/* * Driver O/S-independent utility routines * * Copyright (C) 2021, Broadcom. * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * * <> */ #include #include #include #ifdef BCMDRIVER #include #include #if !defined(BCMDONGLEHOST) || defined(BCMNVRAM) #include #endif #else /* !BCMDRIVER */ #include #include #include #include #if defined(BCMEXTSUP) #include #endif #ifndef ASSERT #define ASSERT(exp) #endif #endif /* !BCMDRIVER */ #if defined(_WIN32) || defined(NDIS) || defined(DONGLEBUILD) /* Debatable */ #include #endif #include #include #include #include #include #include #include <802.1d.h> #include <802.11.h> #include #include #include #ifdef BCMPERFSTATS #include #endif #define NUMBER_OF_BITS_BYTE 8u /* TX_HISTOGRAM enable/disable state flag * Updated in histogram.c */ #if defined(TX_HISTOGRAM) && !defined(TX_HISTOGRAM_DISABLED) /* initialized to TRUE in tx_histogram_init() */ bool _tx_histogram_enabled = FALSE; #else bool _tx_histogram_enabled = FALSE; #endif /* TX_HISTOGRAM && !TX_HISTOGRAM_DISABLED */ #ifdef PRIVACY_MASK struct ether_addr privacy_addrmask; /* RAM accessor function to avoid 'privacy_addrmask' in ROM/RAM shared data section. */ static struct ether_addr * BCMRAMFN(privacy_addrmask_get)(void) { return &privacy_addrmask; } #endif /* PRIVACY_MASK */ #ifdef BCMDRIVER #ifndef BCM_ARM_BACKTRACE /* function pointers for firmware stack backtrace utility */ void (*const BCMPOST_TRAP_RODATA(print_btrace_int_fn))(int depth, uint32 pc, uint32 lr, uint32 sp) = NULL; void (*const BCMPOST_TRAP_RODATA(print_btrace_fn))(int depth) = NULL; #else void print_backtrace(int depth); void (*const BCMPOST_TRAP_RODATA(print_btrace_fn))(int depth) = print_backtrace; void print_backtrace_int(int depth, uint32 pc, uint32 lr, uint32 sp); void (*const BCMPOST_TRAP_RODATA(print_btrace_int_fn))(int depth, uint32 pc, uint32 lr, uint32 sp) = print_backtrace_int; #endif #if !defined(BCMDONGLEHOST) #ifndef BCM_BOOTLOADER /* Forward declarations */ static int getintvararray_internal(char *vars, const char *name, int index); static int getintvararraysize_internal(char *vars, const char *name); static #ifndef ATE_BUILD const #endif char * getvar_internal(char *vars, const char *name); static int getintvar_internal(char *vars, const char *name); /* * Search the name=value vars for a specific one and return its value. * Returns NULL if not found. */ #ifndef ATE_BUILD const #endif char * getvar(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getvar_internal(vars, name); } static #ifndef ATE_BUILD const #endif char * getvar_internal(char *vars, const char *name) { char *s; uint len; if (!name) return NULL; len = strlen(name); if (len == 0u) { return NULL; } /* first look in vars[] */ for (s = vars; s && *s;) { if ((bcmp(s, name, len) == 0) && (s[len] == '=')) { return (&s[len+1u]); } while (*s++) ; } /* then query nvram */ return (nvram_get(name)); } /* * Search the vars for a specific one and return its value as * an integer. Returns 0 if not found. */ int getintvar(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getintvar_internal(vars, name); } static int getintvar_internal(char *vars, const char *name) { const char *val; if ((val = getvar_internal(vars, name)) == NULL) return (0); return (int)(bcm_strtoul(val, NULL, 0)); } int getintvararray(char *vars, const char *name, int index) { NVRAM_RECLAIM_CHECK(name); return getintvararray_internal(vars, name, index); } static int getintvararray_internal(char *vars, const char *name, int index) { const char *buf; char *endp; int i = 0; int val = 0; if ((buf = getvar_internal(vars, name)) == NULL) { return (0); } /* table values are always separated by "," or " " */ while (*buf != '\0') { val = (int)bcm_strtoul(buf, &endp, 0); if (i == index) { return val; } buf = endp; /* delimiter is ',' */ if (*buf == ',') buf++; i++; } return (0); } int getintvararraysize(char *vars, const char *name) { NVRAM_RECLAIM_CHECK(name); return getintvararraysize_internal(vars, name); } static int getintvararraysize_internal(char *vars, const char *name) { const char *buf; char *endp; int count = 0; int val = 0; if ((buf = getvar_internal(vars, name)) == NULL) { return (0); } /* table values are always separated by "," or " " */ while (*buf != '\0') { val = (int)bcm_strtoul(buf, &endp, 0); buf = endp; /* delimiter is ',' */ if (*buf == ',') buf++; count++; } BCM_REFERENCE(val); return count; } /* Read an array of values from a possibly slice-specific nvram string * Store the values in either the uint8 dest_array1 or in the int16 dest_array2. * Pass in NULL for the dest_array[12] that is not to be used. */ static int getintvararray_slicespecific(osl_t *osh, char *vars, char *vars_table_accessor, const char* name, uint8* dest_array1, int16* dest_array2, uint dest_size) { uint i; uint array_size = 0; int err = BCME_OK; uint prefixed_name_sz; char *prefixed_name = NULL; const char *new_name; int val; prefixed_name_sz = get_slicespecific_var_name(osh, vars_table_accessor, name, &prefixed_name); if (prefixed_name_sz == 0) { return BCME_NOMEM; } new_name = prefixed_name; (void) new_name; if (getvar(vars, new_name) == NULL) { /* Try again without the slice prefix in the name */ new_name = name; if (getvar(vars, name) == NULL) { err = BCME_NOTFOUND; goto done; } } array_size = (uint)getintvararraysize(vars, new_name); if (array_size > dest_size) { err = BCME_BUFTOOSHORT; ASSERT(array_size <= dest_size); goto done; } /* limit the initialization to the size of the nvram array */ array_size = MIN(array_size, dest_size); /* load the destination array with the nvram array values */ for (i = 0; i < array_size; i++) { val = getintvararray(vars, new_name, (int)i); if (dest_array1) { dest_array1[i] = (uint8)val; } else if (dest_array2) { dest_array2[i] = (int16)val; } } done: MFREE(osh, prefixed_name, prefixed_name_sz); return (err < 0) ? err : (int)array_size; } int get_uint8_vararray_slicespecific(osl_t *osh, char *vars, char *vars_table_accessor, const char* name, uint8* dest_array, uint dest_size) { int ret; ret = getintvararray_slicespecific(osh, vars, vars_table_accessor, name, dest_array, NULL, dest_size); return ret; } int get_int16_vararray_slicespecific(osl_t *osh, char *vars, char *vars_table_accessor, const char* name, int16* dest_array, uint dest_size) { return getintvararray_slicespecific(osh, vars, vars_table_accessor, name, NULL, dest_array, dest_size); } /* Prepend a slice-specific accessor to an nvram string name. * Sets name_out to the allocated string. Returns the allocated size of the name string. * Caller is responsible for freeing the resulting name string with MFREE. */ uint get_slicespecific_var_name(osl_t *osh, char *vars_table_accessor, const char *name, char **name_out) { char *name_with_prefix = NULL; uint sz; uint max_copy_size; sz = strlen(name) + strlen(vars_table_accessor) + 1; name_with_prefix = (char *) MALLOC_NOPERSIST(osh, sz); if (name_with_prefix == NULL) { sz = 0; goto end; } name_with_prefix[0] = 0; name_with_prefix[sz - 1] = 0; max_copy_size = sz - 1; /* if accessor contains a "slice/N/" string */ if (vars_table_accessor[0] != 0) { /* prepend accessor to the vars-name */ bcmstrncat(name_with_prefix, vars_table_accessor, max_copy_size); max_copy_size -= strlen(name_with_prefix); } /* Append vars-name */ bcmstrncat(name_with_prefix, name, max_copy_size); end: *name_out = name_with_prefix; return sz; } #endif /* BCM_BOOTLOADER */ #if defined(BCMNVRAMR) || defined(BCMNVRAMW) /* Search for token in comma separated token-string */ static int findmatch(const char *string, const char *name) { uint len; char *c; len = strlen(name); while ((c = strchr(string, ',')) != NULL) { if (len == (uint)(c - string) && !strncmp(string, name, len)) return 1; string = c + 1; } return (!strcmp(string, name)); } /* Return gpio pin number assigned to the named pin * * Variable should be in format: * * gpio=pin_name,pin_name * * This format allows multiple features to share the gpio with mutual * understanding. * * 'def_pin' is returned if a specific gpio is not defined for the requested functionality * and if def_pin is not used by others. */ uint getgpiopin(char *vars, char *pin_name, uint def_pin) { char name[] = "gpioXXXX"; const char *val; uint pin; /* Go thru all possibilities till a match in pin name */ for (pin = 0; pin < GPIO_NUMPINS; pin ++) { snprintf(name, sizeof(name), "gpio%d", pin); val = getvar(vars, name); if (val && findmatch(val, pin_name)) return pin; } if (def_pin != GPIO_PIN_NOTDEFINED) { /* make sure the default pin is not used by someone else */ snprintf(name, sizeof(name), "gpio%d", def_pin); if (getvar(vars, name)) { def_pin = GPIO_PIN_NOTDEFINED; } } return def_pin; } #endif /* BCMNVRAMR || BCMNVRAMW */ #endif /* !BCMDONGLEHOST */ /* return total length of buffer chain. In case of CSO, submsdu may have extra tsohdr and if * pktotlen should not include submsdu tso header, use the API pkttotlen_no_sfhtoe_hdr. */ uint BCMFASTPATH(pkttotlen)(osl_t *osh, void *p) { uint total = 0; for (; p; p = PKTNEXT(osh, p)) { total += PKTLEN(osh, p); if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) { total += PKTFRAGTOTLEN(osh, p); } } return (total); } #ifdef WLCSO /* return total length of buffer chain, but exclude tso hdr of submsdu if its added */ uint BCMFASTPATH(pkttotlen_no_sfhtoe_hdr)(osl_t *osh, void *p, uint toe_hdr_len) { uint total = 0; for (; p; p = PKTNEXT(osh, p)) { total += PKTLEN(osh, p); /* exclude toe_hdr_len if its part of PKTLEN() */ if (PKTISSUBMSDUTOEHDR(osh, p)) { total -= toe_hdr_len; } if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) { total += PKTFRAGTOTLEN(osh, p); } } return (total); } #endif /* WLCSO */ /* return total length of buffer chain */ uint BCMFASTPATH(pkttotcnt)(osl_t *osh, void *p) { uint cnt = 0; for (; p; p = PKTNEXT(osh, p)) { cnt++; } return (cnt); } /* return the last buffer of chained pkt */ void * BCMFASTPATH(pktlast)(osl_t *osh, void *p) { for (; PKTNEXT(osh, p); p = PKTNEXT(osh, p)) ; return (p); } /* count segments of a chained packet */ uint BCMFASTPATH(pktsegcnt)(osl_t *osh, void *p) { uint cnt; for (cnt = 0; p; p = PKTNEXT(osh, p)) { if (PKTLEN(osh, p)) { cnt++; } #ifdef BCMLFRAG if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) { cnt += PKTFRAGTOTNUM(osh, p); } #endif /* BCMLFRAG */ } return cnt; } #ifdef DONGLEBUILD /** * Takes in a lbuf/lfrag and no of bytes to be trimmed from tail. * trim bytes could be spread out in below 3 formats * 1. entirely in dongle * 2. entirely in host * 3. split between host-dongle */ void BCMFASTPATH(pktfrag_trim_tailbytes)(osl_t * osh, void* p, uint16 trim_len, uint8 type) { uint tcmseg_len = PKTLEN(osh, p); /* TCM segment length */ uint hostseg_len = PKTFRAGUSEDLEN(osh, p); /* HOST segment length */ /* return if zero trim length- Nothing to do */ if (trim_len == 0) return; /* if header conv is on, there is no fcs at the end */ /* JIRA:SW4349-318 */ if (PKTISHDRCONVTD(osh, p)) return; /* if pktfetched, then its already trimmed */ if (PKTISPKTFETCHED(osh, p)) return; if (PKTFRAGUSEDLEN(osh, p) >= trim_len) { /* TRIM bytes entirely in host */ ASSERT_FP(PKTISRXFRAG(osh, p)); PKTSETFRAGUSEDLEN(osh, p, (hostseg_len - trim_len)); } else { /* trim bytes either in dongle or split between dongle-host */ PKTSETLEN(osh, p, (tcmseg_len - (trim_len - hostseg_len))); /* No more contents in host; reset length to zero */ if (PKTFRAGUSEDLEN(osh, p)) PKTSETFRAGUSEDLEN(osh, p, 0); } } #endif /* DONGLEBUILD */ /* copy a pkt buffer chain into a buffer */ uint BCMPOSTTRAPFN(pktcopy)(osl_t *osh, void *p, uint offset, uint len, uchar *buf) { uint n, ret = 0; /* skip 'offset' bytes */ for (; p && offset; p = PKTNEXT(osh, p)) { if (offset < PKTLEN(osh, p)) break; offset -= PKTLEN(osh, p); } if (!p) return 0; /* copy the data */ for (; p && len; p = PKTNEXT(osh, p)) { n = MIN(PKTLEN(osh, p) - offset, len); bcopy(PKTDATA(osh, p) + offset, buf, n); buf += n; len -= n; ret += n; offset = 0; } return ret; } /* copy a buffer into a pkt buffer chain */ uint pktfrombuf(osl_t *osh, void *p, uint offset, uint len, uchar *buf) { uint n, ret = 0; /* skip 'offset' bytes */ for (; p && offset; p = PKTNEXT(osh, p)) { if (offset < PKTLEN(osh, p)) break; offset -= PKTLEN(osh, p); } if (!p) return 0; /* copy the data */ for (; p && len; p = PKTNEXT(osh, p)) { n = MIN(PKTLEN(osh, p) - offset, len); bcopy(buf, PKTDATA(osh, p) + offset, n); buf += n; len -= n; ret += n; offset = 0; } return ret; } #ifdef NOT_YET /* copy data from one pkt buffer (chain) to another */ uint pkt2pktcopy(osl_t *osh, void *p1, uint offs1, void *p2, uint offs2, uint maxlen) { uint8 *dp1, *dp2; uint len1, len2, copylen, totallen; for (; p1 && offs; p1 = PKTNEXT(osh, p1)) { if (offs1 < (uint)PKTLEN(osh, p1)) break; offs1 -= PKTLEN(osh, p1); } for (; p2 && offs; p2 = PKTNEXT(osh, p2)) { if (offs2 < (uint)PKTLEN(osh, p2)) break; offs2 -= PKTLEN(osh, p2); } /* Heck w/it, only need the above for now */ } #endif /* NOT_YET */ uint8 * BCMFASTPATH(pktdataoffset)(osl_t *osh, void *p, uint offset) { uint total = pkttotlen(osh, p); uint pkt_off = 0, len = 0; uint8 *pdata = (uint8 *) PKTDATA(osh, p); if (offset > total) return NULL; for (; p; p = PKTNEXT(osh, p)) { pdata = (uint8 *) PKTDATA(osh, p); pkt_off = offset - len; len += PKTLEN(osh, p); if (len > offset) break; } return (uint8*) (pdata+pkt_off); } /* given a offset in pdata, find the pkt seg hdr */ void * pktoffset(osl_t *osh, void *p, uint offset) { uint total = pkttotlen(osh, p); uint len = 0; if (offset > total) return NULL; for (; p; p = PKTNEXT(osh, p)) { len += PKTLEN(osh, p); if (len > offset) break; } return p; } void bcm_mdelay(uint ms) { uint i; for (i = 0; i < ms; i++) { OSL_DELAY(1000); } } #if defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS) #if defined(__ARM_ARCH_7R__) #define BCMLOG_CYCLE_OVERHEAD 54 /* Number of CPU cycle overhead due to bcmlog(). * This is to compensate CPU cycle incurred by * added bcmlog() function call for profiling. */ #else #define BCMLOG_CYCLE_OVERHEAD 0 #endif #define LOGSIZE 256 /* should be power of 2 to avoid div below */ static struct { uint cycles; const char *fmt; uint a1; uint a2; uchar indent; /* track indent level for nice printing */ } logtab[LOGSIZE]; /* last entry logged */ static uint logi = 0; /* next entry to read */ static uint volatile readi = 0; #endif /* defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS) */ #ifdef BCMPERFSTATS /* TODO: make the utility configurable (choose between icache, dcache, hits, misses ...) */ void bcm_perf_enable() { BCMPERF_ENABLE_INSTRCOUNT(); BCMPERF_ENABLE_ICACHE_MISS(); BCMPERF_ENABLE_ICACHE_HIT(); } /* WARNING: This routine uses OSL_GETCYCLES(), which can give unexpected results on * modern speed stepping CPUs. Use bcmtslog() instead in combination with TSF counter. */ void bcmlog(char *fmt, uint a1, uint a2) { static uint last = 0; uint cycles, i, elapsed; OSL_GETCYCLES(cycles); i = logi; elapsed = cycles - last; if (elapsed > BCMLOG_CYCLE_OVERHEAD) logtab[i].cycles = elapsed - BCMLOG_CYCLE_OVERHEAD; else logtab[i].cycles = 0; logtab[i].fmt = fmt; logtab[i].a1 = a1; logtab[i].a2 = a2; logi = (i + 1) % LOGSIZE; last = cycles; /* if log buffer is overflowing, readi should be advanced. * Otherwise logi and readi will become out of sync. */ if (logi == readi) { readi = (readi + 1) % LOGSIZE; } else { /* This redundant else is to make CPU cycles of bcmlog() function to be uniform, * so that the cycle compensation with BCMLOG_CYCLE_OVERHEAD is more accurate. */ readi = readi % LOGSIZE; } } /* Same as bcmlog but specializes the use of a1 and a2 to * store icache misses and instruction count. * TODO : make this use a configuration array to decide what counter to read. * We are limited to 2 numbers but it seems it is the most we can get anyway * since dcache and icache cannot be enabled at the same time. Recording * both the hits and misses at the same time for a given cache is not that useful either. */ void bcmstats(char *fmt) { static uint last = 0; static uint32 ic_miss = 0; static uint32 instr_count = 0; uint32 ic_miss_cur; uint32 instr_count_cur; uint cycles, i; OSL_GETCYCLES(cycles); BCMPERF_GETICACHE_MISS(ic_miss_cur); BCMPERF_GETINSTRCOUNT(instr_count_cur); i = logi; logtab[i].cycles = cycles - last; logtab[i].a1 = ic_miss_cur - ic_miss; logtab[i].a2 = instr_count_cur - instr_count; logtab[i].fmt = fmt; logi = (i + 1) % LOGSIZE; last = cycles; instr_count = instr_count_cur; ic_miss = ic_miss_cur; /* if log buffer is overflowing, readi should be advanced. * Otherwise logi and readi will become out of sync. */ if (logi == readi) { readi = (readi + 1) % LOGSIZE; } else { /* This redundant else is to make CPU cycles of bcmstats() function to be uniform */ readi = readi % LOGSIZE; } } /* * TODO (linux version): a "proc" version where the log would be dumped * on the proc file directly. */ void bcmdumplog(char *buf, int size) { char *limit; int j = 0; int num; struct bcmstrbuf strubuf; struct bcmstrbuf *b = &strubuf; bcm_binit(b, buf, size); limit = BCMSTRBUF_BUF(b) + BCMSTRBUF_LEN(b) - 80; num = logi - readi; if (num < 0) num += LOGSIZE; /* print in chronological order */ for (j = 0; j < num && (BCMSTRBUF_BUF(b) < limit); readi = (readi + 1) % LOGSIZE, j++) { if (logtab[readi].fmt == NULL) continue; bcm_bprintf(b, "%d\t", logtab[readi].cycles); bcm_bprintf(b, logtab[readi].fmt, logtab[readi].a1, logtab[readi].a2); bcm_bprintf(b, "\n"); } } /* * Dump one log entry at a time. * Return index of next entry or -1 when no more . */ int bcmdumplogent(char *buf, uint i) { bool hit; struct bcmstrbuf strubuf; struct bcmstrbuf *b = &strubuf; /* * If buf is NULL, return the starting index, * interpreting i as the indicator of last 'i' entries to dump. */ if (buf == NULL) { i = ((i > 0) && (i < (LOGSIZE - 1))) ? i : (LOGSIZE - 1); return ((logi - i) % LOGSIZE); } *buf = '\0'; ASSERT(i < LOGSIZE); if (i == logi) return (-1); bcm_binit(b, buf, i); hit = FALSE; for (; (i != logi) && !hit; i = (i + 1) % LOGSIZE) { if (logtab[i].fmt == NULL) continue; bcm_bprintf(b, "%d: %d\t", i, logtab[i].cycles); bcm_bprintf(b, logtab[i].fmt, logtab[i].a1, logtab[i].a2); bcm_bprintf(b, "\n"); hit = TRUE; } return (i); } #endif /* BCMPERFSTATS */ #if defined(BCMTSTAMPEDLOGS) /* Store a TSF timestamp and a log line in the log buffer */ /* a1 is used to signify entering/exiting a routine. When entering the indent level is increased. When exiting, the delta since entering is printed and the indent level is bumped back out. Nesting can go up to level MAX_TS_INDENTS deep. */ #define MAX_TS_INDENTS 20 void bcmtslog(uint32 tstamp, const char *fmt, uint a1, uint a2) { uint i = logi; bool use_delta = TRUE; static uint32 last = 0; /* used only when use_delta is true */ static uchar indent = 0; static uint32 indents[MAX_TS_INDENTS]; logtab[i].cycles = tstamp; if (use_delta) logtab[i].cycles -= last; logtab[i].a2 = a2; if (a1 == TS_EXIT && indent) { indent--; logtab[i].a2 = tstamp - indents[indent]; } logtab[i].fmt = fmt; logtab[i].a1 = a1; logtab[i].indent = indent; if (a1 == TS_ENTER) { indents[indent] = tstamp; if (indent < MAX_TS_INDENTS - 1) indent++; } if (use_delta) last = tstamp; logi = (i + 1) % LOGSIZE; } /* Print out a microsecond timestamp as "sec.ms.us " */ void bcmprinttstamp(uint32 ticks) { uint us, ms, sec; us = (ticks % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS; ms = ticks / TSF_TICKS_PER_MS; sec = ms / 1000; ms -= sec * 1000; printf("%04u.