private_data, struct st21nfc_device, st21nfc_device); st21nfc_dev->device_open = false; if (st21nfc_dev->clk_pad) { st21nfc_exynos_clk_control(st21nfc_dev, false); } return 0; } static long st21nfc_dev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct st21nfc_device *st21nfc_dev = container_of(filp->private_data, struct st21nfc_device, st21nfc_device); struct i2c_client *client = st21nfc_dev->client; struct device *dev = &client->dev; int ret = 0; switch (cmd) { case ST21NFC_SET_POLARITY_RISING: dev_info(dev, " ### ST21NFC_SET_POLARITY_RISING ###"); st21nfc_loc_set_polaritymode(st21nfc_dev, IRQF_TRIGGER_RISING); break; case ST21NFC_SET_POLARITY_HIGH: dev_info(dev, " ### ST21NFC_SET_POLARITY_HIGH ###"); st21nfc_loc_set_polaritymode(st21nfc_dev, IRQF_TRIGGER_HIGH); break; case ST21NFC_PULSE_RESET: /* Double pulse is done to exit Quick boot mode.*/ if (!IS_ERR(st21nfc_dev->gpiod_reset)) { /* pulse low for 20 millisecs */ gpiod_set_value(st21nfc_dev->gpiod_reset, 0); msleep(20); gpiod_set_value(st21nfc_dev->gpiod_reset, 1); usleep_range(10000, 11000); /* pulse low for 20 millisecs */ gpiod_set_value(st21nfc_dev->gpiod_reset, 0); msleep(20); gpiod_set_value(st21nfc_dev->gpiod_reset, 1); } st21nfc_dev->r_state_current = ST21NFC_HEADER; break; case ST21NFC_GET_WAKEUP: /* deliver state of Wake_up_pin as return value of ioctl */ ret = gpiod_get_value(st21nfc_dev->gpiod_irq); /* * Warning: depending on gpiod_get_value implementation, * it can returns a value different than 1 in case of high level */ if (ret != 0) ret = 1; dev_dbg(&st21nfc_dev->client->dev, "%s get gpio result %d\n", __func__, ret); break; case ST21NFC_GET_POLARITY: ret = st21nfc_dev->polarity_mode; dev_dbg(&st21nfc_dev->client->dev, "%s get polarity %d\n", __func__, ret); break; case ST21NFC_RECOVERY: /* For ST21NFCD usage only */ dev_info(dev, "%s Recovery Request\n", __func__); if (!IS_ERR(st21nfc_dev->gpiod_reset)) { /* pulse low for 20 millisecs */ gpiod_set_value(st21nfc_dev->gpiod_reset, 0); usleep_range(10000, 11000); if (st21nfc_dev->irq_is_attached) { devm_free_irq(dev, client->irq, st21nfc_dev); st21nfc_dev->irq_is_attached = false; } /* During the reset, force IRQ OUT as */ /* DH output instead of input in normal usage */ ret = gpiod_direction_output(st21nfc_dev->gpiod_irq, 1); if (ret) { dev_err(&st21nfc_dev->client->dev, "%s : gpiod_direction_output failed\n", __func__); ret = -ENODEV; break; } gpiod_set_value(st21nfc_dev->gpiod_irq, 1); usleep_range(10000, 11000); gpiod_set_value(st21nfc_dev->gpiod_reset, 1); dev_info(dev, "%s done Pulse Request\n", __func__); } msleep(20); gpiod_set_value(st21nfc_dev->gpiod_irq, 0); msleep(20); gpiod_set_value(st21nfc_dev->gpiod_irq, 1); msleep(20); gpiod_set_value(st21nfc_dev->gpiod_irq, 0); msleep(20); dev_info(dev, "%s Recovery procedure finished\n", __func__); ret = gpiod_direction_input(st21nfc_dev->gpiod_irq); if (ret) { dev_err(&st21nfc_dev->client->dev, "%s : gpiod_direction_input failed\n", __func__); ret = -ENODEV; } break; case ST21NFC_CLK_ENABLE: st21nfc_exynos_clk_control(st21nfc_dev, true); break; case ST21NFC_CLK_DISABLE: st21nfc_exynos_clk_control(st21nfc_dev, false); break; case ST21NFC_CLK_STATE: if (st21nfc_dev->clk_pad == 0 || exynos_pmu_read(st21nfc_dev->clk_pad, &ret) < 0) { ret = -ENODEV; } else { ret &= EXYNOS_CLK_MASK; } break; default: dev_err(&st21nfc_dev->client->dev, "%s bad ioctl %u\n", __func__, cmd); ret = -EINVAL; break; } return ret; } static unsigned int st21nfc_poll(struct file *file, poll_table *wait) { struct st21nfc_device *st21nfc_dev = container_of(file->private_data, struct st21nfc_device, st21nfc_device); unsigned int mask = 0; int pinlev = 0; /* wait for Wake_up_pin == high */ poll_wait(file, &st21nfc_dev->read_wq, wait); pinlev = gpiod_get_value(st21nfc_dev->gpiod_irq); if (pinlev != 0) { dev_dbg(&st21nfc_dev->client->dev, "%s return ready\n", __func__); mask = POLLIN | POLLRDNORM; /* signal data avail */ st21nfc_disable_irq(st21nfc_dev); } else { /* Wake_up_pin is low. Activate ISR */ if (!st21nfc_dev->irq_enabled) { dev_dbg(&st21nfc_dev->client->dev, "%s enable irq\n", __func__); st21nfc_enable_irq(st21nfc_dev); } else { dev_dbg(&st21nfc_dev->client->dev, "%s irq already enabled\n", __func__); } } return mask; } static const struct file_operations st21nfc_dev_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = st21nfc_dev_read, .write = st21nfc_dev_write, .open = st21nfc_dev_open, .poll = st21nfc_poll, .release = st21nfc_release, .unlocked_ioctl = st21nfc_dev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = st21nfc_dev_ioctl #endif }; static ssize_t i2c_addr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); if (client != NULL) return scnprintf(buf, PAGE_SIZE, "0x%.2x\n", client->addr); return -ENODEV; } static ssize_t i2c_addr_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct st21nfc_device *data = dev_get_drvdata(dev); long new_addr = 0; if (data != NULL && data->client != NULL) { if (!kstrtol(buf, 10, &new_addr)) { mutex_lock(&data->read_mutex); data->client->addr = new_addr; mutex_unlock(&data->read_mutex); return count; } return -EINVAL; } return 0; } static ssize_t version_show(struct device *dev, struct device_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%s\n", DRIVER_VERSION); } static uint64_t st21nfc_power_duration(struct st21nfc_device *data, enum st21nfc_power_state pstate, uint64_t current_time_ms) { return data->c_pw_current != pstate ? data->c_pw_states[pstate].duration : data->c_pw_states[pstate].duration + (current_time_ms - data->c_pw_states[pstate].last_entry); } static ssize_t power_stats_show(struct device *dev, struct device_attribute *attr, char *buf) { struct st21nfc_device *data = dev_get_drvdata(dev); uint64_t current_time_ms; uint64_t idle_duration; uint64_t active_ce_duration; uint64_t active_rw_duration; mutex_lock(&data->pidle_mutex); data->c_pw_current = data->pw_current; data->c_pw_states_err = data->pw_states_err; memcpy(data->c_pw_states, data->pw_states, ST21NFC_POWER_STATE_MAX * sizeof(struct nfc_sub_power_stats)); mutex_unlock(&data->pidle_mutex); current_time_ms = ktime_to_ms(ktime_get_boottime()); idle_duration = st21nfc_power_duration(data, ST21NFC_IDLE, current_time_ms); active_ce_duration = st21nfc_power_duration(data, ST21NFC_ACTIVE, current_time_ms); active_rw_duration = st21nfc_power_duration(data, ST21NFC_ACTIVE_RW, current_time_ms); return scnprintf(buf, PAGE_SIZE, "NFC subsystem\n" "Idle mode:\n" "\tCumulative count: 0x%llx\n" "\tCumulative duration msec: 0x%llx\n" "\tLast entry timestamp msec: 0x%llx\n" "\tLast exit timestamp msec: 0x%llx\n" "Active mode:\n" "\tCumulative count: 0x%llx\n" "\tCumulative duration msec: 0x%llx\n" "\tLast entry timestamp msec: 0x%llx\n" "\tLast exit timestamp msec: 0x%llx\n" "Active Reader/Writer mode:\n" "\tCumulative count: 0x%llx\n" "\tCumulative duration msec: 0x%llx\n" "\tLast entry timestamp msec: 0x%llx\n" "\tLast exit timestamp msec: 0x%llx\n" "\nError transition header --> payload state machine: 0x%llx\n" "Error transition from an Active state when not in Idle state: 