%03u.%03u ", sec, ms, us); } /* Print out the log buffer with timestamps */ void bcmprinttslogs(void) { int j = 0; int num; num = logi - readi; if (num < 0) num += LOGSIZE; /* Format and print the log entries directly in chronological order */ for (j = 0; j < num; readi = (readi + 1) % LOGSIZE, j++) { if (logtab[readi].fmt == NULL) continue; bcmprinttstamp(logtab[readi].cycles); printf(logtab[readi].fmt, logtab[readi].a1, logtab[readi].a2); printf("\n"); } } /* Identical to bcmdumplog, but output is based on tsf instead of cycles. a1 is used to signify entering/exiting a routine. When entering the indent level is increased. When exiting, the delta since entering is printed and the indent level is bumped back out. */ void bcmdumptslog(struct bcmstrbuf *b) { char *limit; int j = 0; int num; uint us, ms, sec; int skip; char *lines = "| | | | | | | | | | | | | | | | | | | |"; limit = BCMSTRBUF_BUF(b) + BCMSTRBUF_LEN(b) - 80; num = logi - readi; if (num < 0) num += LOGSIZE; /* print in chronological order */ for (j = 0; j < num && (BCMSTRBUF_BUF(b) < limit); readi = (readi + 1) % LOGSIZE, j++) { char *last_buf = BCMSTRBUF_BUF(b); if (logtab[readi].fmt == NULL) continue; us = (logtab[readi].cycles % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS; ms = logtab[readi].cycles / TSF_TICKS_PER_MS; sec = ms / 1000; ms -= sec * 1000; bcm_bprintf(b, "%04u.%03u.%03u ", sec, ms, us); /* 2 spaces for each indent level */ bcm_bprintf(b, "%.*s", logtab[readi].indent * 2, lines); /* * The following call to snprintf generates a compiler warning * due to -Wformat-security. However, the format string is coming * from internal callers rather than external data input, and is a * useful debugging tool serving a variety of diagnostics. Rather * than expand code size by replicating multiple functions with different * argument lists, or disabling the warning globally, let's consider * if we can just disable the warning for this one instance. */ bcm_bprintf(b, logtab[readi].fmt); /* If a1 is ENTER or EXIT, print the + or - */ skip = 0; if (logtab[readi].a1 == TS_ENTER) { bcm_bprintf(b, " +"); skip++; } if (logtab[readi].a1 == TS_EXIT) { bcm_bprintf(b, " -"); skip++; } /* else print the real a1 */ if (logtab[readi].a1 && !skip) bcm_bprintf(b, " %d", logtab[readi].a1); /* If exiting routine, print a nicely formatted delta since entering. Otherwise, just print a2 normally. */ if (logtab[readi].a2) { if (logtab[readi].a1 == TS_EXIT) { int num_space = 75 - (BCMSTRBUF_BUF(b) - last_buf); bcm_bprintf(b, "%*.s", num_space, ""); bcm_bprintf(b, "%5d usecs", logtab[readi].a2); } else bcm_bprintf(b, " %d", logtab[readi].a2); } bcm_bprintf(b, "\n"); last_buf = BCMSTRBUF_BUF(b); } } #endif /* BCMTSTAMPEDLOGS */ #if defined(BCMDBG) || defined(DHD_DEBUG) /* pretty hex print a pkt buffer chain */ void prpkt(const char *msg, osl_t *osh, void *p0) { void *p; if (msg && (msg[0] != '\0')) printf("%s:\n", msg); for (p = p0; p; p = PKTNEXT(osh, p)) prhex(NULL, PKTDATA(osh, p), PKTLEN(osh, p)); } #endif /* BCMDBG || DHD_DEBUG */ /* Takes an Ethernet frame and sets out-of-bound PKTPRIO. * Also updates the inplace vlan tag if requested. * For debugging, it returns an indication of what it did. */ uint BCMFASTPATH(pktsetprio)(void *pkt, bool update_vtag) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *pktdata; uint priority = 0; uint rc = 0; pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt); ASSERT_FP(ISALIGNED((uintptr)pktdata, sizeof(uint16))); eh = (struct ether_header *) pktdata; if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) { uint16 vlan_tag; uint vlan_prio, dscp_prio = 0; evh = (struct ethervlan_header *)eh; vlan_tag = ntoh16(evh->vlan_tag); vlan_prio = (vlan_tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK; if ((evh->ether_type == hton16(ETHER_TYPE_IP)) || (evh->ether_type == hton16(ETHER_TYPE_IPV6))) { uint8 *ip_body = pktdata + sizeof(struct ethervlan_header); uint8 tos_tc = IP_TOS46(ip_body); dscp_prio = tos_tc >> IPV4_TOS_PREC_SHIFT; } /* DSCP priority gets precedence over 802.1P (vlan tag) */ if (dscp_prio != 0) { priority = dscp_prio; rc |= PKTPRIO_VDSCP; } else { priority = vlan_prio; rc |= PKTPRIO_VLAN; } /* * If the DSCP priority is not the same as the VLAN priority, * then overwrite the priority field in the vlan tag, with the * DSCP priority value. This is required for Linux APs because * the VLAN driver on Linux, overwrites the skb->priority field * with the priority value in the vlan tag */ if (update_vtag && (priority != vlan_prio)) { vlan_tag &= ~(VLAN_PRI_MASK << VLAN_PRI_SHIFT); vlan_tag |= priority << VLAN_PRI_SHIFT; evh->vlan_tag = hton16(vlan_tag); rc |= PKTPRIO_UPD; } #if defined(EAPOL_PKT_PRIO) || defined(DHD_LOSSLESS_ROAMING) } else if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) { priority = PRIO_8021D_NC; rc = PKTPRIO_DSCP; #endif /* EAPOL_PKT_PRIO || DHD_LOSSLESS_ROAMING */ #if defined(WLTDLS) } else if (eh->ether_type == hton16(ETHER_TYPE_89_0D)) { /* Bump up the priority for TDLS frames */ priority = PRIO_8021D_VI; rc = PKTPRIO_DSCP; #endif /* WLTDLS */ } else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) || (eh->ether_type == hton16(ETHER_TYPE_IPV6))) { uint8 *ip_body = pktdata + sizeof(struct ether_header); uint8 tos_tc = IP_TOS46(ip_body); uint8 dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT; switch (dscp) { case DSCP_EF: case DSCP_VA: priority = PRIO_8021D_VO; break; case DSCP_AF31: case DSCP_AF32: case DSCP_AF33: case DSCP_CS3: priority = PRIO_8021D_CL; break; case DSCP_AF21: case DSCP_AF22: case DSCP_AF23: priority = PRIO_8021D_EE; break; case DSCP_AF11: case DSCP_AF12: case DSCP_AF13: case DSCP_CS2: priority = PRIO_8021D_BE; break; #ifdef RFC8325_DSCP_CS6_TO_UP7 case DSCP_CS6: #endif /* RFC8325_DSCP_CS6_TO_UP7 */ case DSCP_CS7: priority = PRIO_8021D_NC; break; default: priority = tos_tc >> IPV4_TOS_PREC_SHIFT; break; } rc |= PKTPRIO_DSCP; } ASSERT_FP(priority <= MAXPRIO); PKTSETPRIO(pkt, priority); return (rc | priority); } /* lookup user priority for specified DSCP */ static uint8 dscp2up(uint8 *up_table, uint8 dscp) { uint8 user_priority = 255; /* lookup up from table if parameters valid */ if (up_table != NULL && dscp < UP_TABLE_MAX) { user_priority = up_table[dscp]; } /* 255 is unused value so return up from dscp */ if (user_priority == 255) { user_priority = dscp >> (IPV4_TOS_PREC_SHIFT - IPV4_TOS_DSCP_SHIFT); } return user_priority; } /* set user priority by QoS Map Set table (UP table), table size is UP_TABLE_MAX */ uint BCMFASTPATH(pktsetprio_qms)(void *pkt, uint8* up_table, bool update_vtag) { if (up_table) { uint8 *pktdata; uint pktlen; uint8 dscp; uint user_priority = 0; uint rc = 0; pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt); pktlen = PKTLEN(OSH_NULL, pkt); if (pktgetdscp(pktdata, pktlen, &dscp)) { rc = PKTPRIO_DSCP; user_priority = dscp2up(up_table, dscp); PKTSETPRIO(pkt, user_priority); } #ifdef WL_CUSTOM_MAPPING_OF_DSCP else { return pktsetprio(pkt, update_vtag); } #endif /* WL_CUSTOM_MAPPING_OF_DSCP */ return (rc | user_priority); } else { return pktsetprio(pkt, update_vtag); } } /* Returns TRUE and DSCP if IP header found, FALSE otherwise. */ bool BCMFASTPATH(pktgetdscp)(uint8 *pktdata, uint pktlen, uint8 *dscp) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *ip_body; bool rc = FALSE; /* minimum length is ether header and IP header */ if (pktlen < (sizeof(struct ether_header) + IPV4_MIN_HEADER_LEN)) { return FALSE; } eh = (struct ether_header *) pktdata; if ((eh->ether_type == HTON16(ETHER_TYPE_IP)) || (eh->ether_type == HTON16(ETHER_TYPE_IPV6))) { ip_body = pktdata + sizeof(struct ether_header); *dscp = IP_DSCP46(ip_body); rc = TRUE; } else if (eh->ether_type == HTON16(ETHER_TYPE_8021Q)) { evh = (struct ethervlan_header *)eh; /* minimum length is ethervlan header and IP header */ if (pktlen >= sizeof(struct ethervlan_header) + IPV4_MIN_HEADER_LEN && evh->ether_type == HTON16(ETHER_TYPE_IP)) { ip_body = pktdata + sizeof(struct ethervlan_header); *dscp = IP_DSCP46(ip_body); rc = TRUE; } } return rc; } /* usr_prio range from low to high with usr_prio value */ static bool up_table_set(uint8 *up_table, uint8 usr_prio, uint8 low, uint8 high) { int i; if (usr_prio > 7 || low > high || low >= UP_TABLE_MAX || high >= UP_TABLE_MAX) { return FALSE; } for (i = low; i <= high; i++) { up_table[i] = usr_prio; } return TRUE; } /* set user priority table */ int BCMFASTPATH(wl_set_up_table)(uint8 *up_table, bcm_tlv_t *qos_map_ie) { uint8 len; if (up_table == NULL || qos_map_ie == NULL) { return BCME_ERROR; } /* clear table to check table was set or not */ memset(up_table, 0xff, UP_TABLE_MAX); /* length of QoS Map IE must be 16+n*2, n is number of exceptions */ if (qos_map_ie != NULL && qos_map_ie->id == DOT11_MNG_QOS_MAP_ID && (len = qos_map_ie->len) >= QOS_MAP_FIXED_LENGTH && (len % 2) == 0) { uint8 *except_ptr = (uint8 *)qos_map_ie->data; uint8 except_len = len - QOS_MAP_FIXED_LENGTH; uint8 *range_ptr = except_ptr + except_len; int i; /* fill in ranges */ for (i = 0; i < QOS_MAP_FIXED_LENGTH; i += 2) { uint8 low = range_ptr[i]; uint8 high = range_ptr[i + 1]; if (low == 255 && high == 255) { continue; } if (!up_table_set(up_table, i / 2, low, high)) { /* clear the table on failure */ memset(up_table, 0xff, UP_TABLE_MAX); return BCME_ERROR; } } /* update exceptions */ for (i = 0; i < except_len; i += 2) { uint8 dscp = except_ptr[i]; uint8 usr_prio = except_ptr[i+1]; /* exceptions with invalid dscp/usr_prio are ignored */ up_table_set(up_table, usr_prio, dscp, dscp); } } return BCME_OK; } #ifndef BCM_BOOTLOADER /* The 0.5KB string table is not removed by compiler even though it's unused */ static char bcm_undeferrstr[32]; static const char *bcmerrorstrtable[] = BCMERRSTRINGTABLE; /* Convert the error codes into related error strings */ /* BCMRAMFN for BCME_LAST usage */ const char * BCMRAMFN(bcmerrorstr)(int bcmerror) { /* check if someone added a bcmerror code but forgot to add errorstring */ ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(bcmerrorstrtable) - 1)); if (bcmerror > 0 || bcmerror < BCME_LAST) { snprintf(bcm_undeferrstr, sizeof(bcm_undeferrstr), "Undefined error %d", bcmerror); return bcm_undeferrstr; } ASSERT(strlen(bcmerrorstrtable[-bcmerror]) < BCME_STRLEN); return bcmerrorstrtable[-bcmerror]; } #endif /* !BCM_BOOTLOADER */ #ifdef BCMDBG_PKT /* pkt logging for debugging */ /* Add a packet to the pktlist */ static void _pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file) { uint16 i; char *basename; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); #endif /* BCMDBG_PTRACE */ ASSERT(pktlist->count < PKTLIST_SIZE); /* Verify the packet is not already part of the list */ for (i = 0; i < pktlist->count; i++) { if (pktlist->list[i].pkt == pkt) ASSERT(0); } pktlist->list[pktlist->count].pkt = pkt; pktlist->list[pktlist->count].line = line; basename = strrchr(file, '/'); if (basename) basename++; else basename = file; pktlist->list[pktlist->count].file = basename; #ifdef BCMDBG_PTRACE *idx = pktlist->count; bzero(pktlist->list[pktlist->count].pkt_trace, PKTTRACE_MAX_BYTES); #endif /* BCMDBG_PTRACE */ pktlist->count++; return; } void pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_add(pktlist, p, line, file); } /* Remove a packet from the pktlist */ static void _pktlist_remove(pktlist_info_t *pktlist, void *pkt) { uint16 i; uint16 num = pktlist->count; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); ASSERT((*idx) < pktlist->count); #endif /* BCMDBG_PTRACE */ /* find the index where pkt exists */ for (i = 0; i < num; i++) { /* check for the existence of pkt in the list */ if (pktlist->list[i].pkt == pkt) { #ifdef BCMDBG_PTRACE ASSERT((*idx) == i); #endif /* BCMDBG_PTRACE */ /* replace with the last element */ pktlist->list[i].pkt = pktlist->list[num-1].pkt; pktlist->list[i].line = pktlist->list[num-1].line; pktlist->list[i].file = pktlist->list[num-1].file; #ifdef BCMDBG_PTRACE memcpy(pktlist->list[i].pkt_trace, pktlist->list[num-1].pkt_trace, PKTTRACE_MAX_BYTES); idx = PKTLIST_IDX(pktlist->list[i].pkt); *idx = i; #endif /* BCMDBG_PTRACE */ pktlist->count--; return; } } ASSERT(0); } void pktlist_remove(pktlist_info_t *pktlist, void *pkt) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_remove(pktlist, p); } #ifdef BCMDBG_PTRACE static void _pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit) { uint16 *idx = PKTLIST_IDX(pkt); ASSERT(((*idx) < pktlist->count) && (bit < PKTTRACE_MAX_BITS)); ASSERT(pktlist->list[(*idx)].pkt == pkt); pktlist->list[(*idx)].pkt_trace[bit/NBBY] |= (1 << ((bit)%NBBY)); } void pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit) { void *p; for (p = pkt; p != NULL; p = PKTCLINK(p)) _pktlist_trace(pktlist, p, bit); } #endif /* BCMDBG_PTRACE */ /* Dump the pktlist (and the contents of each packet if 'data' * is set). 'buf' should be large enough */ char * pktlist_dump(pktlist_info_t *pktlist, char *buf) { char *obuf = buf; uint16 i; if (buf != NULL) buf += sprintf(buf, "Packet list dump:\n"); else printf("Packet list dump:\n"); for (i = 0; i < (pktlist->count); i++) { if (buf != NULL) buf += sprintf(buf, "Pkt_addr: 0x%p Line: %d File: %s\t", OSL_OBFUSCATE_BUF(pktlist->list[i].pkt), pktlist->list[i].line, pktlist->list[i].file); else printf("Pkt_addr: 0x%p Line: %d File: %s\t", OSL_OBFUSCATE_BUF(pktlist->list[i].pkt), pktlist->list[i].line, pktlist->list[i].file); /* #ifdef NOTDEF Remove this ifdef to print pkttag and pktdata */ if (buf != NULL) { if (PKTTAG(pktlist->list[i].pkt)) { /* Print pkttag */ buf += sprintf(buf, "Pkttag(in hex): "); buf += bcm_format_hex(buf, PKTTAG(pktlist->list[i].pkt), OSL_PKTTAG_SZ); } buf += sprintf(buf, "Pktdata(in hex): "); buf += bcm_format_hex(buf, PKTDATA(OSH_NULL, pktlist->list[i].pkt), PKTLEN(OSH_NULL, pktlist->list[i].pkt)); } else { void *pkt = pktlist->list[i].pkt, *npkt; printf("Pkt[%d] Dump:\n", i); while (pkt) { int hroom; uint pktlen; uchar *src; #ifdef BCMDBG_PTRACE uint16 *idx = PKTLIST_IDX(pkt); ASSERT((*idx) < pktlist->count); prhex("Pkt Trace (in hex):", pktlist->list[(*idx)].pkt_trace, PKTTRACE_MAX_BYTES); #endif /* BCMDBG_PTRACE */ npkt = (void *)PKTNEXT(OSH_NULL, pkt); PKTSETNEXT(OSH_NULL, pkt, NULL); src = (uchar *)(PKTTAG(pkt)); pktlen = PKTLEN(OSH_NULL, pkt); hroom = PKTHEADROOM(OSH_NULL, pkt); printf("Pkttag_addr: %p\n", OSL_OBFUSCATE_BUF(src)); if (src) prhex("Pkttag(in hex): ", src, OSL_PKTTAG_SZ); src = (uchar *) (PKTDATA(OSH_NULL, pkt)); printf("Pkthead_addr: %p len: %d\n", OSL_OBFUSCATE_BUF(src - hroom), hroom); prhex("Pkt headroom content(in hex): ", src - hroom, hroom); printf("Pktdata_addr: %p len: %d\n", OSL_OBFUSCATE_BUF(src), pktlen); prhex("Pktdata(in hex): ", src, pktlen); pkt = npkt; } } /* #endif NOTDEF */ if (buf != NULL) buf += sprintf(buf, "\n"); else printf("\n"); } return obuf; } #endif /* BCMDBG_PKT */ /* iovar table lookup */ /* could mandate sorted tables and do a binary search */ const bcm_iovar_t* bcm_iovar_lookup(const bcm_iovar_t *table, const char *name) { const bcm_iovar_t *vi; const char *lookup_name; /* skip any ':' delimited option prefixes */ lookup_name = strrchr(name, ':'); if (lookup_name != NULL) lookup_name++; else lookup_name = name; ASSERT(table != NULL); for (vi = table; vi->name; vi++) { if (!strcmp(vi->name, lookup_name)) return vi; } /* ran to end of table */ return NULL; /* var name not found */ } int bcm_iovar_lencheck(const bcm_iovar_t *vi, void *arg, uint len, bool set) { int bcmerror = 0; BCM_REFERENCE(arg); /* length check on io buf */ switch (vi->type) { case IOVT_BOOL: case IOVT_INT8: case IOVT_INT16: case IOVT_INT32: case IOVT_UINT8: case IOVT_UINT16: case IOVT_UINT32: /* all integers are int32 sized args at the ioctl interface */ if (len < sizeof(int)) { bcmerror = BCME_BUFTOOSHORT; } break; case IOVT_BUFFER: /* buffer must meet minimum length requirement */ if (len < vi->minlen) { bcmerror = BCME_BUFTOOSHORT; } break; case IOVT_VOID: if (!set) { /* Cannot return nil... */ bcmerror = BCME_UNSUPPORTED; } break; default: /* unknown type for length check in iovar info */ ASSERT(0); bcmerror = BCME_UNSUPPORTED; } return bcmerror; } /* * Hierarchical Multiword bitmap based small id allocator. * * Multilevel hierarchy bitmap. (maximum 2 levels) * First hierarchy uses a multiword bitmap to identify 32bit words in the * second hierarchy that have at least a single bit set. Each bit in a word of * the second hierarchy represents a unique ID that may be allocated. * * BCM_MWBMAP_ITEMS_MAX: Maximum number of IDs managed. * BCM_MWBMAP_BITS_WORD: Number of bits in a bitmap word word * BCM_MWBMAP_WORDS_MAX: Maximum number of bitmap words needed for free IDs. * BCM_MWBMAP_WDMAP_MAX: Maximum number of bitmap wordss identifying first non * non-zero bitmap word carrying at least one free ID. * BCM_MWBMAP_SHIFT_OP: Used in MOD, DIV and MUL operations. * BCM_MWBMAP_INVALID_IDX: Value ~0U is treated as an invalid ID * * Design Notes: * BCM_MWBMAP_USE_CNTSETBITS trades CPU for memory. A runtime count of how many * bits are computed each time on allocation and deallocation, requiring 4 * array indexed access and 3 arithmetic operations. When not defined, a runtime * count of set bits state is maintained. Upto 32 Bytes per 1024 IDs is needed. * In a 4K max ID allocator, up to 128Bytes are hence used per instantiation. * In a memory limited system e.g. dongle builds, a CPU for memory tradeoff may * be used by defining BCM_MWBMAP_USE_CNTSETBITS. * * Note: wd_bitmap[] is statically declared and is not ROM friendly ... array * size is fixed. No intention to support larger than 4K indice allocation. ID * allocators for ranges smaller than 4K will have a wastage of only 12Bytes * with savings in not having to use an indirect access, had it been dynamically * allocated. */ #if defined(DONGLEBUILD) #define BCM_MWBMAP_USE_CNTSETBITS /* runtime count set bits */ #if defined(PCIEDEV_HOST_PKTID_AUDIT_ENABLED) #define BCM_MWBMAP_ITEMS_MAX (38 * 1024) #else /* ! PCIEDEV_HOST_PKTID_AUDIT_ENABLED */ #define BCM_MWBMAP_ITEMS_MAX (7 * 1024) #endif /* PCIEDEV_HOST_PKTID_AUDIT_ENABLED */ #else /* ! DONGLEBUILD */ #define BCM_MWBMAP_ITEMS_MAX (64 * 1024) /* May increase to 64K */ #endif /* DONGLEBUILD */ #define BCM_MWBMAP_BITS_WORD (NBITS(uint32)) #define BCM_MWBMAP_WORDS_MAX (BCM_MWBMAP_ITEMS_MAX / BCM_MWBMAP_BITS_WORD) #define BCM_MWBMAP_WDMAP_MAX (BCM_MWBMAP_WORDS_MAX / BCM_MWBMAP_BITS_WORD) #define BCM_MWBMAP_SHIFT_OP (5) #define BCM_MWBMAP_MODOP(ix) ((ix) & (BCM_MWBMAP_BITS_WORD - 1)) #define BCM_MWBMAP_DIVOP(ix) ((ix) >> BCM_MWBMAP_SHIFT_OP) #define BCM_MWBMAP_MULOP(ix) ((ix) << BCM_MWBMAP_SHIFT_OP) /* Redefine PTR() and/or HDL() conversion to invoke audit for debugging */ #define BCM_MWBMAP_PTR(hdl) ((struct bcm_mwbmap *)(hdl)) #define BCM_MWBMAP_HDL(ptr) ((void *)(ptr)) #if defined(BCM_MWBMAP_DEBUG) #define BCM_MWBMAP_AUDIT(mwb) \ do { \ ASSERT((mwb != NULL) && \ (((struct bcm_mwbmap *)(mwb))->magic == (void *)(mwb))); \ bcm_mwbmap_audit(mwb); \ } while (0) #define MWBMAP_ASSERT(exp) ASSERT(exp) #define MWBMAP_DBG(x) printf x #else /* !BCM_MWBMAP_DEBUG */ #define BCM_MWBMAP_AUDIT(mwb) do {} while (0) #define MWBMAP_ASSERT(exp) do {} while (0) #define MWBMAP_DBG(x) #endif /* !BCM_MWBMAP_DEBUG */ typedef struct bcm_mwbmap { /* Hierarchical multiword bitmap allocator */ uint16 wmaps; /* Total number of words in free wd bitmap */ uint16 imaps; /* Total number of words in free id bitmap */ int32 ifree; /* Count of free indices. Used only in audits */ uint16 total; /* Total indices managed by multiword bitmap */ void * magic; /* Audit handle parameter from user */ uint32 wd_bitmap[BCM_MWBMAP_WDMAP_MAX]; /* 1st level bitmap of */ #if !defined(BCM_MWBMAP_USE_CNTSETBITS) int8 wd_count[BCM_MWBMAP_WORDS_MAX]; /* free id running count, 1st lvl */ #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ uint32 id_bitmap[0]; /* Second level bitmap */ } bcm_mwbmap_t; /* Incarnate a hierarchical multiword bitmap based small index allocator. */ struct bcm_mwbmap * bcm_mwbmap_init(osl_t *osh, uint32 items_max) { struct bcm_mwbmap * mwbmap_p; uint32 wordix, size, words, extra; /* Implementation Constraint: Uses 32bit word bitmap */ MWBMAP_ASSERT(BCM_MWBMAP_BITS_WORD == 32U); MWBMAP_ASSERT(BCM_MWBMAP_SHIFT_OP == 5U); MWBMAP_ASSERT(ISPOWEROF2(BCM_MWBMAP_ITEMS_MAX)); MWBMAP_ASSERT((BCM_MWBMAP_ITEMS_MAX % BCM_MWBMAP_BITS_WORD) == 0U); ASSERT(items_max <= BCM_MWBMAP_ITEMS_MAX); /* Determine the number of words needed in the multiword bitmap */ extra = BCM_MWBMAP_MODOP(items_max); words = BCM_MWBMAP_DIVOP(items_max) + ((extra != 0U) ? 1U : 0U); /* Allocate runtime state of multiword bitmap */ /* Note: wd_count[] or wd_bitmap[] are not dynamically allocated */ size = sizeof(bcm_mwbmap_t) + (sizeof(uint32) * words); mwbmap_p = (bcm_mwbmap_t *)MALLOC(osh, size); if (mwbmap_p == (bcm_mwbmap_t *)NULL) { ASSERT(0); goto error1; } bzero(mwbmap_p, size); /* Initialize runtime multiword bitmap state */ mwbmap_p->imaps = (uint16)words; mwbmap_p->ifree = (int32)items_max; mwbmap_p->total = (uint16)items_max; /* Setup magic, for use in audit of handle */ mwbmap_p->magic = BCM_MWBMAP_HDL(mwbmap_p); /* Setup the second level bitmap of free indices */ /* Mark all indices as available */ for (wordix = 0U; wordix < mwbmap_p->imaps; wordix++) { mwbmap_p->id_bitmap[wordix] = (uint32)(~0U); #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[wordix] = BCM_MWBMAP_BITS_WORD; #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ } /* Ensure that extra indices are tagged as un-available */ if (extra) { /* fixup the free ids in last bitmap and wd_count */ uint32 * bmap_p = &mwbmap_p->id_bitmap[mwbmap_p->imaps - 1]; *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[mwbmap_p->imaps - 1] = (int8)extra; /* fixup count */ #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ } /* Setup the first level bitmap hierarchy */ extra = BCM_MWBMAP_MODOP(mwbmap_p->imaps); words = BCM_MWBMAP_DIVOP(mwbmap_p->imaps) + ((extra != 0U) ? 1U : 0U); mwbmap_p->wmaps = (uint16)words; for (wordix = 0U; wordix < mwbmap_p->wmaps; wordix++) mwbmap_p->wd_bitmap[wordix] = (uint32)(~0U); if (extra) { uint32 * bmap_p = &mwbmap_p->wd_bitmap[mwbmap_p->wmaps - 1]; *bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */ } return mwbmap_p; error1: return BCM_MWBMAP_INVALID_HDL; } /* Release resources used by multiword bitmap based small index allocator. */ void bcm_mwbmap_fini(osl_t * osh, struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); MFREE(osh, mwbmap_p, sizeof(struct bcm_mwbmap) + (sizeof(uint32) * mwbmap_p->imaps)); return; } /* Allocate a unique small index using a multiword bitmap index allocator. */ uint32 BCMFASTPATH(bcm_mwbmap_alloc)(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); /* Start with the first hierarchy */ for (wordix = 0; wordix < mwbmap_p->wmaps; ++wordix) { bitmap = mwbmap_p->wd_bitmap[wordix]; /* get the word bitmap */ if (bitmap != 0U) { uint32 count, bitix, *bitmap_p; bitmap_p = &mwbmap_p->wd_bitmap[wordix]; /* clear all except trailing 1 */ if (bitmap != (1u << 31u)) { bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); } MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == bcm_count_leading_zeros(bitmap)); bitix = (BCM_MWBMAP_BITS_WORD - 1) - bcm_count_leading_zeros(bitmap); /* use asm clz */ wordix = BCM_MWBMAP_MULOP(wordix) + bitix; /* Clear bit if wd count is 0, without conditional branch */ #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1; #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ mwbmap_p->wd_count[wordix]--; count = mwbmap_p->wd_count[wordix]; MWBMAP_ASSERT(count == (bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1)); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count >= 0); /* clear wd_bitmap bit if id_map count is 0 */ bitmap = (uint32)(count == 0) << bitix; MWBMAP_DBG(( "Lvl1: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x wfree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count)); *bitmap_p ^= bitmap; /* Use bitix in the second hierarchy */ bitmap_p = &mwbmap_p->id_bitmap[wordix]; bitmap = mwbmap_p->id_bitmap[wordix]; /* get the id bitmap */ MWBMAP_ASSERT(bitmap != 0U); /* clear all except trailing 1 */ if (bitmap != (1u << 31u)) { bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap)))); } MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) == bcm_count_leading_zeros(bitmap)); bitix = BCM_MWBMAP_MULOP(wordix) + (BCM_MWBMAP_BITS_WORD - 1) - bcm_count_leading_zeros(bitmap); /* use asm clz */ mwbmap_p->ifree--; /* decrement system wide free count */ MWBMAP_ASSERT(mwbmap_p->ifree >= 0); MWBMAP_DBG(( "Lvl2: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, mwbmap_p->ifree)); *bitmap_p ^= bitmap; /* mark as allocated = 1b0 */ return bitix; } } ASSERT(mwbmap_p->ifree == 0); return BCM_MWBMAP_INVALID_IDX; } /* Force an index at a specified position to be in use */ void bcm_mwbmap_force(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 count, wordix, bitmap, *bitmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(bitix < mwbmap_p->total); /* Start with second hierarchy */ wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (uint32)(1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->id_bitmap[wordix]; ASSERT((*bitmap_p & bitmap) == bitmap); mwbmap_p->ifree--; /* update free count */ ASSERT(mwbmap_p->ifree >= 0); MWBMAP_DBG(("Lvl2: bitix<%u> wordix<%u>: %08x ^ %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, mwbmap_p->ifree)); *bitmap_p ^= bitmap; /* mark as in use */ /* Update first hierarchy */ bitix = wordix; wordix = BCM_MWBMAP_DIVOP(bitix); bitmap_p = &mwbmap_p->wd_bitmap[wordix]; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ mwbmap_p->wd_count[bitix]--; count = mwbmap_p->wd_count[bitix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count >= 0); bitmap = (uint32)(count == 0) << BCM_MWBMAP_MODOP(bitix); MWBMAP_DBG(("Lvl1: bitix<%02lu> wordix<%02u>: %08x ^ %08x = %08x wfree %d", BCM_MWBMAP_MODOP(bitix), wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count)); *bitmap_p ^= bitmap; /* mark as in use */ return; } /* Free a previously allocated index back into the multiword bitmap allocator */ void BCMPOSTTRAPFASTPATH(bcm_mwbmap_free)(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap, *bitmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT_FP(bitix < mwbmap_p->total); /* Start with second level hierarchy */ wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->id_bitmap[wordix]; ASSERT_FP((*bitmap_p & bitmap) == 0U); /* ASSERT not a double free */ mwbmap_p->ifree++; /* update free count */ ASSERT_FP(mwbmap_p->ifree <= mwbmap_p->total); MWBMAP_DBG(("Lvl2: bitix<%02u> wordix<%02u>: %08x | %08x = %08x ifree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, mwbmap_p->ifree)); *bitmap_p |= bitmap; /* mark as available */ /* Now update first level hierarchy */ bitix = wordix; wordix = BCM_MWBMAP_DIVOP(bitix); /* first level's word index */ bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); bitmap_p = &mwbmap_p->wd_bitmap[wordix]; #if !defined(BCM_MWBMAP_USE_CNTSETBITS) mwbmap_p->wd_count[bitix]++; #endif #if defined(BCM_MWBMAP_DEBUG) { uint32 count; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[bitix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ MWBMAP_ASSERT(count <= BCM_MWBMAP_BITS_WORD); MWBMAP_DBG(("Lvl1: bitix<%02u> wordix<%02u>: %08x | %08x = %08x wfree %d", bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, count)); } #endif /* BCM_MWBMAP_DEBUG */ *bitmap_p |= bitmap; return; } /* Fetch the toal number of free indices in the multiword bitmap allocator */ uint32 bcm_mwbmap_free_cnt(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(mwbmap_p->ifree >= 0); return (uint32)mwbmap_p->ifree; } /* Determine whether an index is inuse or free */ bool bcm_mwbmap_isfree(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix) { bcm_mwbmap_t * mwbmap_p; uint32 wordix, bitmap; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); ASSERT(bitix < mwbmap_p->total); wordix = BCM_MWBMAP_DIVOP(bitix); bitmap = (1U << BCM_MWBMAP_MODOP(bitix)); return ((mwbmap_p->id_bitmap[wordix] & bitmap) != 0U); } /* Debug dump a multiword bitmap allocator */ void bcm_mwbmap_show(struct bcm_mwbmap * mwbmap_hdl) { uint32 ix, count; bcm_mwbmap_t * mwbmap_p; BCM_MWBMAP_AUDIT(mwbmap_hdl); mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); printf("mwbmap_p %p wmaps %u imaps %u ifree %d total %u\n", OSL_OBFUSCATE_BUF((void *)mwbmap_p), mwbmap_p->wmaps, mwbmap_p->imaps, mwbmap_p->ifree, mwbmap_p->total); for (ix = 0U; ix < mwbmap_p->wmaps; ix++) { printf("\tWDMAP:%2u. 0x%08x\t", ix, mwbmap_p->wd_bitmap[ix]); bcm_bitprint32(mwbmap_p->wd_bitmap[ix]); printf("\n"); } for (ix = 0U; ix < mwbmap_p->imaps; ix++) { #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[ix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[ix]; MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[ix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ printf("\tIDMAP:%2u. 0x%08x %02u\t", ix, mwbmap_p->id_bitmap[ix], count); bcm_bitprint32(mwbmap_p->id_bitmap[ix]); printf("\n"); } return; } /* Audit a hierarchical multiword bitmap */ void bcm_mwbmap_audit(struct bcm_mwbmap * mwbmap_hdl) { bcm_mwbmap_t * mwbmap_p; uint32 count, free_cnt = 0U, wordix, idmap_ix, bitix, *bitmap_p; mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl); for (wordix = 0U; wordix < mwbmap_p->wmaps; ++wordix) { bitmap_p = &mwbmap_p->wd_bitmap[wordix]; for (bitix = 0U; bitix < BCM_MWBMAP_BITS_WORD; bitix++) { if ((*bitmap_p) & (1u << bitix)) { idmap_ix = BCM_MWBMAP_MULOP(wordix) + bitix; #if defined(BCM_MWBMAP_USE_CNTSETBITS) count = bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]); #else /* ! BCM_MWBMAP_USE_CNTSETBITS */ count = mwbmap_p->wd_count[idmap_ix]; ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix])); #endif /* ! BCM_MWBMAP_USE_CNTSETBITS */ ASSERT(count != 0U); free_cnt += count; } } } ASSERT((int)free_cnt == mwbmap_p->ifree); } /* END : Multiword bitmap based 64bit to Unique 32bit Id allocator. */ /* Simple 16bit Id allocator using a stack implementation. */ typedef struct id16_map { uint32 failures; /* count of failures */ void *dbg; /* debug placeholder */ uint16 total; /* total number of ids managed by allocator */ uint16 start; /* start value of 16bit ids to be managed */ int stack_idx; /* index into stack of available ids */ uint16 stack[0]; /* stack of 16 bit ids */ } id16_map_t; #define ID16_MAP_SZ(items) (sizeof(id16_map_t) + \ (sizeof(uint16) * (items))) #if defined(BCM_DBG) /* Uncomment BCM_DBG_ID16 to debug double free */ /* #define BCM_DBG_ID16 */ typedef struct id16_map_dbg { uint16 total; bool avail[0]; } id16_map_dbg_t; #define ID16_MAP_DBG_SZ(items) (sizeof(id16_map_dbg_t) + \ (sizeof(bool) * (items))) #define ID16_MAP_MSG(x) print x #else #define ID16_MAP_MSG(x) #endif /* BCM_DBG */ void * /* Construct an id16 allocator: [start_val16 .. start_val16+total_ids) */ id16_map_init(osl_t *osh, uint16 total_ids, uint16 start_val16) { uint16 idx, val16; id16_map_t * id16_map; ASSERT(total_ids > 0); /* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map * with random values. */ ASSERT((start_val16 == ID16_UNDEFINED) || (start_val16 + total_ids) < ID16_INVALID); id16_map = (id16_map_t *) MALLOC(osh, ID16_MAP_SZ(total_ids)); if (id16_map == NULL) { return NULL; } id16_map->total = total_ids; id16_map->start = start_val16; id16_map->failures = 0; id16_map->dbg = NULL; /* * Populate stack with 16bit id values, commencing with start_val16. * if start_val16 is ID16_UNDEFINED, then do not populate the id16 map. */ id16_map->stack_idx = -1; if (id16_map->start != ID16_UNDEFINED) { val16 = start_val16; for (idx = 0; idx < total_ids; idx++, val16++) { id16_map->stack_idx = idx; id16_map->stack[id16_map->stack_idx] = val16; } } #if defined(BCM_DBG) && defined(BCM_DBG_ID16) if (id16_map->start != ID16_UNDEFINED) { id16_map->dbg = MALLOC(osh, ID16_MAP_DBG_SZ(total_ids)); if (id16_map->dbg) { id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; id16_map_dbg->total = total_ids; for (idx = 0; idx < total_ids; idx++) { id16_map_dbg->avail[idx] = TRUE; } } } #endif /* BCM_DBG && BCM_DBG_ID16 */ return (void *)id16_map; } void * /* Destruct an id16 allocator instance */ id16_map_fini(osl_t *osh, void * id16_map_hndl) { uint16 total_ids; id16_map_t * id16_map; if (id16_map_hndl == NULL) return NULL; id16_map = (id16_map_t *)id16_map_hndl; total_ids = id16_map->total; ASSERT(total_ids > 0); #if defined(BCM_DBG) && defined(BCM_DBG_ID16) if (id16_map->dbg) { MFREE(osh, id16_map->dbg, ID16_MAP_DBG_SZ(total_ids)); } #endif /* BCM_DBG && BCM_DBG_ID16 */ id16_map->total = 0; MFREE(osh, id16_map, ID16_MAP_SZ(total_ids)); return NULL; } void id16_map_clear(void * id16_map_hndl, uint16 total_ids, uint16 start_val16) { uint16 idx, val16; id16_map_t * id16_map; ASSERT(total_ids > 0); /* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map * with random values. */ ASSERT((start_val16 == ID16_UNDEFINED) || (start_val16 + total_ids) < ID16_INVALID); id16_map = (id16_map_t *)id16_map_hndl; if (id16_map == NULL) { return; } id16_map->total = total_ids; id16_map->start = start_val16; id16_map->failures = 0; /* Populate stack with 16bit id values, commencing with start_val16 */ id16_map->stack_idx = -1; if (id16_map->start != ID16_UNDEFINED) { val16 = start_val16; for (idx = 0; idx < total_ids; idx++, val16++) { id16_map->stack_idx = idx; id16_map->stack[id16_map->stack_idx] = val16; } } #if defined(BCM_DBG) && defined(BCM_DBG_ID16) if (id16_map->start != ID16_UNDEFINED) { if (id16_map->dbg) { id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; id16_map_dbg->total = total_ids; for (idx = 0; idx < total_ids; idx++) { id16_map_dbg->avail[idx] = TRUE; } } } #endif /* BCM_DBG && BCM_DBG_ID16 */ } uint16 /* Allocate a unique 16bit id */ BCMFASTPATH(id16_map_alloc)(void * id16_map_hndl) { uint16 val16; id16_map_t * id16_map; ASSERT_FP(id16_map_hndl != NULL); id16_map = (id16_map_t *)id16_map_hndl; ASSERT_FP(id16_map->total > 0); if (id16_map->stack_idx < 0) { id16_map->failures++; return ID16_INVALID; } val16 = id16_map->stack[id16_map->stack_idx]; id16_map->stack_idx--; #if defined(BCM_DBG) && defined(BCM_DBG_ID16) ASSERT_FP((id16_map->start == ID16_UNDEFINED) || (val16 < (id16_map->start + id16_map->total))); if (id16_map->dbg) { /* Validate val16 */ id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; ASSERT_FP(id16_map_dbg->avail[val16 - id16_map->start] == TRUE); id16_map_dbg->avail[val16 - id16_map->start] = FALSE; } #endif /* BCM_DBG && BCM_DBG_ID16 */ return val16; } void /* Free a 16bit id value into the id16 allocator */ BCMFASTPATH(id16_map_free)(void * id16_map_hndl, uint16 val16) { id16_map_t * id16_map; ASSERT_FP(id16_map_hndl != NULL); id16_map = (id16_map_t *)id16_map_hndl; #if defined(BCM_DBG) && defined(BCM_DBG_ID16) ASSERT_FP((id16_map->start == ID16_UNDEFINED) || (val16 < (id16_map->start + id16_map->total))); if (id16_map->dbg) { /* Validate val16 */ id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg; ASSERT_FP(id16_map_dbg->avail[val16 - id16_map->start] == FALSE); id16_map_dbg->avail[val16 - id16_map->start] = TRUE; } #endif /* BCM_DBG && BCM_DBG_ID16 */ id16_map->stack_idx++; id16_map->stack[id16_map->stack_idx] = val16; } uint32 /* Returns number of failures to allocate an unique id16 */ id16_map_failures(void * id16_map_hndl) { ASSERT(id16_map_hndl != NULL); return ((id16_map_t *)id16_map_hndl)->failures; } bool id16_map_audit(void * id16_map_hndl) { int idx; int insane = 0; id16_map_t * id16_map; ASSERT(id16_map_hndl != NULL); id16_map = (id16_map_t *)id16_map_hndl; ASSERT(id16_map->stack_idx >= -1); ASSERT(id16_map->stack_idx < (int)id16_map->total); if (id16_map->start == ID16_UNDEFINED) goto done; for (idx = 0; idx <= id16_map->stack_idx; idx++) { ASSERT(id16_map->stack[idx] >= id16_map->start); ASSERT(id16_map->stack[idx] < (id16_map->start + id16_map->total)); #if defined(BCM_DBG) && defined(BCM_DBG_ID16) if (id16_map->dbg) { uint16 val16 = id16_map->stack[idx]; if (((id16_map_dbg_t *)(id16_map->dbg))->avail[val16] != TRUE) { insane |= 1; ID16_MAP_MSG(("id16_map<%p>: stack_idx %u invalid val16 %u\n", OSL_OBFUSATE_BUF(id16_map_hndl), idx, val16)); } } #endif /* BCM_DBG && BCM_DBG_ID16 */ } #if defined(BCM_DBG) && defined(BCM_DBG_ID16) if (id16_map->dbg) { uint16 avail = 0; /* Audit available ids counts */ for (idx = 0; idx < id16_map_dbg->total; idx++) { if (((id16_map_dbg_t *)(id16_map->dbg))->avail[idx16] == TRUE) avail++; } if (avail && (avail != (id16_map->stack_idx + 1))) { insane |= 1; ID16_MAP_MSG(("id16_map<%p>: avail %u stack_idx %u\n", OSL_OBFUSCATE_BUF(id16_map_hndl), avail, id16_map->stack_idx)); } } #endif /* BCM_DBG && BCM_DBG_ID16 */ done: /* invoke any other system audits */ return (!!insane); } /* END: Simple id16 allocator */ void dll_pool_detach(void * osh, dll_pool_t * pool, uint16 elems_max, uint16 elem_size) { uint32 mem_size; mem_size = (uint32)sizeof(dll_pool_t) + ((uint32)elems_max * (uint32)elem_size); if (pool) { MFREE(osh, pool, mem_size); } } dll_pool_t * dll_pool_init(void * osh, uint16 elems_max, uint16 elem_size) { uint32 mem_size, i; dll_pool_t * dll_pool_p; dll_t * elem_p; ASSERT(elem_size > sizeof(dll_t)); mem_size = (uint32)sizeof(dll_pool_t) + ((uint32)elems_max * (uint32)elem_size); if ((dll_pool_p = (dll_pool_t *)MALLOCZ(osh, mem_size)) == NULL) { ASSERT(0); return dll_pool_p; } dll_init(&dll_pool_p->free_list); dll_pool_p->elems_max = elems_max; dll_pool_p->elem_size = elem_size; elem_p = dll_pool_p->elements; for (i = 0; i < elems_max; i++) { dll_append(&dll_pool_p->free_list, elem_p); elem_p = (dll_t *)((uintptr)elem_p + elem_size); } dll_pool_p->free_count = elems_max; return dll_pool_p; } void * dll_pool_alloc(dll_pool_t * dll_pool_p) { dll_t * elem_p; if (dll_pool_p->free_count == 0) { ASSERT(dll_empty(&dll_pool_p->free_list)); return NULL; } elem_p = dll_head_p(&dll_pool_p->free_list); dll_delete(elem_p); dll_pool_p->free_count -= 1; return (void *)elem_p; } void BCMPOSTTRAPFN(dll_pool_free)(dll_pool_t * dll_pool_p, void * elem_p) { dll_t * node_p = (dll_t *)elem_p; dll_prepend(&dll_pool_p->free_list, node_p); dll_pool_p->free_count += 1; } void dll_pool_free_tail(dll_pool_t * dll_pool_p, void * elem_p) { dll_t * node_p = (dll_t *)elem_p; dll_append(&dll_pool_p->free_list, node_p); dll_pool_p->free_count += 1; } #ifdef BCMDBG void dll_pool_dump(dll_pool_t * dll_pool_p, dll_elem_dump elem_dump) { dll_t * elem_p; dll_t * next_p; printf("dll_pool<%p> free_count<%u> elems_max<%u> elem_size<%u>\n", OSL_OBFUSCATE_BUF(dll_pool_p), dll_pool_p->free_count, dll_pool_p->elems_max, dll_pool_p->elem_size); for (elem_p = dll_head_p(&dll_pool_p->free_list); !dll_end(&dll_pool_p->free_list, elem_p); elem_p = next_p) { next_p = dll_next_p(elem_p); printf("\telem<%p>\n", OSL_OBFUSCATE_BUF(elem_p)); if (elem_dump != NULL) elem_dump((void *)elem_p); } } #endif /* BCMDBG */ #endif /* BCMDRIVER */ #if defined(BCMDRIVER) || defined(WL_UNITTEST) #ifndef DONGLEBUILD /* triggers bcm_bprintf to print to kernel log */ bool bcm_bprintf_bypass = FALSE; #endif /* !DONGLEBUILD */ #if !(defined(_WIN32) || defined(NDIS)) /* TODO: add vprintf to ndis OSL and remove this conditional */ #define BCM_BPRINTF_ALLOW_NULL_B #endif /* Initialization of bcmstrbuf structure */ void BCMPOSTTRAPFN(bcm_binit)(struct bcmstrbuf *b, char *buf, uint size) { #ifdef BCM_BPRINTF_ALLOW_NULL_B /* pass NULL to struct bcmstrbuf *b to indicate the output is console */ if (b == NULL) { return; } #endif /* BCM_BPRINTF_ALLOW_NULL_B */ b->origsize = b->size = size; b->origbuf = b->buf = buf; if (size > 0) { buf[0] = '\0'; } } /* Buffer sprintf wrapper to guard against buffer overflow */ int BCMPOSTTRAPFN(bcm_bprintf)(struct bcmstrbuf *b, const char *fmt, ...) { va_list ap; int r; va_start(ap, fmt); #ifdef BCM_BPRINTF_ALLOW_NULL_B /* pass NULL to struct bcmstrbuf *b to indicate the output is console */ if (b == NULL) { r = vprintf(fmt, ap); goto exit; } #endif /* BCM_BPRINTF_ALLOW_NULL_B */ r = vsnprintf(b->buf, b->size, fmt, ap); #ifndef DONGLEBUILD if (bcm_bprintf_bypass == TRUE) { static const char BCMPOST_TRAP_RODATA(bcm_bprintf_ptstr_1)[] = "%s"; printf(bcm_bprintf_ptstr_1, b->buf); goto exit; } #endif /* !DONGLEBUILD */ /* Non Ansi C99 compliant returns -1, * Ansi compliant return r >= b->size, * bcmstdlib returns 0, handle all */ /* r == 0 is also the case when strlen(fmt) is zero. * typically the case when "" is passed as argument. */ if ((r == -1) || (r >= (int)b->size)) { b->size = 0; } else { b->size -= (uint)r; b->buf += r; } exit: va_end(ap); return r; } void bcm_bprhex(struct bcmstrbuf *b, const char *msg, bool newline, const uint8 *buf, uint len) { uint i; if (msg != NULL && msg[0] != '\0') bcm_bprintf(b, "%s", msg); for (i = 0u; i < len; i ++) bcm_bprintf(b, "%02X", buf[i]); if (newline) bcm_bprintf(b, "\n"); } void bcm_inc_bytes(uchar *num, int num_bytes, uint8 amount) { int i; for (i = 0; i < num_bytes; i++) { num[i] += amount; if (num[i] >= amount) break; amount = 1; } } int bcm_cmp_bytes(const uchar *arg1, const uchar *arg2, uint8 nbytes) { int i; for (i = nbytes - 1; i >= 0; i--) { if (arg1[i] != arg2[i]) return (arg1[i] - arg2[i]); } return 0; } void bcm_print_bytes(const char *name, const uchar *data, uint len) { uint i; int per_line = 0; printf("%s: %d \n", name ? name : "", len); for (i = 0u; i < len; i++) { printf("%02x ", *data++); per_line++; if (per_line == 16) { per_line = 0; printf("\n"); } } printf("\n"); } /* Search for an IE having a specific tag and an OUI type from a buffer. * tlvs: buffer to search for IE * tlvs_len: buffer length * tag: IE tag * oui: Specific OUI to match * oui_len: length of the OUI * type: OUI type * Return the matched IE, else return null. */ bcm_tlv_t * bcm_find_ie(const uint8* tlvs, uint tlvs_len, uint8 tag, uint8 oui_len, const char *oui, uint8 type) { const bcm_tlv_t *ie; COV_TAINTED_DATA_SINK(tlvs_len); COV_NEG_SINK(tlvs_len); /* Walk through the IEs looking for an OUI match */ while ((ie = bcm_parse_tlvs_advance(&tlvs, &tlvs_len, tag, BCM_TLV_ADVANCE_TO))) { if ((ie->len > oui_len) && !bcmp(ie->data, oui, oui_len) && ie->data[oui_len] == type) { COV_TAINTED_DATA_ARG(ie); GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); return (bcm_tlv_t *)(ie); /* a match */ GCC_DIAGNOSTIC_POP(); } /* Point to the next IE */ bcm_tlv_buffer_advance_past(ie, &tlvs, &tlvs_len); } return NULL; } /* Look for vendor-specific IE with specified OUI and optional type */ bcm_tlv_t * bcm_find_vendor_ie(const void *tlvs, uint tlvs_len, const char *voui, uint8 *type, uint type_len) { const bcm_tlv_t *ie; uint8 ie_len; COV_TAINTED_DATA_SINK(tlvs_len); COV_NEG_SINK(tlvs_len); ie = (const bcm_tlv_t*)tlvs; /* make sure we are looking at a valid IE */ if (ie == NULL || !bcm_valid_tlv(ie, tlvs_len)) { return NULL; } /* Walk through the IEs looking for an OUI match */ do { ie_len = ie->len; if ((ie->id == DOT11_MNG_VS_ID) && (ie_len >= (DOT11_OUI_LEN + type_len)) && !bcmp(ie->data, voui, DOT11_OUI_LEN)) { /* compare optional type */ if (type_len == 0 || !bcmp(((const char *)ie->data) + DOT11_OUI_LEN, type, type_len)) { COV_TAINTED_DATA_ARG(ie); GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); return (bcm_tlv_t *)(ie); /* a match */ GCC_DIAGNOSTIC_POP(); } } } while ((ie = bcm_next_tlv(ie, &tlvs_len)) != NULL); return NULL; } #if defined(WLTINYDUMP) || defined(BCMDBG) || defined(WLMSG_INFORM) || \ defined(WLMSG_ASSOC) || defined(WLMSG_PRPKT) || defined(WLMSG_WSEC) #define SSID_FMT_BUF_LEN ((4 * DOT11_MAX_SSID_LEN) + 1) int bcm_format_ssid(char* buf, const uchar ssid[], uint ssid_len) { uint i, c; char *p = buf; char *endp = buf + SSID_FMT_BUF_LEN; if (ssid_len > DOT11_MAX_SSID_LEN) ssid_len = DOT11_MAX_SSID_LEN; for (i = 0; i < ssid_len; i++) { c = (uint)ssid[i]; if (c == '\\') { *p++ = '\\'; *p++ = '\\'; } else if (bcm_isprint((uchar)c)) { *p++ = (char)c; } else { p += snprintf(p, (size_t)(endp - p), "\\x%02X", c); } } *p = '\0'; ASSERT(p < endp); return (int)(p - buf); } #endif /* WLTINYDUMP || BCMDBG || WLMSG_INFORM || WLMSG_ASSOC || WLMSG_PRPKT */ #endif /* BCMDRIVER || WL_UNITTEST */ /* Masking few bytes of MAC address per customer in all prints/eventlogs. */ int BCMRAMFN(bcm_addrmask_set)(int enable) { #ifdef PRIVACY_MASK struct ether_addr *privacy = privacy_addrmask_get(); if (enable) { /* apply mask as (For SS) * orig : 12:34:56:78:90:ab * masked : 12:xx:xx:xx:x0:ab */ privacy->octet[1] = privacy->octet[2] = privacy->octet[3] = 0; privacy->octet[0] = privacy->octet[5] = 0xff; privacy->octet[4] = 0x0f; } else { /* No masking. All are 0xff. */ memcpy(privacy, ðer_bcast, sizeof(struct ether_addr)); } return BCME_OK; #else BCM_REFERENCE(enable); return BCME_UNSUPPORTED; #endif /* PRIVACY_MASK */ } int bcm_addrmask_get(int *val) { #ifdef PRIVACY_MASK struct ether_addr *privacy = privacy_addrmask_get(); if (!eacmp(ðer_bcast, privacy)) { *val = FALSE; } else { *val = TRUE; } return BCME_OK; #else BCM_REFERENCE(val); return BCME_UNSUPPORTED; #endif } uint64 BCMRAMFN(bcm_ether_ntou64)(const struct ether_addr *ea) { uint64 mac; struct ether_addr addr; memcpy(&addr, ea, sizeof(struct ether_addr)); #ifdef PRIVACY_MASK struct ether_addr *privacy = privacy_addrmask_get(); if (!ETHER_ISMULTI(ea)) { *(uint32*)(&addr.octet[0]) &= *((uint32*)&privacy->octet[0]); *(uint16*)(&addr.octet[4]) &= *((uint16*)&privacy->octet[4]); } #endif /* PRIVACY_MASK */ mac = ((uint64)HTON16(*((const uint16*)&addr.octet[4]))) << 32 | HTON32(*((const uint32*)&addr.octet[0])); return (mac); } char * bcm_ether_ntoa(const struct ether_addr *ea, char *buf) { static const char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; const uint8 *octet = ea->octet; char *p = buf; int i; for (i = 0; i < 6; i++, octet++) { *p++ = hex[(*octet >> 4) & 0xf]; *p++ = hex[*octet & 0xf]; *p++ = ':'; } *(p-1) = '\0'; return (buf); } /* Find the position of first bit set * in the given number. */ int bcm_find_fsb(uint32 num) { uint8 pos = 0; if (!num) return pos; while (!(num & 1)) { num >>= 1; pos++; } return (pos+1); } /* TODO: need to pass in the buffer length for validation check */ char * bcm_ip_ntoa(struct ipv4_addr *ia, char *buf) { snprintf(buf, 16, "%d.%d.%d.%d", ia->addr[0], ia->addr[1], ia->addr[2], ia->addr[3]); return (buf); } /* TODO: need to pass in the buffer length for validation check */ char * bcm_ipv6_ntoa(void *ipv6, char *buf) { /* Implementing RFC 5952 Sections 4 + 5 */ /* Not thoroughly tested */ uint16 tmp[8]; uint16 *a = &tmp[0]; char *p = buf; int i, i_max = -1, cnt = 0, cnt_max = 1; uint8 *a4 = NULL; memcpy((uint8 *)&tmp[0], (uint8 *)ipv6, IPV6_ADDR_LEN); for (i = 0; i < IPV6_ADDR_LEN/2; i++) { if (a[i]) { if (cnt > cnt_max) { cnt_max = cnt; i_max = i - cnt; } cnt = 0; } else cnt++; } if (cnt > cnt_max) { cnt_max = cnt; i_max = i - cnt; } if (i_max == 0 && /* IPv4-translated: ::ffff:0:a.b.c.d */ ((cnt_max == 4 && a[4] == 0xffff && a[5] == 0) || /* IPv4-mapped: ::ffff:a.b.c.d */ (cnt_max == 5 && a[5] == 0xffff))) a4 = (uint8*) (a + 6); for (i = 0; i < IPV6_ADDR_LEN/2; i++) { if ((uint8*) (a + i) == a4) { snprintf(p, 17, ":%u.%u.%u.%u", a4[0], a4[1], a4[2], a4[3]); break; } else if (i == i_max) { *p++ = ':'; i += cnt_max - 1; p[0] = ':'; p[1] = '\0'; } else { if (i) *p++ = ':'; p += snprintf(p, 8, "%x", ntoh16(a[i])); } } return buf; } #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) const unsigned char BCMPOST_TRAP_RODATA(bcm_ctype)[256] = { _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 0-7 */ _BCM_C, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C, _BCM_C, /* 8-15 */ _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 16-23 */ _BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 24-31 */ _BCM_S|_BCM_SP,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 32-39 */ _BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 40-47 */ _BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D, /* 48-55 */ _BCM_D,_BCM_D,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 56-63 */ _BCM_P, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U, /* 64-71 */ _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 72-79 */ _BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 80-87 */ _BCM_U,_BCM_U,_BCM_U,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 88-95 */ _BCM_P, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L, /* 96-103 */ _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 104-111 */ _BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 112-119 */ _BCM_L,_BCM_L,_BCM_L,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_C, /* 120-127 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 128-143 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 144-159 */ _BCM_S|_BCM_SP, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 160-175 */ _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 176-191 */ _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, /* 192-207 */ _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_P, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_L, /* 208-223 */ _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, /* 224-239 */ _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_P, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L /* 240-255 */ }; uint64 bcm_strtoull(const char *cp, char **endp, uint base) { uint64 result, last_result = 0, value; bool minus; minus = FALSE; while (bcm_isspace(*cp)) cp++; if (cp[0] == '+') cp++; else if (cp[0] == '-') { minus = TRUE; cp++; } if (base == 0) { if (cp[0] == '0') { if ((cp[1] == 'x') || (cp[1] == 'X')) { base = 16; cp = &cp[2]; } else { base = 8; cp = &cp[1]; } } else base = 10; } else if (base == 16 && (cp[0] == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) { cp = &cp[2]; } result = 0; while (bcm_isxdigit(*cp) && (value = (uint64)(bcm_isdigit(*cp) ? *cp-'0' : bcm_toupper(*cp)-'A'+10)) < base) { result = result*base + value; /* Detected overflow */ if (result < last_result && !minus) { if (endp) { /* Go to the end of current number */ while (bcm_isxdigit(*cp)) { cp++; } *endp = DISCARD_QUAL(cp, char); } return (ulong)-1; } last_result = result; cp++; } if (minus) result = (ulong)(-(long)result); if (endp) *endp = DISCARD_QUAL(cp, char); return (result); } ulong bcm_strtoul(const char *cp, char **endp, uint base) { return (ulong) bcm_strtoull(cp, endp, base); } int bcm_atoi(const char *s) { return (int)bcm_strtoul(s, NULL, 10); } /* return pointer to location of substring 'needle' in 'haystack' */ char * bcmstrstr(const char *haystack, const char *needle) { uint len, nlen; uint i; if ((haystack == NULL) || (needle == NULL)) return DISCARD_QUAL(haystack, char); nlen = (uint)strlen(needle); if (strlen(haystack) < nlen) { return NULL; } len = (uint)strlen(haystack) - nlen + 1u; for (i = 0u; i < len; i++) if (memcmp(needle, &haystack[i], nlen) == 0) return DISCARD_QUAL(&haystack[i], char); return (NULL); } char * bcmstrnstr(const char *s, uint s_len, const char *substr, uint substr_len) { for (; s_len >= substr_len; s++, s_len--) if (strncmp(s, substr, substr_len) == 0) return DISCARD_QUAL(s, char); return NULL; } char * bcmstrcat(char *dest, const char *src) { char *p; p = dest + strlen(dest); while ((*p++ = *src++) != '\0') ; return (dest); } char * bcmstrncat(char *dest, const char *src, uint size) { char *endp; char *p; p = dest + strlen(dest); endp = p + size; while (p != endp && (*p++ = *src++) != '\0') ; return (dest); } /**************************************************************************** * Function: bcmstrtok * * Purpose: * Tokenizes a string. This function is conceptually similiar to ANSI C strtok(), * but allows strToken() to be used by different strings or callers at the same * time. Each call modifies '*string' by substituting a NULL character for the * first delimiter that is encountered, and updates 'string' to point to the char * after the delimiter. Leading delimiters are skipped. * * Parameters: * string (mod) Ptr to string ptr, updated by token. * delimiters (in) Set of delimiter characters. * tokdelim (out) Character that delimits the returned token. (May * be set to NULL if token delimiter is not required). * * Returns: Pointer to the next token found. NULL when no more tokens are found. ***************************************************************************** */ char * bcmstrtok(char **string, const char *delimiters, char *tokdelim) { unsigned char *str; unsigned long map[8]; int count; char *nextoken; if (tokdelim != NULL) { /* Prime the token delimiter */ *tokdelim = '\0'; } /* Clear control map */ for (count = 0; count < 8; count++) { map[count] = 0; } /* Set bits in delimiter table */ do { map[*delimiters >> 5] |= (1UL << (*delimiters & 31)); } while (*delimiters++); str = (unsigned char*)*string; /* Find beginning of token (skip over leading delimiters). Note that * there is no token iff this loop sets str to point to the terminal * null (*str == '\0') */ while (((map[*str >> 5] & (1UL << (*str & 31))) && *str) || (*str == ' ')) { str++; } nextoken = (char*)str; /* Find the end of the token. If it is not the end of the string, * put a null there. */ for (; *str; str++) { if (map[*str >> 5] & (1UL << (*str & 31))) { if (tokdelim != NULL) { *tokdelim = *str; } *str++ = '\0'; break; } } *string = (char*)str; /* Determine if a token has been found. */ if (nextoken == (char *) str) { return NULL; } else { return nextoken; } } #define xToLower(C) \ ((C >= 'A' && C <= 'Z') ? (char)((int)C - (int)'A' + (int)'a') : C) /**************************************************************************** * Function: bcmstricmp * * Purpose: Compare to strings case insensitively. * * Parameters: s1 (in) First string to compare. * s2 (in) Second string to compare. * * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if * t1 > t2, when ignoring case sensitivity. ***************************************************************************** */ int bcmstricmp(const char *s1, const char *s2) { char dc, sc; while (*s2 && *s1) { dc = xToLower(*s1); sc = xToLower(*s2); if (dc < sc) return -1; if (dc > sc) return 1; s1++; s2++; } if (*s1 && !*s2) return 1; if (!*s1 && *s2) return -1; return 0; } /**************************************************************************** * Function: bcmstrnicmp * * Purpose: Compare to strings case insensitively, upto a max of 'cnt' * characters. * * Parameters: s1 (in) First string to compare. * s2 (in) Second string to compare. * cnt (in) Max characters to compare. * * Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if * t1 > t2, when ignoring case sensitivity. ***************************************************************************** */ int bcmstrnicmp(const char* s1, const char* s2, int cnt) { char dc, sc; while (*s2 && *s1 && cnt) { dc = xToLower(*s1); sc = xToLower(*s2); if (dc < sc) return -1; if (dc > sc) return 1; s1++; s2++; cnt--; } if (!cnt) return 0; if (*s1 && !*s2) return 1; if (!*s1 && *s2) return -1; return 0; } /* parse a xx:xx:xx:xx:xx:xx format ethernet address */ int bcm_ether_atoe(const char *p, struct ether_addr *ea) { int i = 0; char *ep; for (;;) { ea->octet[i++] = (char) bcm_strtoul(p, &ep, 16); p = ep; if (!*p++ || i == 6) break; } return (i == 6); } /* parse a nnn.nnn.nnn.nnn format IPV4 address */ int bcm_atoipv4(const char *p, struct ipv4_addr *ip) { int i = 0; char *c; for (;;) { ip->addr[i++] = (uint8)bcm_strtoul(p, &c, 0); if (*c++ != '.' || i == IPV4_ADDR_LEN) break; p = c; } return (i == IPV4_ADDR_LEN); } #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ const struct ether_addr ether_bcast = {{255, 255, 255, 255, 255, 255}}; const struct ether_addr BCMPOST_TRAP_RODATA(ether_null) = {{0, 0, 0, 0, 0, 0}}; const struct ether_addr ether_ipv6_mcast = {{0x33, 0x33, 0x00, 0x00, 0x00, 0x01}}; int ether_isbcast(const void *ea) { return (memcmp(ea, ðer_bcast, sizeof(struct ether_addr)) == 0); } int BCMPOSTTRAPFN(ether_isnulladdr)(const void *ea) { const uint8 *ea8 = (const uint8 *)ea; return !(ea8[5] || ea8[4] || ea8[3] || ea8[2] || ea8[1] || ea8[0]); } #if defined(CONFIG_USBRNDIS_RETAIL) || defined(NDIS_MINIPORT_DRIVER) /* registry routine buffer preparation utility functions: * parameter order is like strlcpy, but returns count * of bytes copied. Minimum bytes copied is null char(1)/wchar(2) */ ulong wchar2ascii(char *abuf, ushort *wbuf, ushort wbuflen, ulong abuflen) { ulong copyct = 1; ushort i; if (abuflen == 0) return 0; /* wbuflen is in bytes */ wbuflen /= sizeof(ushort); for (i = 0; i < wbuflen; ++i) { if (--abuflen == 0) break; *abuf++ = (char) *wbuf++; ++copyct; } *abuf = '\0'; return copyct; } #endif /* CONFIG_USBRNDIS_RETAIL || NDIS_MINIPORT_DRIVER */ #ifdef BCM_OBJECT_TRACE #define BCM_OBJECT_MERGE_SAME_OBJ 0 /* some place may add / remove the object to trace list for Linux: */ /* add: osl_alloc_skb dev_alloc_skb skb_realloc_headroom dhd_start_xmit */ /* remove: osl_pktfree dev_kfree_skb netif_rx */ #if defined(__linux__) #define BCM_OBJDBG_COUNT (1024 * 100) static spinlock_t dbgobj_lock; #define BCM_OBJDBG_LOCK_INIT() spin_lock_init(&dbgobj_lock) #define BCM_OBJDBG_LOCK_DESTROY() #define BCM_OBJDBG_LOCK spin_lock_irqsave #define BCM_OBJDBG_UNLOCK spin_unlock_irqrestore #else #define BCM_OBJDBG_COUNT (256) #define BCM_OBJDBG_LOCK_INIT() #define BCM_OBJDBG_LOCK_DESTROY() #define BCM_OBJDBG_LOCK(x, y) #define BCM_OBJDBG_UNLOCK(x, y) #endif /* else OS */ #define BCM_OBJDBG_ADDTOHEAD 0 #define BCM_OBJDBG_ADDTOTAIL 1 #define BCM_OBJDBG_CALLER_LEN 32 struct bcm_dbgobj { struct bcm_dbgobj *prior; struct bcm_dbgobj *next; uint32 flag; void *obj; uint32 obj_sn; uint32 obj_state; uint32 line; char caller[BCM_OBJDBG_CALLER_LEN]; }; static struct bcm_dbgobj *dbgobj_freehead = NULL; static struct bcm_dbgobj *dbgobj_freetail = NULL; static struct bcm_dbgobj *dbgobj_objhead = NULL; static struct bcm_dbgobj *dbgobj_objtail = NULL; static uint32 dbgobj_sn = 0; static int dbgobj_count = 0; static struct bcm_dbgobj bcm_dbg_objs[BCM_OBJDBG_COUNT]; void bcm_object_trace_init(void) { int i = 0; BCM_OBJDBG_LOCK_INIT(); bzero(&bcm_dbg_objs, sizeof(struct bcm_dbgobj) * BCM_OBJDBG_COUNT); dbgobj_freehead = &bcm_dbg_objs[0]; dbgobj_freetail = &bcm_dbg_objs[BCM_OBJDBG_COUNT - 1]; for (i = 0; i < BCM_OBJDBG_COUNT; ++i) { bcm_dbg_objs[i].next = (i == (BCM_OBJDBG_COUNT - 1)) ? dbgobj_freehead : &bcm_dbg_objs[i + 1]; bcm_dbg_objs[i].prior = (i == 0) ? dbgobj_freetail : &bcm_dbg_objs[i - 1]; } } void bcm_object_trace_deinit(void) { if (dbgobj_objhead || dbgobj_objtail) { printf("bcm_object_trace_deinit: not all objects are released\n"); ASSERT(0); } BCM_OBJDBG_LOCK_DESTROY(); } static void bcm_object_rm_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, struct bcm_dbgobj *dbgobj) { if ((dbgobj == *head) && (dbgobj == *tail)) { *head = NULL; *tail = NULL; } else if (dbgobj == *head) { *head = (*head)->next; } else if (dbgobj == *tail) { *tail = (*tail)->prior; } dbgobj->next->prior = dbgobj->prior; dbgobj->prior->next = dbgobj->next; } static void bcm_object_add_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, struct bcm_dbgobj *dbgobj, int addtotail) { if (!(*head) && !(*tail)) { *head = dbgobj; *tail = dbgobj; dbgobj->next = dbgobj; dbgobj->prior = dbgobj; } else if ((*head) && (*tail)) { (*tail)->next = dbgobj; (*head)->prior = dbgobj; dbgobj->next = *head; dbgobj->prior = *tail; if (addtotail == BCM_OBJDBG_ADDTOTAIL) *tail = dbgobj; else *head = dbgobj; } else { ASSERT(0); /* can't be this case */ } } static INLINE void bcm_object_movetoend(struct bcm_dbgobj **head, struct bcm_dbgobj **tail, struct bcm_dbgobj *dbgobj, int movetotail) { if ((*head) && (*tail)) { if (movetotail == BCM_OBJDBG_ADDTOTAIL) { if (dbgobj != (*tail)) { bcm_object_rm_list(head, tail, dbgobj); bcm_object_add_list(head, tail, dbgobj, movetotail); } } else { if (dbgobj != (*head)) { bcm_object_rm_list(head, tail, dbgobj); bcm_object_add_list(head, tail, dbgobj, movetotail); } } } else { ASSERT(0); /* can't be this case */ } } void bcm_object_trace_opr(void *obj, uint32 opt, const char *caller, int line) { struct bcm_dbgobj *dbgobj; unsigned long flags; BCM_REFERENCE(flags); BCM_OBJDBG_LOCK(&dbgobj_lock, flags); if (opt == BCM_OBJDBG_ADD_PKT || opt == BCM_OBJDBG_ADD) { dbgobj = dbgobj_objtail; while (dbgobj) { if (dbgobj->obj == obj) { printf("bcm_object_trace_opr: obj %p allocated from %s(%d)," " allocate again from %s(%d)\n", dbgobj->obj, dbgobj->caller, dbgobj->line, caller, line); ASSERT(0); goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } #if BCM_OBJECT_MERGE_SAME_OBJ dbgobj = dbgobj_freetail; while (dbgobj) { if (dbgobj->obj == obj) { goto FREED_ENTRY_FOUND; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_freetail) break; } #endif /* BCM_OBJECT_MERGE_SAME_OBJ */ dbgobj = dbgobj_freehead; #if BCM_OBJECT_MERGE_SAME_OBJ FREED_ENTRY_FOUND: #endif /* BCM_OBJECT_MERGE_SAME_OBJ */ if (!dbgobj) { printf("bcm_object_trace_opr: already got %d objects ?????????????????\n", BCM_OBJDBG_COUNT); ASSERT(0); goto EXIT; } bcm_object_rm_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj); dbgobj->obj = obj; strlcpy(dbgobj->caller, caller, sizeof(dbgobj->caller)); dbgobj->line = line; dbgobj->flag = 0; if (opt == BCM_OBJDBG_ADD_PKT) { dbgobj->obj_sn = dbgobj_sn++; dbgobj->obj_state = 0; /* first 4 bytes is pkt sn */ if (((unsigned long)PKTTAG(obj)) & 0x3) printf("pkt tag address not aligned by 4: %p\n", PKTTAG(obj)); *(uint32*)PKTTAG(obj) = dbgobj->obj_sn; } bcm_object_add_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj, BCM_OBJDBG_ADDTOTAIL); dbgobj_count++; } else if (opt == BCM_OBJDBG_REMOVE) { dbgobj = dbgobj_objtail; while (dbgobj) { if (dbgobj->obj == obj) { if (dbgobj->flag) { printf("bcm_object_trace_opr: rm flagged obj %p" " flag 0x%08x from %s(%d)\n", obj, dbgobj->flag, caller, line); } bcm_object_rm_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj); bzero(dbgobj->caller, sizeof(dbgobj->caller)); strlcpy(dbgobj->caller, caller, sizeof(dbgobj->caller)); dbgobj->line = line; bcm_object_add_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj, BCM_OBJDBG_ADDTOTAIL); dbgobj_count--; goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } dbgobj = dbgobj_freetail; while (dbgobj && dbgobj->obj) { if (dbgobj->obj == obj) { printf("bcm_object_trace_opr: obj %p already freed" " from from %s(%d)," " try free again from %s(%d)\n", obj, dbgobj->caller, dbgobj->line, caller, line); //ASSERT(0); /* release same obj more than one time? */ goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_freetail) break; } printf("bcm_object_trace_opr: ################### release none-existing" " obj %p from %s(%d)\n", obj, caller, line); //ASSERT(0); /* release same obj more than one time? */ } EXIT: BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); return; } void bcm_object_trace_upd(void *obj, void *obj_new) { struct bcm_dbgobj *dbgobj; unsigned long flags; BCM_REFERENCE(flags); BCM_OBJDBG_LOCK(&dbgobj_lock, flags); dbgobj = dbgobj_objtail; while (dbgobj) { if (dbgobj->obj == obj) { dbgobj->obj = obj_new; if (dbgobj != dbgobj_objtail) { bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, dbgobj, BCM_OBJDBG_ADDTOTAIL); } goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } EXIT: BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); return; } void bcm_object_trace_chk(void *obj, uint32 chksn, uint32 sn, const char *caller, int line) { struct bcm_dbgobj *dbgobj; unsigned long flags; BCM_REFERENCE(flags); BCM_OBJDBG_LOCK(&dbgobj_lock, flags); dbgobj = dbgobj_objtail; while (dbgobj) { if ((dbgobj->obj == obj) && ((!chksn) || (dbgobj->obj_sn == sn))) { if (dbgobj != dbgobj_objtail) { bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, dbgobj, BCM_OBJDBG_ADDTOTAIL); } goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } dbgobj = dbgobj_freetail; while (dbgobj) { if ((dbgobj->obj == obj) && ((!chksn) || (dbgobj->obj_sn == sn))) { printf("bcm_object_trace_chk: (%s:%d) obj %p (sn %d state %d)" " was freed from %s(%d)\n", caller, line, dbgobj->obj, dbgobj->obj_sn, dbgobj->obj_state, dbgobj->caller, dbgobj->line); goto EXIT; } else if (dbgobj->obj == NULL) { break; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_freetail) break; } printf("bcm_object_trace_chk: obj %p not found, check from %s(%d), chksn %s, sn %d\n", obj, caller, line, chksn ? "yes" : "no", sn); dbgobj = dbgobj_objtail; while (dbgobj) { printf("bcm_object_trace_chk: (%s:%d) obj %p sn %d was allocated from %s(%d)\n", caller, line, dbgobj->obj, dbgobj->obj_sn, dbgobj->caller, dbgobj->line); dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } EXIT: BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); return; } void bcm_object_feature_set(void *obj, uint32 type, uint32 value) { struct bcm_dbgobj *dbgobj; unsigned long flags; BCM_REFERENCE(flags); BCM_OBJDBG_LOCK(&dbgobj_lock, flags); dbgobj = dbgobj_objtail; while (dbgobj) { if (dbgobj->obj == obj) { if (type == BCM_OBJECT_FEATURE_FLAG) { if (value & BCM_OBJECT_FEATURE_CLEAR) dbgobj->flag &= ~(value); else dbgobj->flag |= (value); } else if (type == BCM_OBJECT_FEATURE_PKT_STATE) { dbgobj->obj_state = value; } if (dbgobj != dbgobj_objtail) { bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, dbgobj, BCM_OBJDBG_ADDTOTAIL); } goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } printf("bcm_object_feature_set: obj %p not found in active list\n", obj); ASSERT(0); EXIT: BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); return; } int bcm_object_feature_get(void *obj, uint32 type, uint32 value) { int rtn = 0; struct bcm_dbgobj *dbgobj; unsigned long flags; BCM_REFERENCE(flags); BCM_OBJDBG_LOCK(&dbgobj_lock, flags); dbgobj = dbgobj_objtail; while (dbgobj) { if (dbgobj->obj == obj) { if (type == BCM_OBJECT_FEATURE_FLAG) { rtn = (dbgobj->flag & value) & (~BCM_OBJECT_FEATURE_CLEAR); } if (dbgobj != dbgobj_objtail) { bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail, dbgobj, BCM_OBJDBG_ADDTOTAIL); } goto EXIT; } dbgobj = dbgobj->prior; if (dbgobj == dbgobj_objtail) break; } printf("bcm_object_feature_get: obj %p not found in active list\n", obj); ASSERT(0); EXIT: BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags); return rtn; } #endif /* BCM_OBJECT_TRACE */ uint8 * BCMPOSTTRAPFN(bcm_write_tlv)(int type, const void *data, uint datalen, uint8 *dst) { uint8 *new_dst = dst; bcm_tlv_t *dst_tlv = (bcm_tlv_t *)dst; /* dst buffer should always be valid */ ASSERT(dst); /* data len must be within valid range */ ASSERT((datalen <= BCM_TLV_MAX_DATA_SIZE)); /* source data buffer pointer should be valid, unless datalen is 0 * meaning no data with this TLV */ ASSERT((data != NULL) || (datalen == 0)); /* only do work if the inputs are valid * - must have a dst to write to AND * - datalen must be within range AND * - the source data pointer must be non-NULL if datalen is non-zero * (this last condition detects datalen > 0 with a NULL data pointer) */ if ((dst != NULL) && ((datalen <= BCM_TLV_MAX_DATA_SIZE)) && ((data != NULL) || (datalen == 0u))) { /* write type, len fields */ dst_tlv->id = (uint8)type; dst_tlv->len = (uint8)datalen; /* if data is present, copy to the output buffer and update * pointer to output buffer */ if (datalen > 0u) { memcpy(dst_tlv->data, data, datalen); } /* update the output destination poitner to point past * the TLV written */ new_dst = dst + BCM_TLV_HDR_SIZE + datalen; } return (new_dst); } uint8 * bcm_write_tlv_ext(uint8 type, uint8 ext, const void *data, uint8 datalen, uint8 *dst) { uint8 *new_dst = dst; bcm_tlv_ext_t *dst_tlv = (bcm_tlv_ext_t *)dst; /* dst buffer should always be valid */ ASSERT(dst); /* data len must be within valid range */ ASSERT(datalen <= BCM_TLV_EXT_MAX_DATA_SIZE); /* source data buffer pointer should be valid, unless datalen is 0 * meaning no data with this TLV */ ASSERT((data != NULL) || (datalen == 0)); /* only do work if the inputs are valid * - must have a dst to write to AND * - datalen must be within range AND * - the source data pointer must be non-NULL if datalen is non-zero * (this last condition detects datalen > 0 with a NULL data pointer) */ if ((dst != NULL) && (datalen <= BCM_TLV_EXT_MAX_DATA_SIZE) && ((data != NULL) || (datalen == 0))) { /* write type, len fields */ dst_tlv->id = (uint8)type; dst_tlv->ext = ext; dst_tlv->len = 1 + (uint8)datalen; /* if data is present, copy to the output buffer and update * pointer to output buffer */ if (datalen > 0) { memcpy(dst_tlv->data, data, datalen); } /* update the output destination poitner to point past * the TLV written */ new_dst = dst + BCM_TLV_EXT_HDR_SIZE + datalen; } return (new_dst); } uint8 * BCMPOSTTRAPFN(bcm_write_tlv_safe)(int type, const void *data, uint datalen, uint8 *dst, uint dst_maxlen) { uint8 *new_dst = dst; if ((datalen <= BCM_TLV_MAX_DATA_SIZE)) { /* if len + tlv hdr len is more than destlen, don't do anything * just return the buffer untouched */ if ((datalen + BCM_TLV_HDR_SIZE) <= dst_maxlen) { new_dst = bcm_write_tlv(type, data, datalen, dst); } } return (new_dst); } uint8 * bcm_copy_tlv(const void *src, uint8 *dst) { uint8 *new_dst = dst; const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; uint totlen; ASSERT(dst && src); if (dst && src) { totlen = BCM_TLV_HDR_SIZE + src_tlv->len; memcpy(dst, src_tlv, totlen); new_dst = dst + totlen; } return (new_dst); } uint8 * bcm_copy_tlv_safe(const void *src, uint8 *dst, uint dst_maxlen) { uint8 *new_dst = dst; const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src; ASSERT(src); if (bcm_valid_tlv(src_tlv, dst_maxlen)) { new_dst = bcm_copy_tlv(src, dst); } return (new_dst); } #if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS) /******************************************************************************* * crc8 * * Computes a crc8 over the input data using the polynomial: * * x^8 + x^7 +x^6 + x^4 + x^2 + 1 * * The caller provides the initial value (either CRC8_INIT_VALUE * or the previous returned value) to allow for processing of * discontiguous blocks of data. When generating the CRC the * caller is responsible for complementing the final return value * and inserting it into the byte stream. When checking, a final * return value of CRC8_GOOD_VALUE indicates a valid CRC. * * Reference: Dallas Semiconductor Application Note 27 * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt * * **************************************************************************** */ static const uint8 crc8_table[256] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F }; #define CRC_INNER_LOOP(n, c, x) \ (c) = ((c) >> 8) ^ crc##n##_table[((c) ^ (x)) & 0xff] uint8 hndcrc8( const uint8 *pdata, /* pointer to array of data to process */ uint nbytes, /* number of input data bytes to process */ uint8 crc /* either CRC8_INIT_VALUE or previous return value */ ) { /* hard code the crc loop instead of using CRC_INNER_LOOP macro * to avoid the undefined and unnecessary (uint8 >> 8) operation. */ while (nbytes-- > 0) crc = crc8_table[(crc ^ *pdata++) & 0xff]; return crc; } /******************************************************************************* * crc16 * * Computes a crc16 over the input data using the polynomial: * * x^16 + x^12 +x^5 + 1 * * The caller provides the initial value (either CRC16_INIT_VALUE * or the previous returned value) to allow for processing of * discontiguous blocks of data. When generating the CRC the * caller is responsible for complementing the final return value * and inserting it into the byte stream. When checking, a final * return value of CRC16_GOOD_VALUE indicates a valid CRC. * * Reference: Dallas Semiconductor Application Note 27 * Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms", * ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd., * ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt * * **************************************************************************** */ static const uint16 crc16_table[256] = { 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF, 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7, 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E, 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876, 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD, 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5, 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C, 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974, 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB, 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3, 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A, 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72, 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9, 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1, 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738, 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70, 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7, 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF, 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036, 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E, 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5, 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD, 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134, 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C, 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3, 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB, 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232, 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A, 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1, 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9, 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330, 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78 }; uint16 hndcrc16( const uint8 *pdata, /* pointer to array of data to process */ uint nbytes, /* number of input data bytes to process */ uint16 crc /* either CRC16_INIT_VALUE or previous return value */ ) { while (nbytes-- > 0) CRC_INNER_LOOP(16, crc, *pdata++); return crc; } static const uint32 BCMPOST_TRAP_RODATA(crc32_table)[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; /* * crc input is CRC32_INIT_VALUE for a fresh start, or previous return value if * accumulating over multiple pieces. */ uint32 BCMPOSTTRAPRAMFN(hndcrc32)(const uint8 *pdata, uint nbytes, uint32 crc) { const uint8 *pend; pend = pdata + nbytes; while (pdata < pend) CRC_INNER_LOOP(32, crc, *pdata++); return crc; } #ifdef NOT_YET #define CLEN 1499 /* CRC Length */ #define CBUFSIZ (CLEN+4) #define CNBUFS 5 /* # of bufs */ void testcrc32(void) { uint j, k, l; uint8 *buf; uint len[CNBUFS]; uint32 crcr; uint32 crc32tv[CNBUFS] = {0xd2cb1faa, 0xd385c8fa, 0xf5b4f3f3, 0x55789e20, 0x00343110}; ASSERT((buf = MALLOC(CBUFSIZ*CNBUFS)) != NULL); /* step through all possible alignments */ for (l = 0; l <= 4; l++) { for (j = 0; j < CNBUFS; j++) { len[j] = CLEN; for (k = 0; k < len[j]; k++) *(buf + j*CBUFSIZ + (k+l)) = (j+k) & 0xff; } for (j = 0; j < CNBUFS; j++) { crcr = crc32(buf + j*CBUFSIZ + l, len[j], CRC32_INIT_VALUE); ASSERT(crcr == crc32tv[j]); } } MFREE(buf, CBUFSIZ*CNBUFS); return; } #endif /* NOT_YET */ /* * Advance from the current 1-byte tag/1-byte length/variable-length value * triple, to the next, returning a pointer to the next. * If the current or next TLV is invalid (does not fit in given buffer length), * NULL is returned. * *buflen is not modified if the TLV elt parameter is invalid, or is decremented * by the TLV parameter's length if it is valid. */ bcm_tlv_t * bcm_next_tlv(const bcm_tlv_t *elt, uint *buflen) { uint len; COV_TAINTED_DATA_SINK(buflen); COV_NEG_SINK(buflen); /* validate current elt */ if (!bcm_valid_tlv(elt, *buflen)) { return NULL; } /* advance to next elt */ len = TLV_HDR_LEN + elt->len; elt = (const bcm_tlv_t*)((const uint8 *)elt + len); #if defined(__COVERITY__) /* The 'len' value is tainted in Coverity because it is read from the tainted data pointed * to by 'elt'. However, bcm_valid_tlv() verifies that the elt pointer is a valid element, * so its length, len = (TLV_HDR_LEN + elt->len), is in the bounds of the buffer. * Clearing the tainted attribute of 'len' for Coverity. */ __coverity_tainted_data_sanitize__(len); if (len > *buflen) { return NULL; } #endif /* __COVERITY__ */ *buflen -= len; /* validate next elt */ if (!bcm_valid_tlv(elt, *buflen)) { return NULL; } COV_TAINTED_DATA_ARG(elt); GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); return (bcm_tlv_t *)(elt); GCC_DIAGNOSTIC_POP(); } /** * Advance a const tlv buffer pointer and length up to the given tlv element pointer * 'elt'. The function checks that elt is a valid tlv; the elt pointer and data * are all in the range of the buffer/length. * * @param elt pointer to a valid bcm_tlv_t in the buffer * @param buffer pointer to a tlv buffer * @param buflen length of the buffer in bytes * * On return, if elt is not a tlv in the buffer bounds, the *buffer parameter * will be set to NULL and *buflen parameter will be set to zero. Otherwise, * *buffer will point to elt, and *buflen will have been adjusted by the the * difference between *buffer and elt. */ void bcm_tlv_buffer_advance_to(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen) { uint new_buflen; const uint8 *new_buffer; /* model the input length value as a tainted and negative sink so * Coverity will complain about unvalidated or possibly length values */ COV_TAINTED_DATA_SINK(*buflen); COV_NEG_SINK(*buflen); new_buffer = (const uint8*)elt; /* make sure the input buffer pointer is non-null, that (buffer + buflen) does not wrap, * and that the elt pointer is in the range of [buffer, buffer + buflen] */ if ((*buffer != NULL) && ((uintptr)*buffer < ((uintptr)*buffer + *buflen)) && (new_buffer >= *buffer) && (new_buffer < (*buffer + *buflen))) { /* delta between buffer and new_buffer is <= *buflen, so truncating cast to uint * from ptrdiff is ok */ uint delta = (uint)(new_buffer - *buffer); /* New buffer length is old len minus the delta from the buffer start to elt. * The check just above guarantees that the subtractions does not underflow. */ new_buflen = *buflen - delta; /* validate current elt */ if (bcm_valid_tlv(elt, new_buflen)) { /* All good, so update the input/output parameters */ *buffer = new_buffer; *buflen = new_buflen; return; } } /* something did not check out, clear out the buffer info */ *buffer = NULL; *buflen = 0; return; } /** * Advance a const tlv buffer pointer and length past the given tlv element pointer * 'elt'. The function checks that elt is a valid tlv; the elt pointer and data * are all in the range of the buffer/length. The function also checks that the * remaining buffer starts with a valid tlv. * * @param elt pointer to a valid bcm_tlv_t in the buffer * @param buffer pointer to a tlv buffer * @param buflen length of the buffer in bytes * * On return, if elt is not a tlv in the buffer bounds, or the remaining buffer * following the elt does not begin with a tlv in the buffer bounds, the *buffer * parameter will be set to NULL and *buflen parameter will be set to zero. * Otherwise, *buffer will point to the first byte past elt, and *buflen will * have the remaining buffer length. */ void bcm_tlv_buffer_advance_past(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen) { /* Start by advancing the buffer up to the given elt */ bcm_tlv_buffer_advance_to(elt, buffer, buflen); /* if that did not work, bail out */ if (*buflen == 0) { return; } #if defined(__COVERITY__) /* The elt has been verified by bcm_tlv_buffer_advance_to() to be a valid element, * so its elt->len is in the bounds of the buffer. The following check prevents * Coverity from flagging the (elt->data + elt->len) statement below as using a * tainted elt->len to index into array 'elt->data'. */ if (elt->len > *buflen) { return; } #endif /* __COVERITY__ */ /* We know we are advanced up to a good tlv. * Now just advance to the following tlv. */ elt = (const bcm_tlv_t*)(elt->data + elt->len); bcm_tlv_buffer_advance_to(elt, buffer, buflen); return; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ bcm_tlv_t * bcm_parse_tlvs(const void *buf, uint buflen, uint key) { const bcm_tlv_t *elt; uint totlen; COV_TAINTED_DATA_SINK(buflen); COV_NEG_SINK(buflen); if ((elt = (const bcm_tlv_t*)buf) == NULL) { return NULL; } totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { uint len = elt->len; /* check if elt overruns buffer */ if (totlen < (len + TLV_HDR_LEN)) { break; } /* did we find the ID? */ if ((elt->id == key) || (elt->id == DOT11_MNG_ID_EXT_ID && len > 0 && elt->data[0] + (uint)DOT11_MNG_ID_EXT_ID == key)) { COV_TAINTED_DATA_ARG(elt); GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); return (bcm_tlv_t *)(elt); GCC_DIAGNOSTIC_POP(); } elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag. * The 'advance' parmeter specifies what to do to the parse buf/buflen values if a * matching tlv is found: * BCM_TLV_ADVANCE_NONE - do nothing * BCM_TLV_ADVANCE_TO - move the buf up to the discovered tlv, and adjust buflen. * BCM_TLV_ADVANCE_PAST - move the buf past the discovered tlb, and adjust buflen. * If a tlv is not found, no changes are made to buf/buflen * */ const bcm_tlv_t * bcm_parse_tlvs_advance(const uint8 **buf, uint *buflen, uint key, bcm_tlv_advance_mode_t advance) { const bcm_tlv_t *elt; elt = bcm_parse_tlvs(*buf, *buflen, key); if (elt == NULL) { return elt; } if (advance == BCM_TLV_ADVANCE_TO) { bcm_tlv_buffer_advance_to(elt, buf, buflen); } else if (advance == BCM_TLV_ADVANCE_PAST) { bcm_tlv_buffer_advance_past(elt, buf, buflen); } else if (advance == BCM_TLV_ADVANCE_NONE) { /* nothing to do */ } else { /* there are only 3 modes, but just in case, zero the parse buffer pointer and * length to prevent infinite loops in callers that expect progress. */ ASSERT(0); *buf = NULL; *buflen = 0; } return elt; } bcm_tlv_t * bcm_parse_tlvs_dot11(const void *buf, uint buflen, uint key, bool id_ext) { bcm_tlv_t *elt; uint totlen; COV_TAINTED_DATA_SINK(buflen); COV_NEG_SINK(buflen); /* ideally, we don't want to do that, but returning a const pointer from these parse function spreads casting everywhere in the code */ GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); elt = (bcm_tlv_t*)buf; GCC_DIAGNOSTIC_POP(); totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { uint len = elt->len; /* validate remaining totlen */ if (totlen < (len + TLV_HDR_LEN)) { break; } do { if (id_ext) { if (!DOT11_MNG_IE_ID_EXT_MATCH(elt, key)) break; } else if (elt->id != key) { break; } COV_TAINTED_DATA_ARG(elt); return (bcm_tlv_t *)(elt); /* a match */ } while (0); elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag * return NULL if not found or length field < min_varlen */ bcm_tlv_t * bcm_parse_tlvs_min_bodylen(const void *buf, uint buflen, uint key, uint min_bodylen) { bcm_tlv_t * ret; ret = bcm_parse_tlvs(buf, buflen, key); if (ret == NULL || ret->len < min_bodylen) { return NULL; } return ret; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag * return NULL if not found or tlv size > max_len or < min_len */ bcm_tlv_t * bcm_parse_tlvs_minmax_len(const void *buf, uint buflen, uint key, uint min_len, uint max_len) { bcm_tlv_t * ret; ret = bcm_parse_tlvs(buf, buflen, key); if (ret == NULL || (BCM_TLV_SIZE(ret) > max_len) || (BCM_TLV_SIZE(ret) < min_len)) { return NULL; } return ret; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag. Stop parsing when we see an element whose ID is greater * than the target key. */ const bcm_tlv_t * bcm_parse_ordered_tlvs(const void *buf, uint buflen, uint key) { const bcm_tlv_t *elt; uint totlen; COV_TAINTED_DATA_SINK(buflen); COV_NEG_SINK(buflen); elt = (const bcm_tlv_t*)buf; totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { uint id = elt->id; uint len = elt->len; /* Punt if we start seeing IDs > than target key */ if (id > key) { return (NULL); } /* validate remaining totlen */ if (totlen < (len + TLV_HDR_LEN)) { break; } if (id == key) { COV_TAINTED_DATA_ARG(elt); return (elt); } elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } #endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */ uint bcm_format_field(const bcm_bit_desc_ex_t *bd, uint32 flags, char* buf, uint len) { uint i, slen = 0; uint32 bit, mask; const char *name; mask = bd->mask; if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; (name = bd->bitfield[i].name) != NULL; i++) { bit = bd->bitfield[i].bit; if ((flags & mask) == bit) { slen = strlen(name); if (memcpy_s(buf, len, name, slen + 1) != BCME_OK) { slen = 0; } break; } } return slen; } int bcm_format_flags(const bcm_bit_desc_t *bd, uint32 flags, char* buf, uint len) { uint i; char *p = buf; char *end = (buf + len); char hexstr[16]; uint32 bit; const char* name; bool err = FALSE; if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; flags != 0; i++) { bit = bd[i].bit; name = bd[i].name; if (bit == 0 && flags != 0) { /* print any unnamed bits */ snprintf(hexstr, sizeof(hexstr), "0x%X", flags); name = hexstr; flags = 0; /* exit loop */ } else if ((flags & bit) == 0) { continue; } flags &= ~bit; /* Print named bit. */ p += strlcpy(p, name, (size_t)(end - p)); if (p == end) { /* Truncation error. */ err = TRUE; break; } /* Add space delimiter if there are more bits. */ if (flags != 0) { p += strlcpy(p, " ", (size_t)(end - p)); if (p == end) { /* Truncation error. */ err = TRUE; break; } } } /* indicate the str was too short */ if (err) { ASSERT(len >= 2u); buf[len - 2u] = '>'; } return (int)(p - buf); } /* print out whcih bits in octet array 'addr' are set. bcm_bit_desc_t:bit is a bit offset. */ int bcm_format_octets(const bcm_bit_desc_t *bd, uint bdsz, const uint8 *addr, uint size, char *buf, uint len) { uint i; char *p = buf; uint slen = 0, nlen = 0; uint32 bit; const char* name; bool more = FALSE; BCM_REFERENCE(size); if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; i < bdsz; i++) { bit = bd[i].bit; name = bd[i].name; if (isset(addr, bit)) { nlen = strlen(name); slen += nlen; /* need SPACE - for simplicity */ slen += 1; /* need NULL as well */ if (len < slen + 1) { more = TRUE; break; } memcpy(p, name, nlen); p += nlen; p[0] = ' '; p += 1; p[0] = '\0'; } } if (more) { p[0] = '>'; p += 1; p[0] = '\0'; } return (int)(p - buf); } /* Transform an hexadecimal string into binary. * Output is limited to 64K. * hex : string * hex_len : string length * buf : allocated output buffer * buf_len : allocated size * return : copied length, if successfull, 0 if error. */ uint16 bcmhex2bin(const uint8* hex, uint hex_len, uint8 *buf, uint buf_len) { uint i = 0; uint16 out_len; char tmp[] = "XX"; if (hex_len % 2) { /* hex_len not even */ return 0; } /* check for hex radix */ if ((hex[0] == '0') && ((hex[1] == 'x') || (hex[1] == 'X'))) { hex += 2; hex_len -= 2; } if (hex_len/2 > 0xFFFF) { /* exceed 64K buffer capacity */ return 0; } if ((out_len = hex_len/2) > buf_len) { /* buf too short */ return 0; } do { tmp[0] = *hex++; tmp[1] = *hex++; if (!bcm_isxdigit(tmp[0]) || !bcm_isxdigit(tmp[1])) { /* char is not a 256-bit hex number */ return 0; } /* okay so far; make this piece a number */ buf[i] = (uint8) bcm_strtoul(tmp, NULL, 16); } while (++i < out_len); return out_len; } /* print bytes formatted as hex to a string. return the resulting string length */ int bcm_format_hex(char *str, const void *bytes, uint len) { uint i; char *p = str; const uint8 *src = (const uint8*)bytes; for (i = 0; i < len; i++) { p += snprintf(p, 3, "%02X", *src); src++; } return (int)(p - str); } /* pretty hex print a contiguous buffer */ void prhex(const char *msg, const uchar *buf, uint nbytes) { char line[128], *p; uint len = sizeof(line); int nchar; uint i; if (msg && (msg[0] != '\0')) printf("%s:\n", msg); p = line; for (i = 0; i < nbytes; i++) { if (i % 16 == 0) { nchar = snprintf(p, len, " %04x: ", i); /* line prefix */ p += nchar; len -= (uint)nchar; } if (len > 0) { nchar = snprintf(p, len, "%02x ", buf[i]); p += nchar; len -= (uint)nchar; } if (i % 16 == 15) { printf("%s\n", line); /* flush line */ p = line; len = sizeof(line); } } /* flush last partial line */ if (p != line) printf("%s\n", line); } static const char *crypto_algo_names[] = { "NONE", "WEP1", "TKIP", "WEP128", "AES_CCM", "AES_OCB_MSDU", "AES_OCB_MPDU", "NALG", "UNDEF", "UNDEF", "UNDEF", #ifdef BCMWAPI_WAI "WAPI", #endif /* BCMWAPI_WAI */ #ifndef BCMWAPI_WAI "UNDEF", #endif "PMK", "BIP", "AES_GCM", "AES_CCM256", "AES_GCM256", "BIP_CMAC256", "BIP_GMAC", "BIP_GMAC256", "UNDEF" }; const char * bcm_crypto_algo_name(uint algo) { return (algo < ARRAYSIZE(crypto_algo_names)) ? crypto_algo_names[algo] : "ERR"; } #ifdef BCMDBG void deadbeef(void *p, uint len) { static uint8 meat[] = { 0xde, 0xad, 0xbe, 0xef }; while (len-- > 0) { *(uint8*)p = meat[((uintptr)p) & 3]; p = (uint8*)p + 1; } } #endif /* BCMDBG */ char * bcm_chipname(uint chipid, char *buf, uint len) { const char *fmt; fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; snprintf(buf, len, fmt, chipid); return buf; } /* Produce a human-readable string for boardrev */ char * bcm_brev_str(uint32 brev, char *buf) { if (brev < 0x100) snprintf(buf, 8, "%d.%d", (brev & 0xf0) >> 4, brev & 0xf); else snprintf(buf, 8, "%c%03x", ((brev & 0xf000) == 0x1000) ? 'P' : 'A', brev & 0xfff); return (buf); } #define BUFSIZE_TODUMP_ATONCE 128 /* Buffer size */ /* dump large strings to console */ void printbig(char *buf) { uint len, max_len; char c; len = (uint)strlen(buf); max_len = BUFSIZE_TODUMP_ATONCE; while (len > max_len) { c = buf[max_len]; buf[max_len] = '\0'; printf("%s", buf); buf[max_len] = c; buf += max_len; len -= max_len; } /* print the remaining string */ printf("%s\n", buf); return; } /* routine to dump fields in a fileddesc structure */ uint bcmdumpfields(bcmutl_rdreg_rtn read_rtn, void *arg0, uint arg1, struct fielddesc *fielddesc_array, char *buf, uint32 bufsize) { int ret; uint filled_len; uint len; struct fielddesc *cur_ptr; filled_len = 0; cur_ptr = fielddesc_array; while (bufsize > 1) { if (cur_ptr->nameandfmt == NULL) break; /* check for snprintf overflow or error */ ret = snprintf(buf, bufsize, cur_ptr->nameandfmt, read_rtn(arg0, arg1, cur_ptr->offset)); if (ret < 0 || ret >= (int)bufsize) { /* encoding error from snprintf */ len = bufsize - 1u; } else { len = (uint32)ret; } buf += len; bufsize -= len; filled_len += len; cur_ptr++; } return filled_len; } uint bcm_mkiovar(const char *name, const char *data, uint datalen, char *buf, uint buflen) { uint len; len = (uint)strlen(name) + 1; if ((len + datalen) > buflen) return 0; strlcpy(buf, name, buflen); /* append data onto the end of the name string */ if (data && datalen != 0) { memcpy(&buf[len], data, datalen); len += datalen; } return len; } /* Quarter dBm units to mW * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153 * Table is offset so the last entry is largest mW value that fits in * a uint16. */ #define QDBM_OFFSET 153 /* Offset for first entry */ #define QDBM_TABLE_LEN 40 /* Table size */ /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET. * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2 */ #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */ /* Largest mW value that will round down to the last table entry, * QDBM_OFFSET + QDBM_TABLE_LEN-1. * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2. */ #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */ static const uint16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = { /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */ /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000, /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849, /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119, /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811, /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096 }; uint16 bcm_qdbm_to_mw(uint8 qdbm) { uint factor = 1; int idx = qdbm - QDBM_OFFSET; if (idx >= QDBM_TABLE_LEN) { /* clamp to max uint16 mW value */ return 0xFFFF; } /* scale the qdBm index up to the range of the table 0-40 * where an offset of 40 qdBm equals a factor of 10 mW. */ while (idx < 0) { idx += 40; factor *= 10; } /* return the mW value scaled down to the correct factor of 10, * adding in factor/2 to get proper rounding. */ return ((nqdBm_to_mW_map[idx] + factor/2) / factor); } uint8 bcm_mw_to_qdbm(uint16 mw) { uint8 qdbm; int offset; uint16 mw_uint = mw; uint16 boundary; /* handle boundary case */ if (mw_uint <= 1) return 0; offset = QDBM_OFFSET; /* move mw into the range of the table */ while (mw_uint < QDBM_TABLE_LOW_BOUND) { mw_uint *= 10; offset -= 40; } for (qdbm = 0; qdbm < QDBM_TABLE_LEN-1; qdbm++) { boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm+1] - nqdBm_to_mW_map[qdbm])/2; if (mw_uint < boundary) break; } qdbm += (uint8)offset; return (qdbm); } uint BCMPOSTTRAPFN(bcm_bitcount)(const uint8 *bitmap, uint length) { uint bitcount = 0, i; uint8 tmp; for (i = 0; i < length; i++) { tmp = bitmap[i]; while (tmp) { bitcount++; tmp &= (tmp - 1); } } return bitcount; } /* * ProcessVars:Takes a buffer of "=\n" lines read from a file and ending in a NUL. * also accepts nvram files which are already in the format of =\0\=\0 * Removes carriage returns, empty lines, comment lines, and converts newlines to NULs. * Shortens buffer as needed and pads with NULs. End of buffer is marked by two NULs. */ unsigned int process_nvram_vars(char *varbuf, unsigned int len) { char *dp; bool findNewline; int column; unsigned int buf_len, n; unsigned int pad = 0; dp = varbuf; findNewline = FALSE; column = 0; for (n = 0; n < len; n++) { if (varbuf[n] == '\r') continue; if (findNewline && varbuf[n] != '\n') continue; findNewline = FALSE; if (varbuf[n] == '#') { findNewline = TRUE; continue; } if (varbuf[n] == '\n') { if (column == 0) continue; *dp++ = 0; column = 0; continue; } *dp++ = varbuf[n]; column++; } buf_len = (unsigned int)(dp - varbuf); if (buf_len % 4) { pad = 4 - buf_len % 4; if (pad && (buf_len + pad <= len)) { buf_len += pad; } } while (dp < varbuf + n) *dp++ = 0; return buf_len; } #ifndef setbit /* As in the header file */ #ifdef BCMUTILS_BIT_MACROS_USE_FUNCS /* Set bit in byte array. */ void setbit(void *array, uint bit) { ((uint8 *)array)[bit / NBBY] |= 1 << (bit % NBBY); } /* Clear bit in byte array. */ void clrbit(void *array, uint bit) { ((uint8 *)array)[bit / NBBY] &= ~(1 << (bit % NBBY)); } /* Test if bit is set in byte array. */ bool isset(const void *array, uint bit) { return (((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))); } /* Test if bit is clear in byte array. */ bool isclr(const void *array, uint bit) { return ((((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))) == 0); } #endif /* BCMUTILS_BIT_MACROS_USE_FUNCS */ #endif /* setbit */ void BCMPOSTTRAPFN(set_bitrange)(void *array, uint start, uint end, uint maxbit) { uint startbyte = start/NBBY; uint endbyte = end/NBBY; uint i, startbytelastbit, endbytestartbit; if (end >= start) { if (endbyte - startbyte > 1) { startbytelastbit = ((startbyte + 1) * NBBY) - 1; endbytestartbit = endbyte * NBBY; for (i = startbyte + 1; i < endbyte; i++) ((uint8 *)array)[i] = 0xFF; for (i = start; i <= startbytelastbit; i++) setbit(array, i); for (i = endbytestartbit; i <= end; i++) setbit(array, i); } else { for (i = start; i <= end; i++) setbit(array, i); } } else { set_bitrange(array, start, maxbit, maxbit); set_bitrange(array, 0, end, maxbit); } } void clr_bitrange(void *array, uint start, uint end, uint maxbit) { uint startbyte = start/NBBY; uint endbyte = end/NBBY; uint i, startbytelastbit, endbytestartbit; if (end >= start) { if (endbyte - startbyte > 1) { startbytelastbit = ((startbyte + 1) * NBBY) - 1; endbytestartbit = endbyte * NBBY; for (i = startbyte + 1; i < endbyte; i++) ((uint8 *)array)[i] = 0x0; for (i = start; i <= startbytelastbit; i++) clrbit(array, i); for (i = endbytestartbit; i <= end; i++) clrbit(array, i); } else { for (i = start; i <= end; i++) clrbit(array, i); } } else { clr_bitrange(array, start, maxbit, maxbit); clr_bitrange(array, 0, end, maxbit); } } /* * This api (set_bitrange_int_access) as same as set_bitrange but uses int32 operation * This api can be used in the place of set_bitrange but array should be word (32bit) alligned. * This api has to be used when the memory being accessed has restrictions of * not using them in 8bit (byte) mode and needing 32bit (word) mode. */ void set_bitrange_u32(void *array, uint start, uint end, uint maxbit) { uint startword = start/SIZE_BITS32(uint32); uint endword = end/SIZE_BITS32(uint32); uint startwordstartbit = start % SIZE_BITS32(uint32); uint endwordlastbit = end % SIZE_BITS32(uint32); /* Used to caluculate bit number from MSB */ uint u32msbnum = SIZE_BITS32(uint32) - 1U; uint i; uint32 setbitsword; uint32 u32max = ~0U; ASSERT(ISALIGNED(array, sizeof(uint32))); /* array should be alligned for this API */ if (start > end) { set_bitrange_u32(array, start, maxbit, maxbit); set_bitrange_u32(array, 0U, end, maxbit); return; } if (endword - startword) { /* Setting MSB bits including startwordstartbit */ setbitsword = u32max << startwordstartbit; ((uint32 *)array)[startword] |= setbitsword; /* Setting all bits in 'startword + 1' to 'endword - 1' */ for (i = startword + 1U; i <= endword - 1U; i++) { ((uint32 *)array)[i] = u32max; } /* Setting LSB bits including endwordlastbit */ setbitsword = u32max >> (u32msbnum - endwordlastbit); ((uint32 *)array)[endword] |= setbitsword; } else { /* start and end are in same word */ /* Setting start bit to end bit including start and end bits */ setbitsword = (u32max << startwordstartbit) & (u32max >> (u32msbnum - endwordlastbit)); ((uint32 *)array)[startword] |= setbitsword; } } /* * This api (clr_bitrange_u32) as same as clr_bitrange but uses int32 operation * This api can be used in the place of clr_bitrange but array should be word (32bit) alligned. * This api has to be used when the memory being accessed has restrictions of * not using them in 8bit (byte) mode and needing 32bit (word) mode. */ void clr_bitrange_u32(void *array, uint start, uint end, uint maxbit) { uint startword = start/SIZE_BITS32(uint32); uint endword = end/SIZE_BITS32(uint32); uint startwordstartbit = start % SIZE_BITS32(uint32); uint endwordlastbit = end % SIZE_BITS32(uint32); /* Used to caluculate bit number from MSB */ uint u32msbnum = SIZE_BITS32(uint32) - 1U; uint i; uint32 clrbitsword; uint32 u32max = ~0U; ASSERT(ISALIGNED(array, sizeof(uint32))); /* array should be alligned for this API */ if (start > end) { clr_bitrange_u32(array, start, maxbit, maxbit); clr_bitrange_u32(array, 0U, end, maxbit); return; } if (endword - startword) { /* Clearing MSB bits including startwordstartbit */ clrbitsword = ~(u32max << startwordstartbit); ((uint32 *)array)[startword] &= clrbitsword; /* Clearing all bits in 'startword + 1' to 'endword - 1' */ for (i = startword + 1U; i <= endword - 1U; i++) { ((uint32 *)array)[i] = 0U; } /* Clearing LSB bits including endwordlastbit */ clrbitsword = ~(u32max >> (u32msbnum - endwordlastbit)); ((uint32 *)array)[endword] &= clrbitsword; } else { /* start and end are in same word */ /* Clearing start bit to end bit including start and end bits */ clrbitsword = ~(u32max << startwordstartbit) | ~(u32max >> (u32msbnum - endwordlastbit)); ((uint32 *)array)[startword] &= clrbitsword; } } void bcm_bitprint32(const uint32 u32arg) { int i; for (i = NBITS(uint32) - 1; i >= 0; i--) { if (isbitset(u32arg, i)) { printf("1"); } else { printf("0"); } if ((i % NBBY) == 0) printf(" "); } printf("\n"); } /* calculate checksum for ip header, tcp / udp header / data */ uint16 bcm_ip_cksum(uint8 *buf, uint32 len, uint32 sum) { while (len > 1) { sum += ((uint32)buf[0] << 8) | buf[1]; buf += 2; len -= 2; } if (len > 0) { sum += ((uint32)*buf) << 8; } while (sum >> 16) { sum = (sum & 0xffff) + (sum >> 16); } return ((uint16)~sum); } /* calculate a + b where a is a 64 bit number and b is a 32 bit number */ void bcm_add_64(uint32* r_hi, uint32* r_lo, uint32 offset) { uint32 r1_lo = *r_lo; (*r_lo) += offset; if (*r_lo < r1_lo) (*r_hi) ++; } /* calculate a - b where a is a 64 bit number and b is a 32 bit number */ void bcm_sub_64(uint32* r_hi, uint32* r_lo, uint32 offset) { uint32 r1_lo = *r_lo; (*r_lo) -= offset; if (*r_lo > r1_lo) (*r_hi) --; } int BCMRAMFN(valid_bcmerror)(int e) { return ((e <= 0) && (e >= BCME_LAST)); } #ifdef DEBUG_COUNTER #if (OSL_SYSUPTIME_SUPPORT == TRUE) void counter_printlog(counter_tbl_t *ctr_tbl) { uint32 now; if (!ctr_tbl->enabled) return; now = OSL_SYSUPTIME(); if (now - ctr_tbl->prev_log_print > ctr_tbl->log_print_interval) { uint8 i = 0; printf("counter_print(%s %d):", ctr_tbl->name, now - ctr_tbl->prev_log_print); for (i = 0; i < ctr_tbl->needed_cnt; i++) { printf(" %u", ctr_tbl->cnt[i]); } printf("\n"); ctr_tbl->prev_log_print = now; bzero(ctr_tbl->cnt, CNTR_TBL_MAX * sizeof(uint)); } } #else /* OSL_SYSUPTIME is not supported so no way to get time */ #define counter_printlog(a) do {} while (0) #endif /* OSL_SYSUPTIME_SUPPORT == TRUE */ #endif /* DEBUG_COUNTER */ /* calculate partial checksum */ static uint32 ip_cksum_partial(uint32 sum, uint8 *val8, uint32 count) { uint32 i; uint16 *val16 = (uint16 *)val8; ASSERT(val8 != NULL); /* partial chksum calculated on 16-bit values */ ASSERT((count % 2) == 0); count /= 2; for (i = 0; i < count; i++) { sum += *val16++; } return sum; } /* calculate IP checksum */ static uint16 ip_cksum(uint32 sum, uint8 *val8, uint32 count) { uint16 *val16 = (uint16 *)val8; ASSERT(val8 != NULL); while (count > 1) { sum += *val16++; count -= 2; } /* add left-over byte, if any */ if (count > 0) { sum += (*(uint8 *)val16); } /* fold 32-bit sum to 16 bits */ sum = (sum >> 16) + (sum & 0xffff); sum += (sum >> 16); return ((uint16)~sum); } /* calculate IPv4 header checksum * - input ip points to IP header in network order * - output cksum is in network order */ uint16 ipv4_hdr_cksum(uint8 *ip, uint ip_len) { uint32 sum = 0; uint8 *ptr = ip; ASSERT(ip != NULL); ASSERT(ip_len >= IPV4_MIN_HEADER_LEN); if (ip_len < IPV4_MIN_HEADER_LEN) { return 0; } /* partial cksum skipping the hdr_chksum field */ sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct ipv4_hdr, hdr_chksum)); ptr += OFFSETOF(struct ipv4_hdr, hdr_chksum) + 2; /* return calculated chksum */ return ip_cksum(sum, ptr, ip_len - OFFSETOF(struct ipv4_hdr, src_ip)); } /* calculate TCP header checksum using partial sum */ static uint16 tcp_hdr_chksum(uint32 sum, uint8 *tcp_hdr, uint16 tcp_len) { uint8 *ptr = tcp_hdr; ASSERT(tcp_hdr != NULL); ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); /* partial TCP cksum skipping the chksum field */ sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct bcmtcp_hdr, chksum)); ptr += OFFSETOF(struct bcmtcp_hdr, chksum) + 2; /* return calculated chksum */ return ip_cksum(sum, ptr, tcp_len - OFFSETOF(struct bcmtcp_hdr, urg_ptr)); } struct tcp_pseudo_hdr { uint8 src_ip[IPV4_ADDR_LEN]; /* Source IP Address */ uint8 dst_ip[IPV4_ADDR_LEN]; /* Destination IP Address */ uint8 zero; uint8 prot; uint16 tcp_size; }; /* calculate IPv4 TCP header checksum * - input ip and tcp points to IP and TCP header in network order * - output cksum is in network order */ uint16 ipv4_tcp_hdr_cksum(uint8 *ip, uint8 *tcp, uint16 tcp_len) { struct ipv4_hdr *ip_hdr = (struct ipv4_hdr *)ip; struct tcp_pseudo_hdr tcp_ps; uint32 sum = 0; ASSERT(ip != NULL); ASSERT(tcp != NULL); ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); /* pseudo header cksum */ bzero(&tcp_ps, sizeof(tcp_ps)); memcpy(&tcp_ps.dst_ip, ip_hdr->dst_ip, IPV4_ADDR_LEN); memcpy(&tcp_ps.src_ip, ip_hdr->src_ip, IPV4_ADDR_LEN); tcp_ps.zero = 0; tcp_ps.prot = ip_hdr->prot; tcp_ps.tcp_size = hton16(tcp_len); sum = ip_cksum_partial(sum, (uint8 *)&tcp_ps, sizeof(tcp_ps)); /* return calculated TCP header chksum */ return tcp_hdr_chksum(sum, tcp, tcp_len); } struct ipv6_pseudo_hdr { uint8 saddr[IPV6_ADDR_LEN]; uint8 daddr[IPV6_ADDR_LEN]; uint16 payload_len; uint8 zero; uint8 next_hdr; }; /* calculate IPv6 TCP header checksum * - input ipv6 and tcp points to IPv6 and TCP header in network order * - output cksum is in network order */ uint16 ipv6_tcp_hdr_cksum(uint8 *ipv6, uint8 *tcp, uint16 tcp_len) { struct ipv6_hdr *ipv6_hdr = (struct ipv6_hdr *)ipv6; struct ipv6_pseudo_hdr ipv6_pseudo; uint32 sum = 0; ASSERT(ipv6 != NULL); ASSERT(tcp != NULL); ASSERT(tcp_len >= TCP_MIN_HEADER_LEN); /* pseudo header cksum */ bzero((char *)&ipv6_pseudo, sizeof(ipv6_pseudo)); memcpy((char *)ipv6_pseudo.saddr, (char *)ipv6_hdr->saddr.addr, sizeof(ipv6_pseudo.saddr)); memcpy((char *)ipv6_pseudo.daddr, (char *)ipv6_hdr->daddr.addr, sizeof(ipv6_pseudo.daddr)); ipv6_pseudo.payload_len = ipv6_hdr->payload_len; ipv6_pseudo.next_hdr = ipv6_hdr->nexthdr; sum = ip_cksum_partial(sum, (uint8 *)&ipv6_pseudo, sizeof(ipv6_pseudo)); /* return calculated TCP header chksum */ return tcp_hdr_chksum(sum, tcp, tcp_len); } void *_bcmutils_dummy_fn = NULL; /* GROUP 1 --- start * These function under GROUP 1 are general purpose functions to do complex number * calculations and square root calculation. */ uint32 sqrt_int(uint32 value) { uint32 root = 0, shift = 0; /* Compute integer nearest to square root of input integer value */ for (shift = 0; shift < 32; shift += 2) { if (((0x40000000u >> shift) + root) <= value) { value -= ((0x40000000u >> shift) + root); root = (root >> 1) | (0x40000000u >> shift); } else { root = root >> 1; } } /* round to the nearest integer */ if (root < value) ++root; return root; } /* GROUP 1 --- end */ /* read/write field in a consecutive bits in an octet array. * 'addr' is the octet array's start byte address * 'size' is the octet array's byte size * 'stbit' is the value's start bit offset * 'nbits' is the value's bit size * This set of utilities are for convenience. Don't use them * in time critical/data path as there's a great overhead in them. */ void setbits(uint8 *addr, uint size, uint stbit, uint nbits, uint32 val) { uint fbyte = stbit >> 3; /* first byte */ uint lbyte = (stbit + nbits - 1) >> 3; /* last byte */ uint fbit = stbit & 7; /* first bit in the first byte */ uint rbits = (nbits > 8 - fbit ? nbits - (8 - fbit) : 0) & 7; /* remaining bits of the last byte when not 0 */ uint8 mask; uint byte; BCM_REFERENCE(size); ASSERT(fbyte < size); ASSERT(lbyte < size); ASSERT(nbits <= (sizeof(val) << 3)); /* all bits are in the same byte */ if (fbyte == lbyte) { mask = ((1 << nbits) - 1) << fbit; addr[fbyte] &= ~mask; addr[fbyte] |= (uint8)(val << fbit); return; } /* first partial byte */ if (fbit > 0) { mask = (0xff << fbit); addr[fbyte] &= ~mask; addr[fbyte] |= (uint8)(val << fbit); val >>= (8 - fbit); nbits -= (8 - fbit); fbyte ++; /* first full byte */ } /* last partial byte */ if (rbits > 0) { mask = (1 << rbits) - 1; addr[lbyte] &= ~mask; addr[lbyte] |= (uint8)(val >> (nbits - rbits)); lbyte --; /* last full byte */ } /* remaining full byte(s) */ for (byte = fbyte; byte <= lbyte; byte ++) { addr[byte] = (uint8)val; val >>= 8; } } uint32 getbits(const uint8 *addr, uint size, uint stbit, uint nbits) { uint fbyte = stbit >> 3u; /* first byte */ uint lbyte = (stbit + nbits - 1u) >> 3u; /* last byte */ uint fbit = stbit & 7u; /* first bit in the first byte */ uint rbits = (nbits > 8u - fbit ? nbits - (8u - fbit) : 0) & 7u; /* remaining bits of the last byte when not 0 */ uint32 val = 0; uint bits = 0; /* bits in first partial byte */ uint8 mask; uint byte; BCM_REFERENCE(size); ASSERT(fbyte < size); ASSERT(lbyte < size); ASSERT(nbits <= (sizeof(val) << 3u)); /* all bits are in the same byte */ if (fbyte == lbyte) { mask = ((1u << nbits) - 1u) << fbit; val = ((uint32)addr[fbyte] & mask) >> fbit; return val; } /* first partial byte */ if (fbit > 0) { bits = 8u - fbit; mask = (0xffu << fbit); val |= ((uint32)addr[fbyte] & mask) >> fbit; fbyte ++; /* first full byte */ } /* last partial byte */ if (rbits > 0) { mask = (1u << rbits) - 1u; val |= ((uint32)addr[lbyte] & mask) << (nbits - rbits); lbyte --; /* last full byte */ } /* remaining full byte(s) */ for (byte = fbyte; byte <= lbyte; byte ++) { val |= ((uint32)addr[byte] << (((byte - fbyte) << 3u) + bits)); } return val; } #if defined(BCMDBG) || defined(WLMSG_ASSOC) /* support for getting 802.11 frame type/name based on frame kind */ #define FK_NAME_DECL(x) {FC_##x, #x} static const struct { uint fk; const char *name; } bcm_80211_fk_names[] = { FK_NAME_DECL(ASSOC_REQ), FK_NAME_DECL(ASSOC_RESP), FK_NAME_DECL(REASSOC_REQ), FK_NAME_DECL(REASSOC_RESP), FK_NAME_DECL(PROBE_REQ), FK_NAME_DECL(PROBE_RESP), FK_NAME_DECL(BEACON), FK_NAME_DECL(ATIM), FK_NAME_DECL(DISASSOC), FK_NAME_DECL(AUTH), FK_NAME_DECL(DEAUTH), FK_NAME_DECL(ACTION), FK_NAME_DECL(ACTION_NOACK), FK_NAME_DECL(CTL_TRIGGER), FK_NAME_DECL(CTL_WRAPPER), FK_NAME_DECL(BLOCKACK_REQ), FK_NAME_DECL(BLOCKACK), FK_NAME_DECL(PS_POLL), FK_NAME_DECL(RTS), FK_NAME_DECL(CTS), FK_NAME_DECL(ACK), FK_NAME_DECL(CF_END), FK_NAME_DECL(CF_END_ACK), FK_NAME_DECL(DATA), FK_NAME_DECL(NULL_DATA), FK_NAME_DECL(DATA_CF_ACK), FK_NAME_DECL(QOS_DATA), FK_NAME_DECL(QOS_NULL) }; static const uint n_bcm_80211_fk_names = ARRAYSIZE(bcm_80211_fk_names); const char *bcm_80211_fk_name(uint fk) { uint i; for (i = 0; i < n_bcm_80211_fk_names; ++i) { if (bcm_80211_fk_names[i].fk == fk) { return bcm_80211_fk_names[i].name; } } return "unknown"; } #endif /* BCMDBG || WLMSG_ASSOC */ #ifdef BCMDRIVER /** allocate variable sized data with 'size' bytes. note: vld should NOT be null. */ int bcm_vdata_alloc(osl_t *osh, var_len_data_t *vld, uint32 size) { int ret = BCME_ERROR; uint8 *dat = NULL; if (vld == NULL) { ASSERT(0); goto done; } /* trying to allocate twice? */ if (vld->vdata != NULL) { ASSERT(0); goto done; } /* trying to allocate 0 size? */ if (size == 0) { ASSERT(0); ret = BCME_BADARG; goto done; } dat = MALLOCZ(osh, size); if (dat == NULL) { ret = BCME_NOMEM; goto done; } vld->vlen = size; vld->vdata = dat; ret = BCME_OK; done: return ret; } /** free memory associated with variable sized data. note: vld should NOT be null. */ int bcm_vdata_free(osl_t *osh, var_len_data_t *vld) { int ret = BCME_ERROR; if (vld == NULL) { ASSERT(0); goto done; } if (vld->vdata) { MFREE(osh, vld->vdata, vld->vlen); vld->vlen = 0; ret = BCME_OK; } done: return ret; } /* return TRUE if : * - both buffers are of length 0 * OR * - both buffers are NULL * OR * lengths and contents are the same. */ bool bcm_match_buffers(const uint8 *b1, uint b1_len, const uint8 *b2, uint b2_len) { if (b1_len == 0 && b2_len == 0) { return TRUE; } if (b1 == NULL && b2 == NULL) { return TRUE; } /* If they are not both NULL, neither can be */ if (b1 == NULL || b2 == NULL) { return FALSE; } if ((b1_len == b2_len) && !memcmp(b1, b2, b1_len)) { return TRUE; } return FALSE; } #ifdef PRIVACY_MASK /* applies privacy mask on the input address itself */ void BCMRAMFN(bcm_ether_privacy_mask)(struct ether_addr *addr) { struct ether_addr *privacy = privacy_addrmask_get(); if (addr && !ETHER_ISMULTI(addr)) { *(uint32*)(&(addr->octet[0])) &= *((uint32*)&privacy->octet[0]); *(uint16*)(&(addr->octet[4])) &= *((uint16*)&privacy->octet[4]); } } #endif /* PRIVACY_MASK */ #endif /* BCMDRIVER */ /* Count the number of elements not matching a given value in a null terminated array */ int array_value_mismatch_count(uint8 value, uint8 *array, int array_size) { int i; int count = 0; for (i = 0; i < array_size; i++) { /* exit if a null terminator is found */ if (array[i] == 0) { break; } if (array[i] != value) { count++; } } return count; } /* Count the number of non-zero elements in an uint8 array */ int array_nonzero_count(uint8 *array, int array_size) { return array_value_mismatch_count(0, array, array_size); } /* Count the number of non-zero elements in an int16 array */ int array_nonzero_count_int16(int16 *array, int array_size) { int i; int count = 0; for (i = 0; i < array_size; i++) { if (array[i] != 0) { count++; } } return count; } /* Count the number of zero elements in an uint8 array */ int array_zero_count(uint8 *array, int array_size) { int i; int count = 0; for (i = 0; i < array_size; i++) { if (array[i] == 0) { count++; } } return count; } /* Validate an array that can be 1 of 2 data types. * One of array1 or array2 should be non-NULL. The other should be NULL. */ static int verify_ordered_array(uint8 *array1, int16 *array2, int array_size, int range_lo, int range_hi, bool err_if_no_zero_term, bool is_ordered) { int ret; int i; int val = 0; int prev_val = 0; ret = err_if_no_zero_term ? BCME_NOTFOUND : BCME_OK; /* Check that: * - values are in descending order. * - values are within the valid range. */ for (i = 0; i < array_size; i++) { if (array1) { val = (int)array1[i]; } else if (array2) { val = (int)array2[i]; } else { /* both array parameters are NULL */ return BCME_NOTFOUND; } if (val == 0) { /* array is zero-terminated */ ret = BCME_OK; break; } if (is_ordered && i > 0 && val > prev_val) { /* array is not in descending order */ ret = BCME_BADOPTION; break; } prev_val = val; if (val < range_lo || val > range_hi) { /* array value out of range */ ret = BCME_RANGE; break; } } return ret; } /* Validate an ordered uint8 configuration array */ int verify_ordered_array_uint8(uint8 *array, int array_size, uint8 range_lo, uint8 range_hi) { return verify_ordered_array(array, NULL, array_size, (int)range_lo, (int)range_hi, TRUE, TRUE); } /* Validate an ordered int16 non-zero-terminated configuration array */ int verify_ordered_array_int16(int16 *array, int array_size, int16 range_lo, int16 range_hi) { return verify_ordered_array(NULL, array, array_size, (int)range_lo, (int)range_hi, FALSE, TRUE); } /* Validate all values in an array are in range */ int verify_array_values(uint8 *array, int array_size, int range_lo, int range_hi, bool zero_terminated) { int ret = BCME_OK; int i; int val = 0; /* Check that: * - values are in strict descending order. * - values are within the valid range. */ for (i = 0; i < array_size; i++) { val = (int)array[i]; if (val == 0 && zero_terminated) { ret = BCME_OK; break; } if (val < range_lo || val > range_hi) { /* array value out of range */ ret = BCME_RANGE; break; } } return ret; } /* Adds/replaces NVRAM variable with given value * varbuf[in,out] - Buffer with NVRAM variables (sequence of zero-terminated 'name=value' records, * terminated with additional zero) * buflen[in] - Length of buffer (may, even should, have some unused space) * variable[in] - Variable to add/replace in 'name=value' form * datalen[out,opt] - Optional output parameter - resulting length of data in buffer * Returns TRUE on success, FALSE if buffer too short or variable specified incorrectly */ bool replace_nvram_variable(char *varbuf, unsigned int buflen, const char *variable, unsigned int *datalen) { char *p; uint variable_heading_len, record_len, variable_record_len = strlen(variable) + 1; char *buf_end = varbuf + buflen; p = strchr(variable, '='); if (!p) { return FALSE; } /* Length of given variable name, followed by '=' */ variable_heading_len = (uint)((const char *)(p + 1) - variable); /* Scanning NVRAM, record by record up to trailing 0 */ for (p = varbuf; *p; p += strlen(p) + 1) { /* If given variable found - remove it */ if (!strncmp(p, variable, variable_heading_len)) { record_len = strlen(p) + 1; memmove_s(p, (size_t)(buf_end - p), p + record_len, (size_t)(buf_end - (p + record_len))); } } /* If buffer does not have space for given variable - return FALSE */ if ((p + variable_record_len + 1) > buf_end) { return FALSE; } /* Copy given variable to end of buffer */ memmove_s(p, (size_t)(buf_end - p), variable, variable_record_len); /* Adding trailing 0 */ p[variable_record_len] = 0; /* Setting optional output parameter - length of data in buffer */ if (datalen) { *datalen = (unsigned int)(p + variable_record_len + 1 - varbuf); } return TRUE; } /* * Gets the ceil bit set to the nearest power of 2 * val[in] - value for which nearest power of 2 bit set to be returned * bitpos[out] - the position of the nearest power of 2 bit set */ uint8 bcm_get_ceil_pow_2(uint val) { uint8 bitpos = 0; ASSERT(val); if (val & (val-1)) { /* val is not powers of 2. * pad it, so that allocation will be aligned to * next immediate powers of 2. */ bitpos = 1; } while (val >>= 1) { bitpos ++; } return (bitpos); } #if !defined(BCMDONGLEHOST) /** Initialization of varbuf structure */ void varbuf_init(varbuf_t *b, char *buf, uint size) { b->size = size; b->base = b->buf = buf; } /** append a null terminated var=value string */ int varbuf_append(varbuf_t *b, const char *fmt, ...) { va_list ap; int r; size_t len; char *s; if (b->size < 2) return 0; va_start(ap, fmt); r = vsnprintf(b->buf, b->size, fmt, ap); va_end(ap); /* C99 snprintf behavior returns r >= size on overflow, * others return -1 on overflow. * All return -1 on format error. * We need to leave room for 2 null terminations, one for the current var * string, and one for final null of the var table. So check that the * strlen written, r, leaves room for 2 chars. */ if ((r == -1) || (r > (int)(b->size - 2))) { b->size = 0; return 0; } /* Remove any earlier occurrence of the same variable */ if ((s = strchr(b->buf, '=')) != NULL) { len = (size_t)(s - b->buf); for (s = b->base; s < b->buf;) { if ((memcmp(s, b->buf, len) == 0) && s[len] == '=') { len = strlen(s) + 1; memmove(s, (s + len), (size_t)((b->buf + r + 1) - (s + len))); b->buf -= len; b->size += (unsigned int)len; break; } while (*s++) ; } } /* skip over this string's null termination */ r++; b->size -= (uint)r; b->buf += r; return r; } #if defined(BCMDRIVER) /** * Create variable table from memory. * Return 0 on success, nonzero on error. */ int initvars_table(osl_t *osh, char *start, char *end, char **vars, uint *count) { uint c = (uint)(end - start); /* do it only when there is more than just the null string */ if (c > 1) { char *vp = MALLOC(osh, c); ASSERT(vp != NULL); if (!vp) return BCME_NOMEM; bcopy(start, vp, c); *vars = vp; *count = c; } else { *vars = NULL; *count = 0; } return 0; } #endif /* BCMDRIVER */ #endif /* !BCMDONGLEHOST */ /* bit shift operation in serialized buffer taking input bits % 8 */ int buf_shift_right(uint8 *buf, uint16 len, uint8 bits) { uint16 i; if (len == 0 || (bits == 0) || (bits >= NBBY)) { return BCME_BADARG; } for (i = len - 1u; i > 0; i--) { buf[i] = (buf[i - 1u] << (NBBY - bits)) | (buf[i] >> bits); } buf[0] >>= bits; return BCME_OK; } /* print the content of the 'buf' in hex string format */ void prhexstr(const char *prefix, const uint8 *buf, uint len, bool newline) { if (len > 0) { uint i; if (prefix != NULL) { printf("%s", prefix); } for (i = 0; i < len; i ++) { printf("%02X", buf[i]); } if (newline) { printf("\n"); } } } #ifdef DONGLEBUILD static const char BCMPOST_TRAP_RODATA(bcm_print_string)[] = "%s"; int BCMPOSTTRAPFN(print_string)(const char *str) { return printf(bcm_print_string, str); } #endif /* DONGLEBUILD */