0x%llx\n" "Error transition from Idle state to Idle state: 0x%llx\n" "Warning transition from Active Reader/Writer state to Idle state: 0x%llx\n" "Error transition from Active state to Active state: 0x%llx\n" "Error transition from Idle state to Active state with notification: 0x%llx\n" "Error transition from Active Reader/Writer state to Active Reader/Writer state: 0x%llx\n" "Error transition from Idle state to Active Reader/Writer state with notification: 0x%llx\n" "\nTotal uptime: 0x%llx Cumulative modes time: 0x%llx\n", data->c_pw_states[ST21NFC_IDLE].count, idle_duration, data->c_pw_states[ST21NFC_IDLE].last_entry, data->c_pw_states[ST21NFC_IDLE].last_exit, data->c_pw_states[ST21NFC_ACTIVE].count, active_ce_duration, data->c_pw_states[ST21NFC_ACTIVE].last_entry, data->c_pw_states[ST21NFC_ACTIVE].last_exit, data->c_pw_states[ST21NFC_ACTIVE_RW].count, active_rw_duration, data->c_pw_states[ST21NFC_ACTIVE_RW].last_entry, data->c_pw_states[ST21NFC_ACTIVE_RW].last_exit, data->c_pw_states_err.header_payload, data->c_pw_states_err.active_not_idle, data->c_pw_states_err.idle_to_idle, data->c_pw_states_err.active_rw_to_idle, data->c_pw_states_err.active_to_active, data->c_pw_states_err.idle_to_active_ntf, data->c_pw_states_err.act_rw_to_act_rw, data->c_pw_states_err.idle_to_active_rw_ntf, current_time_ms, idle_duration + active_ce_duration + active_rw_duration); } static DEVICE_ATTR_RW(i2c_addr); static DEVICE_ATTR_RO(version); static DEVICE_ATTR_RO(power_stats); static struct attribute *st21nfc_attrs[] = { &dev_attr_i2c_addr.attr, &dev_attr_version.attr, NULL, }; static struct attribute_group st21nfc_attr_grp = { .attrs = st21nfc_attrs, }; static const struct acpi_gpio_params irq_gpios = {0, 0, false }; static const struct acpi_gpio_params reset_gpios = {1, 0, false }; static const struct acpi_gpio_params pidle_gpios = {2, 0, false}; static const struct acpi_gpio_params clkreq_gpios = {3, 0, false}; static const struct acpi_gpio_mapping acpi_st21nfc_gpios[] = { { "irq-gpios", &irq_gpios, 1}, { "reset-gpios", &reset_gpios, 1}, { "pidle-gpios", &pidle_gpios, 1}, { "clkreq-gpios", &clkreq_gpios, 1}, }; static int st21nfc_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret; struct st21nfc_device *st21nfc_dev; struct device *dev = &client->dev; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(dev, "%s : need I2C_FUNC_I2C\n", __func__); return -ENODEV; } st21nfc_dev = devm_kzalloc(dev, sizeof(*st21nfc_dev), GFP_KERNEL); if (st21nfc_dev == NULL) return -ENOMEM; /* store for later use */ st21nfc_dev->client = client; st21nfc_dev->r_state_current = ST21NFC_HEADER; client->adapter->retries = 1; ret = acpi_dev_add_driver_gpios(ACPI_COMPANION(dev), acpi_st21nfc_gpios); if (ret) dev_dbg(dev, "Unable to add GPIO mapping table\n"); st21nfc_dev->gpiod_irq = devm_gpiod_get(dev, "irq", GPIOD_IN); if (IS_ERR(st21nfc_dev->gpiod_irq)) { dev_err(dev, "%s : Unable to request irq-gpios\n", __func__); return -ENODEV; } st21nfc_dev->gpiod_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(st21nfc_dev->gpiod_reset)) { dev_warn(dev, "%s : Unable to request reset-gpios\n", __func__); return -ENODEV; } st21nfc_dev->gpiod_pidle = devm_gpiod_get(dev, "pidle", GPIOD_IN); if (IS_ERR(st21nfc_dev->gpiod_pidle)) { ret = 0; } else { if (!device_property_read_bool(dev, "st,pidle_active_low")) { dev_dbg(dev, "[dsc]%s:[OPTIONAL] pidle_active_low not set\n", __func__); st21nfc_dev->pidle_active_low = false; } else { dev_dbg(dev, "[dsc]%s:[OPTIONAL] pidle_active_low set\n", __func__); st21nfc_dev->pidle_active_low = true; } /* Prepare a workqueue for st21nfc_dev_power_stats_handler */ st21nfc_dev->st_p_wq = create_workqueue("st_pstate_work"); if(!st21nfc_dev->st_p_wq) return -ENODEV; mutex_init(&st21nfc_dev->pidle_mutex); INIT_WORK(&(st21nfc_dev->st_p_work), st21nfc_pstate_wq); /* Start the power stat in power mode idle */ st21nfc_dev->irq_pw_stats_idle = gpiod_to_irq(st21nfc_dev->gpiod_pidle); ret = irq_set_irq_type(st21nfc_dev->irq_pw_stats_idle, IRQ_TYPE_EDGE_BOTH); if (ret) { dev_err(dev, "%s : set_irq_type failed\n", __func__); goto err_pidle_workqueue; } /* This next call requests an interrupt line */ ret = devm_request_irq(dev, st21nfc_dev->irq_pw_stats_idle, (irq_handler_t)st21nfc_dev_power_stats_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, /* Interrupt on both edges */ "st21nfc_pw_stats_idle_handle", st21nfc_dev); if (ret) { dev_err(dev, "%s : devm_request_irq for power stats idle failed\n", __func__); goto err_pidle_workqueue; } ret = sysfs_create_file(&dev->kobj, &dev_attr_power_stats.attr); if (ret) { dev_err(dev, "%s : sysfs_create_file for power stats failed\n", __func__); goto err_pidle_workqueue; } } st21nfc_dev->gpiod_clkreq = devm_gpiod_get(dev, "clkreq", GPIOD_IN); if (IS_ERR(st21nfc_dev->gpiod_clkreq)) { ret = 0; } else { if (!device_property_read_bool(dev, "st,clk_pinctrl")) { dev_dbg(dev, "[dsc]%s:[OPTIONAL] clk_pinctrl not set\n", __func__); st21nfc_dev->pinctrl_en = 0; } else { dev_dbg(dev, "[dsc]%s:[OPTIONAL] clk_pinctrl set\n", __func__); st21nfc_dev->pinctrl_en = 1; /* handle clk_req irq */ st21nfc_dev->irq_clkreq = gpiod_to_irq(st21nfc_dev->gpiod_clkreq); ret = irq_set_irq_type(st21nfc_dev->irq_clkreq, IRQ_TYPE_EDGE_BOTH); if (ret) { dev_err(dev, "%s : set_irq_type failed\n", __func__); st21nfc_dev->pinctrl_en = 0; } else { ret = devm_request_irq(dev, st21nfc_dev->irq_clkreq, st21nfc_clkreq_irq_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "st21nfc_clkreq_handle", st21nfc_dev); if (ret) { dev_err(dev, "%s : devm_request_irq for clkreq irq failed\n", __func__); st21nfc_dev->pinctrl_en = 0; } } } /* Get clk_pad value*/ if (device_property_read_u32(dev, "pmu_clk_pad", &st21nfc_dev->clk_pad)) { dev_err(dev, "%s : PMU_CLKOUT_PAD offset is unset\n", __func__); st21nfc_dev->clk_pad = 0; st21nfc_dev->pinctrl_en = 0; } ret = st21nfc_clock_select(st21nfc_dev); if (ret < 0) { dev_err(dev, "%s : st21nfc_clock_select failed\n", __func__); goto err_sysfs_power_stats; } } client->irq = gpiod_to_irq(st21nfc_dev->gpiod_irq); /* init mutex and queues */ init_waitqueue_head(&st21nfc_dev->read_wq); mutex_init(&st21nfc_dev->read_mutex); spin_lock_init(&st21nfc_dev->irq_enabled_lock); dev_dbg(dev, "%s : debug irq_gpio = %d, client-irq = %d\n", __func__, desc_to_gpio(st21nfc_dev->gpiod_irq), client->irq); if (!IS_ERR(st21nfc_dev->gpiod_pidle)) { dev_dbg(dev, "%s : pidle_gpio = %d\n", __func__, desc_to_gpio(st21nfc_dev->gpiod_pidle)); } if (!IS_ERR(st21nfc_dev->gpiod_clkreq)) { dev_dbg(dev, "%s : clkreq_gpio = %d\n", __func__, desc_to_gpio(st21nfc_dev->gpiod_clkreq)); } st21nfc_dev->st21nfc_device.minor = MISC_DYNAMIC_MINOR; st21nfc_dev->st21nfc_device.name = "st21nfc"; st21nfc_dev->st21nfc_device.fops = &st21nfc_dev_fops; st21nfc_dev->st21nfc_device.parent = dev; i2c_set_clientdata(client, st21nfc_dev); ret = misc_register(&st21nfc_dev->st21nfc_device); if (ret) { dev_err(dev, "%s : misc_register failed\n", __func__); goto err_misc_register; } ret = sysfs_create_group(&dev->kobj, &st21nfc_attr_grp); if (ret) { dev_err(dev, "%s : sysfs_create_group failed\n", __func__); goto err_sysfs_create_group_failed; } device_init_wakeup(&client->dev, true); device_set_wakeup_capable(&client->dev, true); st21nfc_dev->irq_wake_up = false; return 0; err_sysfs_create_group_failed: misc_deregister(&st21nfc_dev->st21nfc_device); err_misc_register: mutex_destroy(&st21nfc_dev->read_mutex); err_sysfs_power_stats: if (!IS_ERR(st21nfc_dev->gpiod_pidle)) { sysfs_remove_file(&client->dev.kobj, &dev_attr_power_stats.attr); } err_pidle_workqueue: if (!IS_ERR(st21nfc_dev->gpiod_pidle)) { mutex_destroy(&st21nfc_dev->pidle_mutex); destroy_workqueue(st21nfc_dev->st_p_wq); } return ret; } static int st21nfc_remove(struct i2c_client *client) { struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client); st21nfc_clock_deselect(st21nfc_dev); misc_deregister(&st21nfc_dev->st21nfc_device); if (!IS_ERR(st21nfc_dev->gpiod_pidle)) { sysfs_remove_file(&client->dev.kobj, &dev_attr_power_stats.attr); mutex_destroy(&st21nfc_dev->pidle_mutex); } sysfs_remove_group(&client->dev.kobj, &st21nfc_attr_grp); mutex_destroy(&st21nfc_dev->read_mutex); acpi_dev_remove_driver_gpios(ACPI_COMPANION(&client->dev)); return 0; } static int st21nfc_suspend(struct device *device) { struct i2c_client *client = to_i2c_client(device); struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client); if (device_may_wakeup(&client->dev) && st21nfc_dev->irq_enabled) { if (!enable_irq_wake(client->irq)) st21nfc_dev->irq_wake_up = true; } return 0; } static int st21nfc_resume(struct device *device) { struct i2c_client *client = to_i2c_client(device); struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client); if (device_may_wakeup(&client->dev) && st21nfc_dev->irq_wake_up) { if (!disable_irq_wake(client->irq)) st21nfc_dev->irq_wake_up = false; } if (!IS_ERR(st21nfc_dev->gpiod_pidle)) { bool is_active = (bool) gpiod_get_value(st21nfc_dev->gpiod_pidle); is_active = st21nfc_dev->pidle_active_low ? !is_active : is_active; if((st21nfc_dev->pw_current == ST21NFC_IDLE && is_active) || (st21nfc_dev->pw_current == ST21NFC_ACTIVE && !is_active)) { queue_work(st21nfc_dev->st_p_wq, &(st21nfc_dev->st_p_work)); } } return 0; } static const struct i2c_device_id st21nfc_id[] = { {"st21nfc", 0}, {} }; static const struct of_device_id st21nfc_of_match[] = { { .compatible = "st,st21nfc", }, {} }; MODULE_DEVICE_TABLE(of, st21nfc_of_match); static const struct dev_pm_ops st21nfc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(st21nfc_suspend, st21nfc_resume) }; #ifdef CONFIG_ACPI static const struct acpi_device_id st21nfc_acpi_match[] = { {"SMO2104"}, {} }; MODULE_DEVICE_TABLE(acpi, st21nfc_acpi_match); #endif static struct i2c_driver st21nfc_driver = { .id_table = st21nfc_id, .driver = { .name = "st21nfc", .owner = THIS_MODULE, .of_match_table = st21nfc_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = &st21nfc_pm_ops, .acpi_match_table = ACPI_PTR(st21nfc_acpi_match), }, .probe = st21nfc_probe, .remove = st21nfc_remove, }; #ifdef GKI_MODULE module_i2c_driver(st21nfc_driver); #else /* * module load/unload record keeping */ static int __init st21nfc_dev_init(void) { pr_info("%s: Loading st21nfc driver (version %s)\n", __func__, DRIVER_VERSION); return i2c_add_driver(&st21nfc_driver); } module_init(st21nfc_dev_init); static void __exit st21nfc_dev_exit(void) { pr_debug("Unloading st21nfc driver\n"); i2c_del_driver(&st21nfc_driver); } module_exit(st21nfc_dev_exit); #endif MODULE_AUTHOR("STMicroelectronics"); MODULE_DESCRIPTION("NFC ST21NFC driver"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL");