/* * DHD Bus Module for SDIO * * Copyright (C) 2022, Broadcom. * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * * <> * * $Id$ */ #include #include #include #ifdef BCMEMBEDIMAGE #include BCMEMBEDIMAGE #endif /* BCMEMBEDIMAGE */ #include #include #include #include #include /* need to still support chips no longer in trunk firmware */ #include #include #include #include #include #include #include #include #if defined(DHD_SPROM) #include #endif /* defined(DHD_SPROM) */ #include #ifdef BCMSPI #include #endif /* BCMSPI */ #include #include #include #include #include #include <802.1d.h> #include <802.11.h> #include #include #include #include #include #include #include #ifdef PROP_TXSTATUS #include #endif #ifdef DHDTCPACK_SUPPRESS #include #endif /* DHDTCPACK_SUPPRESS */ #ifdef BT_OVER_SDIO #include #endif /* BT_OVER_SDIO */ #if defined(DEBUGGER) || defined(DHD_DSCOPE) #include #endif /* DEBUGGER || DHD_DSCOPE */ bool dhd_mp_halting(dhd_pub_t *dhdp); extern void bcmsdh_waitfor_iodrain(void *sdh); extern void bcmsdh_reject_ioreqs(void *sdh, bool reject); extern bool bcmsdh_fatal_error(void *sdh); static int dhdsdio_suspend(void *context); static int dhdsdio_resume(void *context); #ifndef DHDSDIO_MEM_DUMP_FNAME #define DHDSDIO_MEM_DUMP_FNAME "mem_dump" #endif #define QLEN (1024) /* bulk rx and tx queue lengths */ #define FCHI (QLEN - 10) #define FCLOW (FCHI / 2) #define PRIOMASK 7 /* XXX FixMe: should come from elsewhere... * MAXPRIO? PKTQ_MAX_PREC? WLC? Other? */ #define TXRETRIES 2 /* # of retries for tx frames */ #define READ_FRM_CNT_RETRIES 3 #ifndef DHD_RXBOUND #define DHD_RXBOUND 50 /* Default for max rx frames in one scheduling */ #endif #ifndef DHD_TXBOUND #define DHD_TXBOUND 20 /* Default for max tx frames in one scheduling */ #endif #define DHD_TXMINMAX 1 /* Max tx frames if rx still pending */ #define MEMBLOCK 2048 /* Block size used for downloading of dongle image */ #define MAX_MEMBLOCK (32 * 1024) /* Block size used for downloading of dongle image */ #define MAX_DATA_BUF (64 * 1024) /* Must be large enough to hold biggest possible glom */ #ifndef DHD_FIRSTREAD #define DHD_FIRSTREAD 32 #endif #if !ISPOWEROF2(DHD_FIRSTREAD) #error DHD_FIRSTREAD is not a power of 2! #endif /* Total length of frame header for dongle protocol */ #define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN) #define SDPCM_HDRLEN_TXGLOM (SDPCM_HDRLEN + SDPCM_HWEXT_LEN) #define MAX_TX_PKTCHAIN_CNT SDPCM_MAXGLOM_SIZE #ifdef SDTEST #define SDPCM_RESERVE (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN) #else #define SDPCM_RESERVE (SDPCM_HDRLEN + DHD_SDALIGN) #endif /* Space for header read, limit for data packets */ #ifndef MAX_HDR_READ #define MAX_HDR_READ 32 #endif #if !ISPOWEROF2(MAX_HDR_READ) #error MAX_HDR_READ is not a power of 2! #endif #define MAX_RX_DATASZ 2048 /* XXX Should be based on PKTGET limits? */ /* Maximum milliseconds to wait for F2 to come up */ #ifdef BCMQT #define DHD_WAIT_F2RDY 30000 #else #define DHD_WAIT_F2RDY 3000 #endif /* BCMQT */ /* Maximum usec to wait for HTAVAIL to come up */ #ifdef BCMQT #define DHD_WAIT_HTAVAIL 10000000 #else #define DHD_WAIT_HTAVAIL 10000 #endif /* BCMQT */ /* Bump up limit on waiting for HT to account for first startup; * if the image is doing a CRC calculation before programming the PMU * for HT availability, it could take a couple hundred ms more, so * max out at a 1 second (1000000us). */ #if (PMU_MAX_TRANSITION_DLY <= 1000000) #undef PMU_MAX_TRANSITION_DLY #define PMU_MAX_TRANSITION_DLY 1000000 #endif /* hooks for limiting threshold custom tx num in rx processing */ #define DEFAULT_TXINRX_THRES 0 #ifndef CUSTOM_TXINRX_THRES #define CUSTOM_TXINRX_THRES DEFAULT_TXINRX_THRES #endif /* Value for ChipClockCSR during initial setup */ #define DHD_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ) #define DHD_INIT_CLKCTL2 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP) /* Flags for SDH calls */ #define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED) /* XXX #define F2ASYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED | SDIO_REQ_ASYNC) */ /* Packet free applicable unconditionally for sdio and sdspi. Conditional if * bufpool was present for gspi bus. */ #define PKTFREE2() if ((bus->bus != SPI_BUS) || bus->usebufpool) \ PKTFREE(bus->dhd->osh, pkt, FALSE); DHD_SPINWAIT_SLEEP_INIT(sdioh_spinwait_sleep); #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) DEFINE_MUTEX(_dhd_sdio_mutex_lock_); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) */ #endif /* defined(LINUX) && defined(MULTIPLE_SUPPLICANT) */ #ifdef SUPPORT_MULTIPLE_BOARD_REV_FROM_HW extern unsigned int system_hw_rev; #endif /* SUPPORT_MULTIPLE_BOARD_REV_FROM_HW */ /* Device console log buffer state */ #define CONSOLE_LINE_MAX 192 #define CONSOLE_BUFFER_MAX 2024 typedef struct dhd_console { uint count; /* Poll interval msec counter */ uint log_addr; /* Log struct address (fixed) */ hnd_log_t log; /* Log struct (host copy) */ uint bufsize; /* Size of log buffer */ uint8 *buf; /* Log buffer (host copy) */ uint last; /* Last buffer read index */ } dhd_console_t; #define REMAP_ENAB(bus) ((bus)->remap) #define REMAP_ISADDR(bus, a) (((a) >= ((bus)->orig_ramsize)) && ((a) < ((bus)->ramsize))) #define KSO_ENAB(bus) ((bus)->kso) #define SR_ENAB(bus) ((bus)->_srenab) #define SLPAUTO_ENAB(bus) ((SR_ENAB(bus)) && ((bus)->_slpauto)) #define MIN_RSRC_SR 0x3 #define CORE_CAPEXT_ADDR_OFFSET (0x64c) #define CORE_CAPEXT_SR_SUPPORTED_MASK (1 << 1) #define RCTL_MACPHY_DISABLE_MASK (1 << 26) #define RCTL_LOGIC_DISABLE_MASK (1 << 27) #define OOB_WAKEUP_ENAB(bus) ((bus)->_oobwakeup) #define GPIO_DEV_SRSTATE 16 /* Host gpio17 mapped to device gpio0 SR state */ #define GPIO_DEV_SRSTATE_TIMEOUT 320000 /* 320ms */ #define GPIO_DEV_WAKEUP 17 /* Host gpio17 mapped to device gpio1 wakeup */ #define CC_CHIPCTRL2_GPIO1_WAKEUP (1 << 0) #define CC_CHIPCTRL3_SR_ENG_ENABLE (1 << 2) #define OVERFLOW_BLKSZ512_WM 96 #define OVERFLOW_BLKSZ512_MES 80 #define CC_PMUCC3 (0x3) #ifdef DHD_UCODE_DOWNLOAD /* Ucode host download related macros */ #define UCODE_DOWNLOAD_REQUEST 0xCAFECAFE #define UCODE_DOWNLOAD_COMPLETE 0xABCDABCD #endif /* DHD_UCODE_DOWNLOAD */ #if defined(BT_OVER_SDIO) #define BTMEM_OFFSET 0x19000000 /* BIT0 => WLAN Power UP and BIT1=> WLAN Wake */ #define BT2WLAN_PWRUP_WAKE 0x03 #define BT2WLAN_PWRUP_ADDR 0x640894 /* This address is specific to 43012B0 */ #define BTFW_MAX_STR_LEN 600 #define BTFW_DOWNLOAD_BLK_SIZE (BTFW_MAX_STR_LEN/2 + 8) #define BTFW_ADDR_MODE_UNKNOWN 0 #define BTFW_ADDR_MODE_EXTENDED 1 #define BTFW_ADDR_MODE_SEGMENT 2 #define BTFW_ADDR_MODE_LINEAR32 3 #define BTFW_HEX_LINE_TYPE_DATA 0 #define BTFW_HEX_LINE_TYPE_END_OF_DATA 1 #define BTFW_HEX_LINE_TYPE_EXTENDED_SEGMENT_ADDRESS 2 #define BTFW_HEX_LINE_TYPE_EXTENDED_ADDRESS 4 #define BTFW_HEX_LINE_TYPE_ABSOLUTE_32BIT_ADDRESS 5 #endif /* defined (BT_OVER_SDIO) */ /* Private data for SDIO bus interaction */ typedef struct dhd_bus { dhd_pub_t *dhd; bcmsdh_info_t *sdh; /* Handle for BCMSDH calls */ si_t *sih; /* Handle for SI calls */ char *vars; /* Variables (from CIS and/or other) */ uint varsz; /* Size of variables buffer */ uint32 sbaddr; /* Current SB window pointer (-1, invalid) */ sdpcmd_regs_t *regs; /* Registers for SDIO core */ uint sdpcmrev; /* SDIO core revision */ uint armrev; /* CPU core revision */ uint ramrev; /* SOCRAM core revision */ uint32 ramsize; /* Size of RAM in SOCRAM (bytes) */ uint32 orig_ramsize; /* Size of RAM in SOCRAM (bytes) */ uint32 srmemsize; /* Size of SRMEM */ uint32 bus; /* gSPI or SDIO bus */ uint32 bus_num; /* bus number */ uint32 slot_num; /* slot ID */ uint32 hostintmask; /* Copy of Host Interrupt Mask */ uint32 intstatus; /* Intstatus bits (events) pending */ bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */ bool fcstate; /* State of dongle flow-control */ uint16 cl_devid; /* cached devid for dhdsdio_probe_attach() */ char *fw_path; /* module_param: path to firmware image */ char *nv_path; /* module_param: path to nvram vars file */ uint blocksize; /* Block size of SDIO transfers */ uint roundup; /* Max roundup limit */ struct pktq txq; /* Queue length used for flow-control */ uint8 flowcontrol; /* per prio flow control bitmask */ uint8 tx_seq; /* Transmit sequence number (next) */ uint8 tx_max; /* Maximum transmit sequence allowed */ uint8 hdrbuf[MAX_HDR_READ + DHD_SDALIGN]; uint8 *rxhdr; /* Header of current rx frame (in hdrbuf) */ uint16 nextlen; /* Next Read Len from last header */ uint8 rx_seq; /* Receive sequence number (expected) */ bool rxskip; /* Skip receive (awaiting NAK ACK) */ void *glomd; /* Packet containing glomming descriptor */ void *glom; /* Packet chain for glommed superframe */ uint glomerr; /* Glom packet read errors */ uint8 *rxbuf; /* Buffer for receiving control packets */ uint rxblen; /* Allocated length of rxbuf */ uint8 *rxctl; /* Aligned pointer into rxbuf */ uint8 *databuf; /* Buffer for receiving big glom packet */ uint8 *dataptr; /* Aligned pointer into databuf */ uint rxlen; /* Length of valid data in buffer */ uint8 sdpcm_ver; /* Bus protocol reported by dongle */ bool intr; /* Use interrupts */ bool poll; /* Use polling */ bool ipend; /* Device interrupt is pending */ bool intdis; /* Interrupts disabled by isr */ uint intrcount; /* Count of device interrupt callbacks */ uint lastintrs; /* Count as of last watchdog timer */ uint spurious; /* Count of spurious interrupts */ uint pollrate; /* Ticks between device polls */ uint polltick; /* Tick counter */ uint pollcnt; /* Count of active polls */ dhd_console_t console; /* Console output polling support */ uint console_addr; /* Console address from shared struct */ uint regfails; /* Count of R_REG/W_REG failures */ uint clkstate; /* State of sd and backplane clock(s) */ bool activity; /* Activity flag for clock down */ int32 idletime; /* Control for activity timeout */ int32 idlecount; /* Activity timeout counter */ int32 idleclock; /* How to set bus driver when idle */ int32 sd_divisor; /* Speed control to bus driver */ int32 sd_mode; /* Mode control to bus driver */ int32 sd_rxchain; /* If bcmsdh api accepts PKT chains */ bool use_rxchain; /* If dhd should use PKT chains */ bool sleeping; /* Is SDIO bus sleeping? */ #if defined(LINUX) && defined(SUPPORT_P2P_GO_PS) wait_queue_head_t bus_sleep; #endif /* LINUX && SUPPORT_P2P_GO_PS */ uint rxflow_mode; /* Rx flow control mode */ bool rxflow; /* Is rx flow control on */ uint prev_rxlim_hit; /* Is prev rx limit exceeded (per dpc schedule) */ bool alp_only; /* Don't use HT clock (ALP only) */ /* Field to decide if rx of control frames happen in rxbuf or lb-pool */ bool usebufpool; int32 txinrx_thres; /* num of in-queued pkts */ int32 dotxinrx; /* tx first in dhdsdio_readframes */ #ifdef SDTEST /* external loopback */ bool ext_loop; uint8 loopid; /* pktgen configuration */ uint pktgen_freq; /* Ticks between bursts */ uint pktgen_count; /* Packets to send each burst */ uint pktgen_print; /* Bursts between count displays */ uint pktgen_total; /* Stop after this many */ uint pktgen_minlen; /* Minimum packet data len */ uint pktgen_maxlen; /* Maximum packet data len */ uint pktgen_mode; /* Configured mode: tx, rx, or echo */ uint pktgen_stop; /* Number of tx failures causing stop */ /* active pktgen fields */ uint pktgen_tick; /* Tick counter for bursts */ uint pktgen_ptick; /* Burst counter for printing */ uint pktgen_sent; /* Number of test packets generated */ uint pktgen_rcvd; /* Number of test packets received */ uint pktgen_prev_time; /* Time at which previous stats where printed */ uint pktgen_prev_sent; /* Number of test packets generated when * previous stats were printed */ uint pktgen_prev_rcvd; /* Number of test packets received when * previous stats were printed */ uint pktgen_fail; /* Number of failed send attempts */ uint16 pktgen_len; /* Length of next packet to send */ #define PKTGEN_RCV_IDLE (0) #define PKTGEN_RCV_ONGOING (1) uint16 pktgen_rcv_state; /* receive state */ uint pktgen_rcvd_rcvsession; /* test pkts rcvd per rcv session. */ #endif /* SDTEST */ /* Some additional counters */ uint tx_sderrs; /* Count of tx attempts with sd errors */ uint fcqueued; /* Tx packets that got queued */ uint rxrtx; /* Count of rtx requests (NAK to dongle) */ uint rx_toolong; /* Receive frames too long to receive */ uint rxc_errors; /* SDIO errors when reading control frames */ uint rx_hdrfail; /* SDIO errors on header reads */ uint rx_badhdr; /* Bad received headers (roosync?) */ uint rx_badseq; /* Mismatched rx sequence number */ uint fc_rcvd; /* Number of flow-control events received */ uint fc_xoff; /* Number which turned on flow-control */ uint fc_xon; /* Number which turned off flow-control */ uint rxglomfail; /* Failed deglom attempts */ uint rxglomframes; /* Number of glom frames (superframes) */ uint rxglompkts; /* Number of packets from glom frames */ uint f2rxhdrs; /* Number of header reads */ uint f2rxdata; /* Number of frame data reads */ uint f2txdata; /* Number of f2 frame writes */ uint f1regdata; /* Number of f1 register accesses */ wake_counts_t wake_counts; /* Wake up counter */ #ifdef BCMSPI bool dwordmode; #endif /* BCMSPI */ #ifdef DHDENABLE_TAILPAD uint tx_tailpad_chain; /* Number of tail padding by chaining pad_pkt */ uint tx_tailpad_pktget; /* Number of tail padding by new PKTGET */ #endif /* DHDENABLE_TAILPAD */ uint8 *ctrl_frame_buf; uint32 ctrl_frame_len; bool ctrl_frame_stat; #ifndef BCMSPI uint32 rxint_mode; /* rx interrupt mode */ #endif /* BCMSPI */ bool remap; /* Contiguous 1MB RAM: 512K socram + 512K devram * Available with socram rev 16 * Remap region not DMA-able */ bool kso; bool _slpauto; bool _oobwakeup; bool _srenab; bool readframes; bool reqbussleep; uint32 resetinstr; uint32 dongle_ram_base; void *glom_pkt_arr[SDPCM_MAXGLOM_SIZE]; /* Array of pkts for glomming */ uint32 txglom_cnt; /* Number of pkts in the glom array */ uint32 txglom_total_len; /* Total length of pkts in glom array */ bool txglom_enable; /* Flag to indicate whether tx glom is enabled/disabled */ uint32 txglomsize; /* Glom size limitation */ #ifdef DHDENABLE_TAILPAD void *pad_pkt; #endif /* DHDENABLE_TAILPAD */ uint32 dongle_trap_addr; /* device trap addr location in device memory */ #if defined(BT_OVER_SDIO) char *btfw_path; /* module_param: path to BT firmware image */ uint32 bt_use_count; /* Counter that tracks whether BT is using the bus */ #endif /* defined (BT_OVER_SDIO) */ } dhd_bus_t; /* * Whenever DHD_IDLE_IMMEDIATE condition is handled, we have to now check if * BT is active too. Instead of adding #ifdef code in all the places, we thought * of adding one macro check as part of the if condition that checks for DHD_IDLE_IMMEDIATE * In case of non BT over SDIO builds, this macro will always return TRUE. In case * of the builds where BT_OVER_SDIO is enabled, it will expand to a condition check * that checks if bt_use_count is zero. So this macro will return equate to 1 if * bt_use_count is 0, indicating that there are no active users and if bt_use_count * is non zero it would return 0 there by preventing the caller from executing the * sleep calls. */ #ifdef BT_OVER_SDIO #define NO_OTHER_ACTIVE_BUS_USER(bus) (bus->bt_use_count == 0) #else #define NO_OTHER_ACTIVE_BUS_USER(bus) (1) #endif /* BT_OVER_SDIO */ /* clkstate */ #define CLK_NONE 0 #define CLK_SDONLY 1 #define CLK_PENDING 2 /* Not used yet */ #define CLK_AVAIL 3 #define DHD_NOPMU(dhd) (FALSE) #if defined(BCMSDIOH_STD) #define BLK_64_MAXTXGLOM 20 #endif /* BCMSDIOH_STD */ #ifdef DHD_DEBUG static int qcount[NUMPRIO]; static int tx_packets[NUMPRIO]; #endif /* DHD_DEBUG */ /* Deferred transmit */ const uint dhd_deferred_tx = 1; extern uint dhd_watchdog_ms; #ifndef NDIS extern uint sd_f1_blocksize; #endif /* !NDIS */ extern uint *dhd_spi_lockcount; extern void dhd_os_wd_timer(void *bus, uint wdtick); int dhd_enableOOB(dhd_pub_t *dhd, bool sleep); #ifdef DHD_PM_CONTROL_FROM_FILE extern bool g_pm_control; #endif /* DHD_PM_CONTROL_FROM_FILE */ /* Tx/Rx bounds */ uint dhd_txbound; uint dhd_rxbound; uint dhd_txminmax = DHD_TXMINMAX; /* override the RAM size if possible */ #define DONGLE_MIN_RAMSIZE (128 *1024) int dhd_dongle_ramsize; uint dhd_doflow = TRUE; uint dhd_dpcpoll = FALSE; #ifdef linux module_param(dhd_doflow, uint, 0644); module_param(dhd_dpcpoll, uint, 0644); #endif static bool dhd_alignctl; static bool sd1idle; static bool retrydata; #define RETRYCHAN(chan) (((chan) == SDPCM_EVENT_CHANNEL) || retrydata) #ifdef BCMSPI /* At a watermark around 8 the spid hits underflow error. */ static uint watermark = 32; static uint mesbusyctrl = 0; #else static uint watermark = 8; static uint mesbusyctrl = 0; #endif /* BCMSPI */ static const uint firstread = DHD_FIRSTREAD; /* Retry count for register access failures */ static const uint retry_limit = 2; /* Force even SD lengths (some host controllers mess up on odd bytes) */ static bool forcealign; #if defined(DEBUGGER) static uint32 dhd_sdio_reg_read(struct dhd_bus *bus, ulong addr); static void dhd_sdio_reg_write(struct dhd_bus *bus, ulong addr, uint32 val); /** the debugger layer will call back into this (bus) layer to read/write dongle memory */ static struct dhd_dbg_bus_ops_s bus_ops = { .read_u16 = NULL, .read_u32 = dhd_sdio_reg_read, .write_u32 = dhd_sdio_reg_write, }; #endif /* DEBUGGER */ #define ALIGNMENT 4 #if defined(OOB_INTR_ONLY) && defined(HW_OOB) extern void bcmsdh_enable_hw_oob_intr(void *sdh, bool enable); #endif #if defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD) #error OOB_INTR_ONLY is NOT working with SDIO_ISR_THREAD #endif /* defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD) */ #define PKTALIGN(osh, p, len, align) \ do { \ uintptr datalign; \ datalign = (uintptr)PKTDATA((osh), (p)); \ datalign = ROUNDUP(datalign, (align)) - datalign; \ ASSERT(datalign < (align)); \ ASSERT(PKTLEN((osh), (p)) >= ((len) + datalign)); \ if (datalign) \ PKTPULL((osh), (p), (uint)datalign); \ PKTSETLEN((osh), (p), (len)); \ } while (0) /* Limit on rounding up frames */ static const uint max_roundup = 512; /* Try doing readahead */ static bool dhd_readahead; /* To check if there's window offered */ #define DATAOK(bus) \ (((uint8)(bus->tx_max - bus->tx_seq) > 1) && \ (((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0)) /* To check if there's window offered for ctrl frame */ #define TXCTLOK(bus) \ (((uint8)(bus->tx_max - bus->tx_seq) != 0) && \ (((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0)) /* Number of pkts available in dongle for data RX */ #define DATABUFCNT(bus) \ ((uint8)(bus->tx_max - bus->tx_seq) - 1) /* Macros to get register read/write status */ /* NOTE: these assume a local dhdsdio_bus_t *bus! */ /* XXX Need to replace these with something better. */ #define R_SDREG(regvar, regaddr, retryvar) \ do { \ retryvar = 0; \ do { \ regvar = R_REG(bus->dhd->osh, regaddr); \ } while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \ if (retryvar) { \ bus->regfails += (retryvar-1); \ if (retryvar > retry_limit) { \ DHD_ERROR(("%s: FAILED" #regvar "READ, LINE %d\n", \ __FUNCTION__, __LINE__)); \ regvar = 0; \ } \ } \ } while (0) #define W_SDREG(regval, regaddr, retryvar) \ do { \ retryvar = 0; \ do { \ W_REG(bus->dhd->osh, regaddr, regval); \ } while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \ if (retryvar) { \ bus->regfails += (retryvar-1); \ if (retryvar > retry_limit) \ DHD_ERROR(("%s: FAILED REGISTER WRITE, LINE %d\n", \ __FUNCTION__, __LINE__)); \ } \ } while (0) #define BUS_WAKE(bus) \ do { \ bus->idlecount = 0; \ if ((bus)->sleeping) \ dhdsdio_bussleep((bus), FALSE); \ } while (0); /* * pktavail interrupts from dongle to host can be managed in 3 different ways * whenever there is a packet available in dongle to transmit to host. * * Mode 0: Dongle writes the software host mailbox and host is interrupted. * Mode 1: (sdiod core rev >= 4) * Device sets a new bit in the intstatus whenever there is a packet * available in fifo. Host can't clear this specific status bit until all the * packets are read from the FIFO. No need to ack dongle intstatus. * Mode 2: (sdiod core rev >= 4) * Device sets a bit in the intstatus, and host acks this by writing * one to this bit. Dongle won't generate anymore packet interrupts * until host reads all the packets from the dongle and reads a zero to * figure that there are no more packets. No need to disable host ints. * Need to ack the intstatus. */ #define SDIO_DEVICE_HMB_RXINT 0 /* default old way */ #define SDIO_DEVICE_RXDATAINT_MODE_0 1 /* from sdiod rev 4 */ #define SDIO_DEVICE_RXDATAINT_MODE_1 2 /* from sdiod rev 4 */ #ifdef BCMSPI #define FRAME_AVAIL_MASK(bus) I_HMB_FRAME_IND #define DHD_BUS SPI_BUS /* check packet-available-interrupt in piggybacked dstatus */ #define PKT_AVAILABLE(bus, intstatus) (bcmsdh_get_dstatus(bus->sdh) & STATUS_F2_PKT_AVAILABLE) #define HOSTINTMASK (I_HMB_FC_CHANGE | I_HMB_HOST_INT) #define GSPI_PR55150_BAILOUT \ do { \ uint32 dstatussw = bcmsdh_get_dstatus((void *)bus->sdh); \ uint32 dstatushw = bcmsdh_cfg_read_word(bus->sdh, SDIO_FUNC_0, SPID_STATUS_REG, NULL); \ uint32 intstatuserr = 0; \ uint retries = 0; \ \ R_SDREG(intstatuserr, &bus->regs->intstatus, retries); \ printf("dstatussw = 0x%x, dstatushw = 0x%x, intstatus = 0x%x\n", \ dstatussw, dstatushw, intstatuserr); \ \ bus->nextlen = 0; \ *finished = TRUE; \ } while (0) #else /* BCMSDIO */ #define FRAME_AVAIL_MASK(bus) \ ((bus->rxint_mode == SDIO_DEVICE_HMB_RXINT) ? I_HMB_FRAME_IND : I_XMTDATA_AVAIL) #define DHD_BUS SDIO_BUS #define PKT_AVAILABLE(bus, intstatus) ((intstatus) & (FRAME_AVAIL_MASK(bus))) #define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE) #define GSPI_PR55150_BAILOUT #endif /* BCMSPI */ #ifdef SDTEST static void dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq); static void dhdsdio_sdtest_set(dhd_bus_t *bus, uint count); #endif static int dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size); #ifdef DHD_DEBUG static int dhd_serialconsole(dhd_bus_t *bus, bool get, bool enable, int *bcmerror); #endif /* DHD_DEBUG */ #if defined(DHD_FW_COREDUMP) static int dhdsdio_mem_dump(dhd_bus_t *bus); static int dhdsdio_get_mem_dump(dhd_bus_t *bus); #endif /* DHD_FW_COREDUMP */ static int dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap); static int dhdsdio_download_state(dhd_bus_t *bus, bool enter); static void dhdsdio_release(dhd_bus_t *bus, osl_t *osh); static void dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh); static void dhdsdio_disconnect(void *ptr); static bool dhdsdio_chipmatch(uint16 chipid); static bool dhdsdio_probe_attach(dhd_bus_t *bus, osl_t *osh, void *sdh, void * regsva, uint16 devid); static bool dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh); static bool dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh); static void dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag); static void dhd_dongle_setramsize(struct dhd_bus *bus, int mem_size); static int dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle); static int dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle, int max_retry); static int dhdsdio_txpkt(dhd_bus_t *bus, uint chan, void** pkts, int num_pkt, bool free_pkt); static int dhdsdio_txpkt_preprocess(dhd_bus_t *bus, void *pkt, int chan, int txseq, int prev_chain_total_len, bool last_chained_pkt, int *pad_pkt_len, void **new_pkt); static int dhdsdio_txpkt_postprocess(dhd_bus_t *bus, void *pkt); static int dhdsdio_download_firmware(dhd_bus_t *bus, osl_t *osh, void *sdh); static int _dhdsdio_download_firmware(dhd_bus_t *bus); #ifdef DHD_UCODE_DOWNLOAD static int dhdsdio_download_ucode_file(struct dhd_bus *bus, char *ucode_path); #endif /* DHD_UCODE_DOWNLOAD */ static int dhdsdio_download_code_file(dhd_bus_t *bus, char *image_path); static int dhdsdio_download_nvram(dhd_bus_t *bus); #ifdef BCMEMBEDIMAGE static int dhdsdio_download_code_array(dhd_bus_t *bus); #endif static int dhdsdio_bussleep(dhd_bus_t *bus, bool sleep); static int dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok); static uint8 dhdsdio_sleepcsr_get(dhd_bus_t *bus); static bool dhdsdio_dpc(dhd_bus_t *bus); static int dhd_bcmsdh_send_buffer(void *bus, uint8 *frame, uint16 len); static int dhdsdio_set_sdmode(dhd_bus_t *bus, int32 sd_mode); static int dhdsdio_sdclk(dhd_bus_t *bus, bool on); static void dhdsdio_advertise_bus_cleanup(dhd_pub_t *dhdp); #if defined(BT_OVER_SDIO) static int extract_hex_field(char * line, uint16 start_pos, uint16 num_chars, uint16 * value); static int read_more_btbytes(struct dhd_bus *bus, void * file, char *line, int * addr_mode, uint16 * hi_addr, uint32 * dest_addr, uint8 *data_bytes, uint32 * num_bytes); static int dhdsdio_download_btfw(struct dhd_bus *bus, osl_t *osh, void *sdh); static int _dhdsdio_download_btfw(struct dhd_bus *bus); #endif /* defined (BT_OVER_SDIO) */ /* * PR 114233: [4335] Sdio 3.0 overflow due to spur mode PLL change */ static void dhdsdio_tune_fifoparam(struct dhd_bus *bus) { int err; uint8 devctl, wm, mes; if (bus->sih->buscorerev >= 15) { /* See .ppt in PR for these recommended values */ if (bus->blocksize == 512) { wm = OVERFLOW_BLKSZ512_WM; mes = OVERFLOW_BLKSZ512_MES; } else { mes = bus->blocksize/4; wm = bus->blocksize/4; } /* XXX: Need to set watermark since SBSDIO_WATERMARK could be overwritten based on watermark value in other place. Refer to SWDHD-17. */ watermark = wm; mesbusyctrl = mes; } else { DHD_INFO(("skip fifotune: SdioRev(%d) is lower than minimal requested ver\n", bus->sih->buscorerev)); return; } /* Update watermark */ if (wm > 0) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, wm, &err); devctl = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl |= SBSDIO_DEVCTL_F2WM_ENAB; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } /* Update MES */ if (mes > 0) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL, (mes | SBSDIO_MESBUSYCTRL_ENAB), &err); } DHD_INFO(("Apply overflow WAR: 0x%02x 0x%02x 0x%02x\n", bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err), bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, &err), bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL, &err))); } static void dhd_dongle_setramsize(struct dhd_bus *bus, int mem_size) { int32 min_size = DONGLE_MIN_RAMSIZE; /* Restrict the ramsize to user specified limit */ DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n", dhd_dongle_ramsize, min_size)); if ((dhd_dongle_ramsize > min_size) && (dhd_dongle_ramsize < (int32)bus->orig_ramsize)) bus->ramsize = dhd_dongle_ramsize; } static int dhdsdio_set_siaddr_window(dhd_bus_t *bus, uint32 address) { int err = 0; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, (address >> 8) & SBSDIO_SBADDRLOW_MASK, &err); if (!err) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, (address >> 16) & SBSDIO_SBADDRMID_MASK, &err); if (!err) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, (address >> 24) & SBSDIO_SBADDRHIGH_MASK, &err); return err; } #ifdef BCMSPI static void dhdsdio_wkwlan(dhd_bus_t *bus, bool on) { int err; uint32 regdata; bcmsdh_info_t *sdh = bus->sdh; /* XXX: sdiod cores have SPI as a block, PCMCIA doesn't have the gspi core */ /* XXX: may be we don't even need this check at all */ if (bus->sih->buscoretype == SDIOD_CORE_ID) { /* wake up wlan function :WAKE_UP goes as ht_avail_request and alp_avail_request */ regdata = bcmsdh_cfg_read_word(sdh, SDIO_FUNC_0, SPID_CONFIG, NULL); DHD_INFO(("F0 REG0 rd = 0x%x\n", regdata)); if (on == TRUE) regdata |= WAKE_UP; else regdata &= ~WAKE_UP; bcmsdh_cfg_write_word(sdh, SDIO_FUNC_0, SPID_CONFIG, regdata, &err); } } #endif /* BCMSPI */ #ifdef USE_OOB_GPIO1 static int dhdsdio_oobwakeup_init(dhd_bus_t *bus) { uint32 val, addr, data; bcmsdh_gpioouten(bus->sdh, GPIO_DEV_WAKEUP); addr = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_addr); data = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_data); /* Set device for gpio1 wakeup */ bcmsdh_reg_write(bus->sdh, addr, 4, 2); val = bcmsdh_reg_read(bus->sdh, data, 4); val |= CC_CHIPCTRL2_GPIO1_WAKEUP; bcmsdh_reg_write(bus->sdh, data, 4, val); bus->_oobwakeup = TRUE; return 0; } #endif /* USE_OOB_GPIO1 */ #ifndef BCMSPI /* * Query if FW is in SR mode */ static bool dhdsdio_sr_cap(dhd_bus_t *bus) { bool cap = FALSE; uint32 core_capext, addr, data; if (bus->sih->chip == BCM43430_CHIP_ID || bus->sih->chip == BCM43018_CHIP_ID) { /* check if fw initialized sr engine */ addr = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, sr_control1); if (bcmsdh_reg_read(bus->sdh, addr, 4) != 0) cap = TRUE; return cap; } if ( 0) { core_capext = FALSE; } else if ((bus->sih->chip == BCM4335_CHIP_ID) || (bus->sih->chip == BCM4339_CHIP_ID) || BCM4345_CHIP(bus->sih->chip) || (bus->sih->chip == BCM4354_CHIP_ID) || (bus->sih->chip == BCM4358_CHIP_ID) || (BCM4349_CHIP(bus->sih->chip)) || (bus->sih->chip == BCM4350_CHIP_ID) || (bus->sih->chip == BCM4362_CHIP_ID) || (bus->sih->chip == BCM4381_CHIP_ID) || (bus->sih->chip == BCM43012_CHIP_ID) || (bus->sih->chip == BCM43013_CHIP_ID) || (bus->sih->chip == BCM43014_CHIP_ID) || (bus->sih->chip == BCM43751_CHIP_ID) || (bus->sih->chip == BCM43752_CHIP_ID)) { core_capext = TRUE; } else { /* XXX: For AOB, CORE_CAPEXT_ADDR is moved to PMU core */ core_capext = bcmsdh_reg_read(bus->sdh, si_get_pmu_reg_addr(bus->sih, OFFSETOF(chipcregs_t, core_cap_ext)), 4); core_capext = (core_capext & CORE_CAPEXT_SR_SUPPORTED_MASK); } if (!(core_capext)) return FALSE; if ((bus->sih->chip == BCM4335_CHIP_ID) || (bus->sih->chip == BCM4339_CHIP_ID) || BCM4345_CHIP(bus->sih->chip) || (bus->sih->chip == BCM4354_CHIP_ID) || (bus->sih->chip == BCM4358_CHIP_ID) || (bus->sih->chip == BCM4350_CHIP_ID)) { uint32 enabval = 0; addr = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_addr); data = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_data); /* XXX: assuming the dongle doesn't change chipcontrol_addr, because * if that happens, the chipcontrol_data read will be wrong. So we need * to make sure the dongle and host will not access chipcontrol_addr * simultaneously at this point. */ bcmsdh_reg_write(bus->sdh, addr, 4, CC_PMUCC3); enabval = bcmsdh_reg_read(bus->sdh, data, 4); if ((bus->sih->chip == BCM4350_CHIP_ID) || BCM4345_CHIP(bus->sih->chip) || (bus->sih->chip == BCM4354_CHIP_ID) || (bus->sih->chip == BCM4358_CHIP_ID)) enabval &= CC_CHIPCTRL3_SR_ENG_ENABLE; /* XXX: not checking the CC_PMUCC3_SRCC_SR_ENG_ENAB bit [val 4], but * will check the whole register to be non-zero so that, sleep sequence * can be also checked without enabling SR. */ if (enabval) cap = TRUE; } else { data = bcmsdh_reg_read(bus->sdh, si_get_pmu_reg_addr(bus->sih, OFFSETOF(chipcregs_t, retention_ctl)), 4); if ((data & (RCTL_MACPHY_DISABLE_MASK | RCTL_LOGIC_DISABLE_MASK)) == 0) cap = TRUE; } return cap; } static int dhdsdio_sr_init(dhd_bus_t *bus) { uint8 val; int err = 0; if (bus->sih->chip == BCM43012_CHIP_ID || bus->sih->chip == BCM43013_CHIP_ID || bus->sih->chip == BCM43014_CHIP_ID) { val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); val |= 1 << SBSDIO_FUNC1_WCTRL_ALPWAIT_SHIFT; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, 1 << SBSDIO_FUNC1_WCTRL_ALPWAIT_SHIFT, &err); val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); } else { val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT, &err); val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); } #ifdef USE_CMD14 /* Add CMD14 Support */ dhdsdio_devcap_set(bus, (SDIOD_CCCR_BRCM_CARDCAP_CMD14_SUPPORT | SDIOD_CCCR_BRCM_CARDCAP_CMD14_EXT)); #endif /* USE_CMD14 */ if (CHIPID(bus->sih->chip) == BCM43430_CHIP_ID || CHIPID(bus->sih->chip) == BCM43018_CHIP_ID || CHIPID(bus->sih->chip) == BCM4339_CHIP_ID || CHIPID(bus->sih->chip) == BCM4362_CHIP_ID || CHIPID(bus->sih->chip) == BCM4381_CHIP_ID || CHIPID(bus->sih->chip) == BCM43012_CHIP_ID || CHIPID(bus->sih->chip) == BCM43013_CHIP_ID || CHIPID(bus->sih->chip) == BCM43014_CHIP_ID || CHIPID(bus->sih->chip) == BCM43751_CHIP_ID || CHIPID(bus->sih->chip) == BCM43752_CHIP_ID) dhdsdio_devcap_set(bus, SDIOD_CCCR_BRCM_CARDCAP_CMD_NODEC); if (bus->sih->chip == BCM43012_CHIP_ID || bus->sih->chip == BCM43013_CHIP_ID || bus->sih->chip == BCM43014_CHIP_ID) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_HT_AVAIL_REQ, &err); } else { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HT, &err); } bus->_slpauto = dhd_slpauto ? TRUE : FALSE; bus->_srenab = TRUE; return 0; } #endif /* BCMSPI */ /* * FIX: Be sure KSO bit is enabled * Currently, it's defaulting to 0 which should be 1. */ static int dhdsdio_clk_kso_init(dhd_bus_t *bus) { uint8 val; int err = 0; /* set flag */ bus->kso = TRUE; /* * Enable KeepSdioOn (KSO) bit for normal operation * Default is 0 (4334A0) so set it. Fixed in B0. */ val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, NULL); if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, val, &err); if (err) DHD_ERROR(("%s: SBSDIO_FUNC1_SLEEPCSR err: 0x%x\n", __FUNCTION__, err)); } return 0; } static void dhdsdio_set_wakeupctrl(dhd_bus_t *bus) { uint8 val; int err = 0; /* programme the wakeup wait */ val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT, &err); val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL); } #define KSO_DBG(x) /* XXX KSO set typically takes depending on resource up & number of * resources which were down. Max value is PMU_MAX_TRANSITION_DLY usec. * Currently the KSO attempt loop is such that, it waits * (KSO_WAIT_US [50usec] time + 2 SDIO operations) * MAX_KSO_ATTEMPTS. * So setting a value of maximum PMU_MAX_TRANSITION_DLY as wait time., * to calculate MAX_KSO_ATTEMPTS. */ #define KSO_WAIT_US 50 #define KSO_WAIT_MS 1 #define KSO_SLEEP_RETRY_COUNT 20 #define KSO_WAKE_RETRY_COUNT 100 #define ERROR_BCME_NODEVICE_MAX 1 #define DEFAULT_MAX_KSO_ATTEMPTS (PMU_MAX_TRANSITION_DLY/KSO_WAIT_US) #ifndef CUSTOM_MAX_KSO_ATTEMPTS #define CUSTOM_MAX_KSO_ATTEMPTS DEFAULT_MAX_KSO_ATTEMPTS #endif static int dhdsdio_clk_kso_enab(dhd_bus_t *bus, bool on) { uint8 wr_val = 0, rd_val, cmp_val, bmask; int err = 0; int try_cnt = 0; KSO_DBG(("%s> op:%s\n", __FUNCTION__, (on ? "KSO_SET" : "KSO_CLR"))); wr_val |= (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); /* XXX 1st KSO write goes to AOS wake up core if device is asleep */ bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); /* In case of 43012 chip, the chip could go down immediately after KSO bit is cleared. * So the further reads of KSO register could fail. Thereby just bailing out immediately * after clearing KSO bit, to avoid polling of KSO bit. */ if ((!on) && (bus->sih->chip == BCM43012_CHIP_ID || (bus->sih->chip == BCM4381_CHIP_ID) || bus->sih->chip == BCM43013_CHIP_ID || bus->sih->chip == BCM43014_CHIP_ID)) { return err; } if (on) { /* XXX * device WAKEUP through KSO: * write bit 0 & read back until * both bits 0(kso bit) & 1 (dev on status) are set */ cmp_val = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK | SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK; bmask = cmp_val; #if defined(NDIS) /* XXX Windows Host controller hangs if chip still sleeps before read. * So during a wake we write 0x1 for 5 msec to guarantee that chip is a wake. */ for (int i = 0; i < KSO_WAKE_RETRY_COUNT; i++) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); OSL_DELAY(KSO_WAIT_US); } rd_val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err); if (((rd_val & bmask) != cmp_val) || err) { /* Sdio Bus Failure - Bus hang */ DHD_ERROR(("%s> op:%s, ERROR: SDIO Bus Hang, rd_val:%x, ERR:%x \n", __FUNCTION__, "KSO_SET", rd_val, err)); } #else OSL_SLEEP(3); #endif /* defined(NDIS) */ } else { /* Put device to sleep, turn off KSO */ cmp_val = 0; /* XXX only check for bit0, bit1(devon status) may not get cleared right away */ bmask = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK; } #if !defined(NDIS) /* XXX We can't use polling in Windows since Windows Host controller * hangs if chip is a sleep during read or write. */ do { /* * XXX reliable KSO bit set/clr: * the sdiod sleep write access appears to be is synced to PMU 32khz clk * just one write attempt may fail,(same is with read ?) * in any case, read it back until it matches written value */ rd_val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err); if (((rd_val & bmask) == cmp_val) && !err) break; KSO_DBG(("%s> KSO wr/rd retry:%d, ERR:%x \n", __FUNCTION__, try_cnt, err)); if (((try_cnt + 1) % KSO_SLEEP_RETRY_COUNT) == 0) { OSL_SLEEP(KSO_WAIT_MS); } else OSL_DELAY(KSO_WAIT_US); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); } while (try_cnt++ < CUSTOM_MAX_KSO_ATTEMPTS); if (try_cnt > 2) KSO_DBG(("%s> op:%s, try_cnt:%d, rd_val:%x, ERR:%x \n", __FUNCTION__, (on ? "KSO_SET" : "KSO_CLR"), try_cnt, rd_val, err)); if (try_cnt > CUSTOM_MAX_KSO_ATTEMPTS) { DHD_ERROR(("%s> op:%s, ERROR: try_cnt:%d, rd_val:%x, ERR:%x \n", __FUNCTION__, (on ? "KSO_SET" : "KSO_CLR"), try_cnt, rd_val, err)); } #endif /* !defined(NDIS) */ return err; } static int dhdsdio_clk_kso_iovar(dhd_bus_t *bus, bool on) { int err = 0; if (on == FALSE) { BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); DHD_ERROR(("%s: KSO disable clk: 0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); dhdsdio_clk_kso_enab(bus, FALSE); } else { DHD_ERROR(("%s: KSO enable\n", __FUNCTION__)); /* Make sure we have SD bus access */ if (bus->clkstate == CLK_NONE) { DHD_ERROR(("%s: Request SD clk\n", __FUNCTION__)); dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } dhdsdio_clk_kso_enab(bus, TRUE); DHD_ERROR(("%s: sleepcsr: 0x%x\n", __FUNCTION__, dhdsdio_sleepcsr_get(bus))); } bus->kso = on; BCM_REFERENCE(err); return 0; } static uint8 dhdsdio_sleepcsr_get(dhd_bus_t *bus) { int err = 0; uint8 val = 0; val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err); /* XXX: Propagate error */ if (err) DHD_TRACE(("Failed to read SLEEPCSR: %d\n", err)); return val; } uint8 dhdsdio_devcap_get(dhd_bus_t *bus) { return bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, NULL); } static int dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap) { int err = 0; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, cap, &err); if (err) DHD_ERROR(("%s: devcap set err: 0x%x\n", __FUNCTION__, err)); return 0; } static int dhdsdio_clk_devsleep_iovar(dhd_bus_t *bus, bool on) { int err = 0, retry; uint8 val; retry = 0; if (on == TRUE) { /* Enter Sleep */ /* Be sure we request clk before going to sleep * so we can wake-up with clk request already set * else device can go back to sleep immediately */ if (!SLPAUTO_ENAB(bus)) dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); else { /* XXX: Check if Host cleared clock request * XXX: With CMD14, Host does not need to explicitly toggle clock requests * XXX: Just keep clock request active and use CMD14 to enter/exit sleep */ val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if ((val & SBSDIO_CSR_MASK) == 0) { DHD_ERROR(("%s: No clock before enter sleep:0x%x\n", __FUNCTION__, val)); /* Reset clock request */ bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_ALP_AVAIL_REQ, &err); DHD_ERROR(("%s: clock before sleep:0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); } } DHD_TRACE(("%s: clk before sleep: 0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); #ifdef USE_CMD14 err = bcmsdh_sleep(bus->sdh, TRUE); #else if ((SLPAUTO_ENAB(bus)) && (bus->idleclock == DHD_IDLE_STOP)) { if (sd1idle) { /* Change to SD1 mode */ dhdsdio_set_sdmode(bus, 1); } } err = dhdsdio_clk_kso_enab(bus, FALSE); if (OOB_WAKEUP_ENAB(bus)) { #if !defined(NDIS) err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, FALSE); /* GPIO_1 is off */ #endif /* !defined(NDIS) */ } #endif /* USE_CMD14 */ if ((SLPAUTO_ENAB(bus)) && (bus->idleclock != DHD_IDLE_ACTIVE)) { DHD_TRACE(("%s: Turnoff SD clk\n", __FUNCTION__)); /* Now remove the SD clock */ err = dhdsdio_sdclk(bus, FALSE); } } else { /* Exit Sleep */ /* Make sure we have SD bus access */ if (bus->clkstate == CLK_NONE) { DHD_TRACE(("%s: Request SD clk\n", __FUNCTION__)); dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } #ifdef USE_CMD14 err = bcmsdh_sleep(bus->sdh, FALSE); if (SLPAUTO_ENAB(bus) && (err != 0)) { /* XXX: CMD14 exit sleep is failing somehow * XXX: Is Host out of sync with device? * XXX: Try toggling the reverse */ OSL_DELAY(10000); DHD_TRACE(("%s: Resync device sleep\n", __FUNCTION__)); /* Toggle sleep to resync with host and device */ err = bcmsdh_sleep(bus->sdh, TRUE); OSL_DELAY(10000); err = bcmsdh_sleep(bus->sdh, FALSE); /* XXX: Ugly hack for host-device out-of-sync while testing * XXX: Need to root-cause */ if (err) { /* XXX: Host and device out-of-sync */ OSL_DELAY(10000); DHD_ERROR(("%s: CMD14 exit failed again!\n", __FUNCTION__)); /* Toggle sleep to resync with host and device */ err = bcmsdh_sleep(bus->sdh, TRUE); OSL_DELAY(10000); err = bcmsdh_sleep(bus->sdh, FALSE); if (err) { /* XXX: Give up and assumed it has exited sleep * XXX: Device probably dead at this point * XXX: So far only happens with SR */ DHD_ERROR(("%s: CMD14 exit failed twice!\n", __FUNCTION__)); DHD_ERROR(("%s: FATAL: Device non-response!\n", __FUNCTION__)); err = 0; } } } #else if (OOB_WAKEUP_ENAB(bus)) { #if !defined(NDIS) err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, TRUE); /* GPIO_1 is on */ #endif /* !defined(NDIS) */ } /* PR 101351: sdiod_aos sleep followed by immediate wakeup * before sdiod_aos takes over has a problem. * Set KSO after ExitSleep. */ do { err = dhdsdio_clk_kso_enab(bus, TRUE); if (err) OSL_SLEEP(10); } while ((err != 0) && (++retry < 3)); if (err != 0) { DHD_ERROR(("ERROR: kso set failed retry: %d\n", retry)); #ifndef BT_OVER_SDIO err = 0; /* continue anyway */ #endif /* BT_OVER_SDIO */ } if ((SLPAUTO_ENAB(bus)) && (bus->idleclock == DHD_IDLE_STOP)) { dhdsdio_set_sdmode(bus, bus->sd_mode); } #endif /* !USE_CMD14 */ if (err == 0) { uint8 csr; /* Wait for device ready during transition to wake-up */ SPINWAIT_SLEEP(sdioh_spinwait_sleep, (((csr = dhdsdio_sleepcsr_get(bus)) & SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK) != (SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)), (20000)); DHD_TRACE(("%s: ExitSleep sleepcsr: 0x%x\n", __FUNCTION__, csr)); if (!(csr & SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)) { DHD_ERROR(("%s:ERROR: ExitSleep device NOT Ready! 0x%x\n", __FUNCTION__, csr)); err = BCME_NODEVICE; } /* PR 101351: sdiod_aos sleep followed by immediate wakeup * before sdiod_aos takes over has a problem. */ SPINWAIT_SLEEP(sdioh_spinwait_sleep, (((csr = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err)) & SBSDIO_HT_AVAIL) != (SBSDIO_HT_AVAIL)), (DHD_WAIT_HTAVAIL)); DHD_TRACE(("%s: SBSDIO_FUNC1_CHIPCLKCSR : 0x%x\n", __FUNCTION__, csr)); if (!err && ((csr & SBSDIO_HT_AVAIL) != SBSDIO_HT_AVAIL)) { DHD_ERROR(("%s:ERROR: device NOT Ready! 0x%x\n", __FUNCTION__, csr)); err = BCME_NODEVICE; } } } /* Update if successful */ if (err == 0) bus->kso = on ? FALSE : TRUE; else { DHD_ERROR(("%s: Sleep request failed: kso:%d on:%d err:%d\n", __FUNCTION__, bus->kso, on, err)); if (!on && retry > 2) bus->kso = FALSE; } return err; } /* Turn backplane clock on or off */ static int dhdsdio_htclk(dhd_bus_t *bus, bool on, bool pendok) { #define HT_AVAIL_ERROR_MAX 10 static int ht_avail_error = 0; int err; uint8 clkctl, clkreq, devctl; bcmsdh_info_t *sdh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); clkctl = 0; sdh = bus->sdh; if (!KSO_ENAB(bus)) return BCME_OK; if (SLPAUTO_ENAB(bus)) { bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY); return BCME_OK; } if (on) { /* Request HT Avail */ clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ; #ifdef BCMSPI dhdsdio_wkwlan(bus, TRUE); #endif /* BCMSPI */ /* XXX Should be able to early-exit if pendok && PENDING */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); if (err) { ht_avail_error++; if (ht_avail_error < HT_AVAIL_ERROR_MAX) { DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err)); } else if (ht_avail_error == HT_AVAIL_ERROR_MAX) { bus->dhd->hang_reason = HANG_REASON_HT_AVAIL_ERROR; dhd_os_send_hang_message(bus->dhd); } return BCME_ERROR; } else { ht_avail_error = 0; } /* Check current status */ clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { DHD_ERROR(("%s: HT Avail read error: %d\n", __FUNCTION__, err)); return BCME_ERROR; } #if !defined(OOB_INTR_ONLY) /* Go to pending and await interrupt if appropriate */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) { /* Allow only clock-available interrupt */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: Devctl access error setting CA: %d\n", __FUNCTION__, err)); return BCME_ERROR; } devctl |= SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); DHD_INFO(("CLKCTL: set PENDING\n")); bus->clkstate = CLK_PENDING; return BCME_OK; } else #endif /* !defined (OOB_INTR_ONLY) */ { if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } } #ifndef BCMSDIOLITE /* Otherwise, wait here (polling) for HT Avail */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { SPINWAIT_SLEEP(sdioh_spinwait_sleep, ((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err)), !SBSDIO_CLKAV(clkctl, bus->alp_only)), PMU_MAX_TRANSITION_DLY); } if (err) { DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err)); return BCME_ERROR; } if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { DHD_ERROR(("%s: HT Avail timeout (%d): clkctl 0x%02x\n", __FUNCTION__, PMU_MAX_TRANSITION_DLY, clkctl)); return BCME_ERROR; } #endif /* BCMSDIOLITE */ /* Mark clock available */ bus->clkstate = CLK_AVAIL; DHD_INFO(("CLKCTL: turned ON\n")); #if defined(DHD_DEBUG) if (bus->alp_only == TRUE) { #if !defined(BCMLXSDMMC) /* XXX For the SDMMC Driver stack, if DHD was unloaded, * the chip is not completely reset, so in this case, * the PMU may already be programmed to allow HT clock. */ if (!SBSDIO_ALPONLY(clkctl)) { DHD_ERROR(("%s: HT Clock, when ALP Only\n", __FUNCTION__)); } #endif /* !defined(BCMLXSDMMC) */ } else { if (SBSDIO_ALPONLY(clkctl)) { DHD_ERROR(("%s: HT Clock should be on.\n", __FUNCTION__)); } } #endif /* defined (DHD_DEBUG) */ bus->activity = TRUE; #ifdef DHD_USE_IDLECOUNT bus->idlecount = 0; #endif /* DHD_USE_IDLECOUNT */ } else { clkreq = 0; if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } bus->clkstate = CLK_SDONLY; if (!SR_ENAB(bus)) { bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); DHD_INFO(("CLKCTL: turned OFF\n")); if (err) { DHD_ERROR(("%s: Failed access turning clock off: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } #ifdef BCMSPI dhdsdio_wkwlan(bus, FALSE); #endif /* BCMSPI */ } return BCME_OK; } /* Change SD1/SD4 bus mode */ static int dhdsdio_set_sdmode(dhd_bus_t *bus, int32 sd_mode) { int err; err = bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0, &sd_mode, sizeof(sd_mode), TRUE); if (err) { DHD_ERROR(("%s: error changing sd_mode: %d\n", __FUNCTION__, err)); return BCME_ERROR; } return BCME_OK; } /* Change idle/active SD state */ static int dhdsdio_sdclk(dhd_bus_t *bus, bool on) { #ifndef BCMSPI int err; int32 iovalue; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (on) { if (bus->idleclock == DHD_IDLE_STOP) { /* Turn on clock and restore mode */ iovalue = 1; err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error enabling sd_clock: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } else if (bus->idleclock != DHD_IDLE_ACTIVE) { /* Restore clock speed */ iovalue = bus->sd_divisor; err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error restoring sd_divisor: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } bus->clkstate = CLK_SDONLY; } else { /* Stop or slow the SD clock itself */ if ((bus->sd_divisor == -1) || (bus->sd_mode == -1)) { DHD_TRACE(("%s: can't idle clock, divisor %d mode %d\n", __FUNCTION__, bus->sd_divisor, bus->sd_mode)); return BCME_ERROR; } if (bus->idleclock == DHD_IDLE_STOP) { iovalue = 0; err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error disabling sd_clock: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } else if (bus->idleclock != DHD_IDLE_ACTIVE) { /* Set divisor to idle value */ iovalue = bus->idleclock; err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error changing sd_divisor: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } bus->clkstate = CLK_NONE; } #endif /* BCMSPI */ return BCME_OK; } /* Transition SD and backplane clock readiness */ static int dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok) { int ret = BCME_OK; #ifdef DHD_DEBUG uint oldstate = bus->clkstate; #endif /* DHD_DEBUG */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Early exit if we're already there */ if (bus->clkstate == target) { if (target == CLK_AVAIL) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); bus->activity = TRUE; #ifdef DHD_USE_IDLECOUNT bus->idlecount = 0; #endif /* DHD_USE_IDLECOUNT */ } return ret; } switch (target) { case CLK_AVAIL: /* Make sure SD clock is available */ if (bus->clkstate == CLK_NONE) dhdsdio_sdclk(bus, TRUE); /* Now request HT Avail on the backplane */ ret = dhdsdio_htclk(bus, TRUE, pendok); if (ret == BCME_OK) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); bus->activity = TRUE; #ifdef DHD_USE_IDLECOUNT bus->idlecount = 0; #endif /* DHD_USE_IDLECOUNT */ } break; case CLK_SDONLY: #ifdef BT_OVER_SDIO /* * If the request is to switch off Back plane clock, * confirm that BT is inactive before doing so. * If this call had come from Non Watchdog context any way * the Watchdog would switch off the clock again when * nothing is to be done & Bt has finished using the bus. */ if (bus->bt_use_count != 0) { DHD_INFO(("%s(): Req CLK_SDONLY, BT is active %d not switching off \r\n", __FUNCTION__, bus->bt_use_count)); ret = BCME_OK; dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); break; } DHD_INFO(("%s(): Request CLK_NONE BT is NOT active switching off \r\n", __FUNCTION__)); #endif /* BT_OVER_SDIO */ /* Remove HT request, or bring up SD clock */ if (bus->clkstate == CLK_NONE) ret = dhdsdio_sdclk(bus, TRUE); else if (bus->clkstate == CLK_AVAIL) ret = dhdsdio_htclk(bus, FALSE, FALSE); else DHD_ERROR(("dhdsdio_clkctl: request for %d -> %d\n", bus->clkstate, target)); if (ret == BCME_OK) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); } break; case CLK_NONE: #ifdef BT_OVER_SDIO /* * If the request is to switch off Back plane clock, * confirm that BT is inactive before doing so. * If this call had come from Non Watchdog context any way * the Watchdog would switch off the clock again when * nothing is to be done & Bt has finished using the bus. */ if (bus->bt_use_count != 0) { DHD_INFO(("%s(): Request CLK_NONE BT is active %d not switching off \r\n", __FUNCTION__, bus->bt_use_count)); ret = BCME_OK; break; } DHD_INFO(("%s(): Request CLK_NONE BT is NOT active switching off \r\n", __FUNCTION__)); #endif /* BT_OVER_SDIO */ /* Make sure to remove HT request */ if (bus->clkstate == CLK_AVAIL) ret = dhdsdio_htclk(bus, FALSE, FALSE); /* Now remove the SD clock */ ret = dhdsdio_sdclk(bus, FALSE); #ifdef DHD_DEBUG if (bus->dhd->dhd_console_ms == 0) #endif /* DHD_DEBUG */ if (bus->poll == 0) dhd_os_wd_timer(bus->dhd, 0); break; } #ifdef DHD_DEBUG DHD_INFO(("dhdsdio_clkctl: %d -> %d\n", oldstate, bus->clkstate)); #endif /* DHD_DEBUG */ return ret; } static int dhdsdio_bussleep(dhd_bus_t *bus, bool sleep) { int err = 0; bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint retries = 0; #if defined(BCMSDIOH_STD) uint32 sd3_tuning_disable = FALSE; #endif /* BCMSDIOH_STD */ DHD_INFO(("dhdsdio_bussleep: request %s (currently %s)\n", (sleep ? "SLEEP" : "WAKE"), (bus->sleeping ? "SLEEP" : "WAKE"))); if (bus->dhd->hang_was_sent) return BCME_ERROR; /* Done if we're already in the requested state */ if (sleep == bus->sleeping) return BCME_OK; /* Going to sleep: set the alarm and turn off the lights... */ if (sleep) { /* Don't sleep if something is pending */ #ifdef DHD_USE_IDLECOUNT if (bus->dpc_sched || bus->rxskip || pktq_n_pkts_tot(&bus->txq) || bus->readframes || bus->ctrl_frame_stat) #else if (bus->dpc_sched || bus->rxskip || pktq_n_pkts_tot(&bus->txq)) #endif /* DHD_USE_IDLECOUNT */ return BCME_BUSY; #ifdef BT_OVER_SDIO /* * The following is the assumption based on which the hook is placed. * From WLAN driver, either from the active contexts OR from the Watchdog contexts * we will be attempting to Go to Sleep. AT that moment if we see that BT is still * actively using the bus, we will return BCME_BUSY from here, but the bus->sleeping * state would not have changed. So the caller can then schedule the Watchdog again * which will come and attempt to sleep at a later point. * * In case if BT is the only one and is the last user, we don't switch off the clock * immediately, we allow the WLAN to decide when to sleep i.e from the watchdog. * Now if the watchdog becomes active and attempts to switch off the clock and if * another WLAN context is active they are any way serialized with sdlock. */ if (bus->bt_use_count != 0) { DHD_INFO(("%s(): Cannot sleep BT is active \r\n", __FUNCTION__)); return BCME_BUSY; } #endif /* !BT_OVER_SDIO */ /* XXX Is it an error to sleep when not in data state? */ if (!SLPAUTO_ENAB(bus)) { /* Disable SDIO interrupts (no longer interested) */ bcmsdh_intr_disable(bus->sdh); /* Make sure the controller has the bus up */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Tell device to start using OOB wakeup */ W_SDREG(SMB_USE_OOB, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n")); /* Turn off our contribution to the HT clock request */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HW_CLKREQ_OFF, NULL); /* Isolate the bus */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, SBSDIO_DEVCTL_PADS_ISO, NULL); } else { /* Leave interrupts enabled since device can exit sleep and * interrupt host */ err = dhdsdio_clk_devsleep_iovar(bus, TRUE /* sleep */); } /* Change state */ bus->sleeping = TRUE; #if defined(BCMSDIOH_STD) sd3_tuning_disable = TRUE; err = bcmsdh_iovar_op(bus->sdh, "sd3_tuning_disable", NULL, 0, &sd3_tuning_disable, sizeof(sd3_tuning_disable), TRUE); #endif /* BCMSDIOH_STD */ #if defined(LINUX) && defined(SUPPORT_P2P_GO_PS) wake_up(&bus->bus_sleep); #endif /* LINUX && SUPPORT_P2P_GO_PS */ /* XXX Should be able to turn off clock and power */ /* XXX Make sure GPIO interrupt input is enabled */ } else { /* Waking up: bus power up is ok, set local state */ if (!SLPAUTO_ENAB(bus)) { bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, &err); /* Force pad isolation off if possible (in case power never toggled) */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, 0, NULL); /* XXX Make sure GPIO interrupt input is disabled */ /* XXX Should be able to turn on power and clock */ /* Make sure the controller has the bus up */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Send misc interrupt to indicate OOB not needed */ W_SDREG(0, ®s->tosbmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_DEV_INT, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP TO CLEAR OOB!!\n")); /* Make sure we have SD bus access */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); /* Enable interrupts again */ if (bus->intr && (bus->dhd->busstate == DHD_BUS_DATA)) { bus->intdis = FALSE; bcmsdh_intr_enable(bus->sdh); } } else { err = dhdsdio_clk_devsleep_iovar(bus, FALSE /* wake */); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) if (err < 0) { struct net_device *net = NULL; dhd_pub_t *dhd = bus->dhd; net = dhd_idx2net(dhd, 0); if (net != NULL) { DHD_ERROR(("<< WIFI HANG by KSO Enabled failure\n")); dhd_os_sdunlock(dhd); net_os_send_hang_message(net); dhd_os_sdlock(dhd); } else { DHD_ERROR(("<< WIFI HANG Fail because net is NULL\n")); } } #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) && OEM_ANDROID */ } if (err == 0) { /* Change state */ bus->sleeping = FALSE; #if defined(BCMSDIOH_STD) sd3_tuning_disable = FALSE; err = bcmsdh_iovar_op(bus->sdh, "sd3_tuning_disable", NULL, 0, &sd3_tuning_disable, sizeof(sd3_tuning_disable), TRUE); #endif /* BCMSDIOH_STD */ } } return err; } #ifdef BT_OVER_SDIO /* * Call this function to Get the Clock running. * Assumes that the caller holds the sdlock. * bus - Pointer to the dhd_bus handle * can_wait - TRUE if the caller can wait until the clock becomes ready * FALSE if the caller cannot wait */ int __dhdsdio_clk_enable(struct dhd_bus *bus, bus_owner_t owner, int can_wait) { int ret = BCME_ERROR; BCM_REFERENCE(owner); bus->bt_use_count++; /* * We can call BUS_WAKE, clkctl multiple times, both of the items * have states and if its already ON, no new configuration is done */ /* Wake up the Dongle FW from SR */ BUS_WAKE(bus); /* * Make sure back plane ht clk is on * CLK_AVAIL - Turn On both SD & HT clock */ ret = dhdsdio_clkctl(bus, CLK_AVAIL, can_wait); DHD_INFO(("%s():bt_use_count %d \r\n", __FUNCTION__, bus->bt_use_count)); return ret; } /* * Call this function to relinquish the Clock. * Assumes that the caller holds the sdlock. * bus - Pointer to the dhd_bus handle * can_wait - TRUE if the caller can wait until the clock becomes ready * FALSE if the caller cannot wait */ int __dhdsdio_clk_disable(struct dhd_bus *bus, bus_owner_t owner, int can_wait) { int ret = BCME_ERROR; BCM_REFERENCE(owner); BCM_REFERENCE(can_wait); if (bus->bt_use_count == 0) { DHD_ERROR(("%s(): Clocks are already turned off \r\n", __FUNCTION__)); return ret; } bus->bt_use_count--; /* * When the SDIO Bus is shared between BT & WLAN, we turn Off the clock * once the last user has relinqushed the same. But there are two schemes * in that too. We consider WLAN as the bus master (even if its not * active). Even when the WLAN is OFF the DHD Watchdog is active. * So this Bus Watchdog is the context whill put the Bus to sleep. * Refer dhd_bus_watchdog function */ ret = BCME_OK; DHD_INFO(("%s():bt_use_count %d \r\n", __FUNCTION__, bus->bt_use_count)); return ret; } void dhdsdio_reset_bt_use_count(struct dhd_bus *bus) { /* reset bt use count */ bus->bt_use_count = 0; } #endif /* BT_OVER_SDIO */ #ifdef USE_DYNAMIC_F2_BLKSIZE int dhdsdio_func_blocksize(dhd_pub_t *dhd, int function_num, int block_size) { int func_blk_size = function_num; int bcmerr = 0; int result; bcmerr = dhd_bus_iovar_op(dhd, "sd_blocksize", &func_blk_size, sizeof(int), &result, sizeof(int), IOV_GET); if (bcmerr != BCME_OK) { DHD_ERROR(("%s: Get F%d Block size error\n", __FUNCTION__, function_num)); return BCME_ERROR; } if (result != block_size) { DHD_TRACE_HW4(("%s: F%d Block size set from %d to %d\n", __FUNCTION__, function_num, result, block_size)); func_blk_size = function_num << 16 | block_size; bcmerr = dhd_bus_iovar_op(dhd, "sd_blocksize", NULL, 0, &func_blk_size, sizeof(int32), IOV_SET); if (bcmerr != BCME_OK) { DHD_ERROR(("%s: Set F2 Block size error\n", __FUNCTION__)); return BCME_ERROR; } } return BCME_OK; } #endif /* USE_DYNAMIC_F2_BLKSIZE */ void dhd_enable_oob_intr(struct dhd_bus *bus, bool enable) { bcmsdh_intr_enable(bus->sdh); } int dhd_bus_txdata(struct dhd_bus *bus, void *pkt) { int ret = BCME_ERROR; osl_t *osh; uint datalen, prec; #if defined(DHD_TX_DUMP) uint8 *dump_data; #endif /* DHD_TX_DUMP */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); osh = bus->dhd->osh; datalen = PKTLEN(osh, pkt); #ifdef SDTEST /* Push the test header if doing loopback */ if (bus->ext_loop) { uint8* data; PKTPUSH(osh, pkt, SDPCM_TEST_HDRLEN); data = PKTDATA(osh, pkt); *data++ = SDPCM_TEST_ECHOREQ; *data++ = (uint8)bus->loopid++; *data++ = (datalen >> 0); *data++ = (datalen >> 8); datalen += SDPCM_TEST_HDRLEN; } #else /* SDTEST */ BCM_REFERENCE(datalen); #endif /* SDTEST */ #if defined(DHD_TX_DUMP) && defined(DHD_TX_FULL_DUMP) dump_data = PKTDATA(osh, pkt); dump_data += 4; /* skip 4 bytes header */ { int i; DHD_ERROR(("TX DUMP\n")); for (i = 0; i < (datalen - 4); i++) { DHD_ERROR(("%02X ", dump_data[i])); if ((i & 15) == 15) printk("\n"); } DHD_ERROR(("\n")); } #endif /* DHD_TX_DUMP && DHD_TX_FULL_DUMP */ prec = PRIO2PREC((PKTPRIO(pkt) & PRIOMASK)); /* Check for existing queue, current flow-control, pending event, or pending clock */ if (dhd_deferred_tx || bus->fcstate || pktq_n_pkts_tot(&bus->txq) || bus->dpc_sched || (!DATAOK(bus)) || (bus->flowcontrol & NBITVAL(prec)) || (bus->clkstate != CLK_AVAIL)) { bool deq_ret; int pkq_len; DHD_TRACE(("%s: deferring pktq len %d\n", __FUNCTION__, pktq_n_pkts_tot(&bus->txq))); bus->fcqueued++; /* Priority based enq */ dhd_os_sdlock_txq(bus->dhd); deq_ret = dhd_prec_enq(bus->dhd, &bus->txq, pkt, prec); dhd_os_sdunlock_txq(bus->dhd); if (!deq_ret) { #ifdef PROP_TXSTATUS if (DHD_PKTTAG_WLFCPKT(PKTTAG(pkt)) == 0) #endif /* PROP_TXSTATUS */ { #ifdef DHDTCPACK_SUPPRESS if (dhd_tcpack_check_xmit(bus->dhd, pkt) == BCME_ERROR) { DHD_ERROR(("%s %d: tcpack_suppress ERROR!!! Stop using\n", __FUNCTION__, __LINE__)); dhd_tcpack_suppress_set(bus->dhd, TCPACK_SUP_OFF); } #endif /* DHDTCPACK_SUPPRESS */ dhd_txcomplete(bus->dhd, pkt, FALSE); PKTFREE(osh, pkt, TRUE); /* XXX update counter */ } ret = BCME_NORESOURCE; } else ret = BCME_OK; /* XXX Possible race since check and action are not locked? */ dhd_os_sdlock_txq(bus->dhd); pkq_len = pktq_n_pkts_tot(&bus->txq); dhd_os_sdunlock_txq(bus->dhd); if (pkq_len >= FCHI) { bool wlfc_enabled = FALSE; #ifdef PROP_TXSTATUS wlfc_enabled = (dhd_wlfc_flowcontrol(bus->dhd, ON, FALSE) != WLFC_UNSUPPORTED); #endif if (!wlfc_enabled && dhd_doflow) { dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON); } } #ifdef DHD_DEBUG dhd_os_sdlock_txq(bus->dhd); if (pktqprec_n_pkts(&bus->txq, prec) > qcount[prec]) qcount[prec] = pktqprec_n_pkts(&bus->txq, prec); dhd_os_sdunlock_txq(bus->dhd); #endif /* Schedule DPC if needed to send queued packet(s) */ /* XXX Also here, since other deferral conditions may no longer hold? */ if (dhd_deferred_tx && !bus->dpc_sched) { bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } else { int chan = SDPCM_DATA_CHANNEL; #ifdef SDTEST chan = (bus->ext_loop ? SDPCM_TEST_CHANNEL : SDPCM_DATA_CHANNEL); #endif /* Lock: we're about to use shared data/code (and SDIO) */ dhd_os_sdlock(bus->dhd); /* Otherwise, send it now */ BUS_WAKE(bus); /* Make sure back plane ht clk is on, no pending allowed */ dhdsdio_clkctl(bus, CLK_AVAIL, TRUE); ret = dhdsdio_txpkt(bus, chan, &pkt, 1, TRUE); if (ret != BCME_OK) bus->dhd->tx_errors++; else bus->dhd->dstats.tx_bytes += datalen; if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } dhd_os_sdunlock(bus->dhd); } return ret; } /* align packet data pointer and packet length to n-byte boundary, process packet headers, * a new packet may be allocated if there is not enough head and/or tail from for padding. * the caller is responsible for updating the glom size in the head packet (when glom is * used) * * pad_pkt_len: returns the length of extra padding needed from the padding packet, this parameter * is taken in tx glom mode only * * new_pkt: out, pointer of the new packet allocated due to insufficient head room for alignment * padding, NULL if not needed, the caller is responsible for freeing the new packet * * return: positive value - length of the packet, including head and tail padding * negative value - errors */ static int dhdsdio_txpkt_preprocess(dhd_bus_t *bus, void *pkt, int chan, int txseq, int prev_chain_total_len, bool last_chained_pkt, int *pad_pkt_len, void **new_pkt) { osl_t *osh; uint8 *frame; int pkt_len; int modulo; int head_padding; int tail_padding = 0; uint32 swheader; uint32 swhdr_offset; bool alloc_new_pkt = FALSE; uint8 sdpcm_hdrlen = bus->txglom_enable ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN; *new_pkt = NULL; osh = bus->dhd->osh; #ifdef DHDTCPACK_SUPPRESS if (dhd_tcpack_check_xmit(bus->dhd, pkt) == BCME_ERROR) { DHD_ERROR(("%s %d: tcpack_suppress ERROR!!! Stop using it\n", __FUNCTION__, __LINE__)); dhd_tcpack_suppress_set(bus->dhd, TCPACK_SUP_OFF); } #endif /* DHDTCPACK_SUPPRESS */ /* Add space for the SDPCM hardware/software headers */ PKTPUSH(osh, pkt, sdpcm_hdrlen); ASSERT(ISALIGNED((uintptr)PKTDATA(osh, pkt), 2)); frame = (uint8*)PKTDATA(osh, pkt); pkt_len = (uint16)PKTLEN(osh, pkt); #ifdef DHD_DEBUG if (PKTPRIO(pkt) < ARRAYSIZE(tx_packets)) tx_packets[PKTPRIO(pkt)]++; #endif /* DHD_DEBUG */ /* align the data pointer, allocate a new packet if there is not enough space (new * packet data pointer will be aligned thus no padding will be needed) */ head_padding = (uintptr)frame % DHD_SDALIGN; if (PKTHEADROOM(osh, pkt) < head_padding) { head_padding = 0; alloc_new_pkt = TRUE; } else { uint cur_chain_total_len; int chain_tail_padding = 0; /* All packets need to be aligned by DHD_SDALIGN */ modulo = (pkt_len + head_padding) % DHD_SDALIGN; tail_padding = modulo > 0 ? (DHD_SDALIGN - modulo) : 0; /* Total pkt chain length needs to be aligned by block size, * unless it is a single pkt chain with total length less than one block size, * which we prefer sending by byte mode. * * Do the chain alignment here if * 1. This is the last pkt of the chain of multiple pkts or a single pkt. * 2-1. This chain is of multiple pkts, or * 2-2. This is a single pkt whose size is longer than one block size. */ cur_chain_total_len = prev_chain_total_len + (head_padding + pkt_len + tail_padding); if (last_chained_pkt && bus->blocksize != 0 && (cur_chain_total_len > (int)bus->blocksize || prev_chain_total_len > 0)) { modulo = cur_chain_total_len % bus->blocksize; chain_tail_padding = modulo > 0 ? (bus->blocksize - modulo) : 0; } #ifdef DHDENABLE_TAILPAD if (PKTTAILROOM(osh, pkt) < tail_padding) { /* We don't have tail room to align by DHD_SDALIGN */ alloc_new_pkt = TRUE; bus->tx_tailpad_pktget++; } else if (PKTTAILROOM(osh, pkt) < tail_padding + chain_tail_padding) { /* We have tail room for tail_padding of this pkt itself, but not for * total pkt chain alignment by block size. * Use the padding packet to avoid memory copy if applicable, * otherwise, just allocate a new pkt. */ if (bus->pad_pkt) { *pad_pkt_len = chain_tail_padding; bus->tx_tailpad_chain++; } else { alloc_new_pkt = TRUE; bus->tx_tailpad_pktget++; } } else /* This last pkt's tailroom is sufficient to hold both tail_padding * of the pkt itself and chain_tail_padding of total pkt chain */ #endif /* DHDENABLE_TAILPAD */ tail_padding += chain_tail_padding; } DHD_INFO(("%s sdhdr len + orig_pkt_len %d h_pad %d t_pad %d pad_pkt_len %d\n", __FUNCTION__, pkt_len, head_padding, tail_padding, *pad_pkt_len)); if (alloc_new_pkt) { void *tmp_pkt; int newpkt_size; int cur_total_len; ASSERT(*pad_pkt_len == 0); DHD_INFO(("%s allocating new packet for padding\n", __FUNCTION__)); /* head pointer is aligned now, no padding needed */ head_padding = 0; /* update the tail padding as it depends on the head padding, since a new packet is * allocated, the head padding is non longer needed and packet length is chagned */ cur_total_len = prev_chain_total_len + pkt_len; if (last_chained_pkt && bus->blocksize != 0 && (cur_total_len > (int)bus->blocksize || prev_chain_total_len > 0)) { modulo = cur_total_len % bus->blocksize; tail_padding = modulo > 0 ? (bus->blocksize - modulo) : 0; } else { modulo = pkt_len % DHD_SDALIGN; tail_padding = modulo > 0 ? (DHD_SDALIGN - modulo) : 0; } newpkt_size = PKTLEN(osh, pkt) + bus->blocksize + DHD_SDALIGN; bus->dhd->tx_realloc++; tmp_pkt = PKTGET(osh, newpkt_size, TRUE); if (tmp_pkt == NULL) { DHD_ERROR(("failed to alloc new %d byte packet\n", newpkt_size)); return BCME_NOMEM; } PKTALIGN(osh, tmp_pkt, PKTLEN(osh, pkt), DHD_SDALIGN); bcopy(PKTDATA(osh, pkt), PKTDATA(osh, tmp_pkt), PKTLEN(osh, pkt)); *new_pkt = tmp_pkt; pkt = tmp_pkt; } if (head_padding) PKTPUSH(osh, pkt, head_padding); frame = (uint8*)PKTDATA(osh, pkt); bzero(frame, head_padding + sdpcm_hdrlen); pkt_len = (uint16)PKTLEN(osh, pkt); /* the header has the followming format * 4-byte HW frame tag: length, ~length (for glom this is the total length) * * 8-byte HW extesion flags (glom mode only) as the following: * 2-byte packet length, excluding HW tag and padding * 2-byte frame channel and frame flags (e.g. next frame following) * 2-byte header length * 2-byte tail padding size * * 8-byte SW frame tags as the following * 4-byte flags: host tx seq, channel, data offset * 4-byte flags: TBD */ swhdr_offset = SDPCM_FRAMETAG_LEN; /* hardware frame tag: * * in tx-glom mode, dongle only checks the hardware frame tag in the first * packet and sees it as the total lenght of the glom (including tail padding), * for each packet in the glom, the packet length needs to be updated, (see * below PKTSETLEN) * * in non tx-glom mode, PKTLEN still need to include tail padding as to be * referred to in sdioh_request_buffer(). The tail length will be excluded in * dhdsdio_txpkt_postprocess(). */ *(uint16*)frame = (uint16)htol16(pkt_len); *(((uint16*)frame) + 1) = (uint16)htol16(~pkt_len); pkt_len += tail_padding; /* hardware extesion flags */ if (bus->txglom_enable) { uint32 hwheader1; uint32 hwheader2; swhdr_offset += SDPCM_HWEXT_LEN; hwheader1 = (pkt_len - SDPCM_FRAMETAG_LEN - tail_padding) | (last_chained_pkt << 24); hwheader2 = (tail_padding) << 16; htol32_ua_store(hwheader1, frame + SDPCM_FRAMETAG_LEN); htol32_ua_store(hwheader2, frame + SDPCM_FRAMETAG_LEN + 4); } PKTSETLEN((osh), (pkt), (pkt_len)); /* software frame tags */ swheader = ((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | (txseq % SDPCM_SEQUENCE_WRAP) | (((head_padding + sdpcm_hdrlen) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); htol32_ua_store(swheader, frame + swhdr_offset); htol32_ua_store(0, frame + swhdr_offset + sizeof(swheader)); return pkt_len; } static int dhdsdio_txpkt_postprocess(dhd_bus_t *bus, void *pkt) { osl_t *osh; uint8 *frame; int data_offset; int tail_padding; int swhdr_offset = SDPCM_FRAMETAG_LEN + (bus->txglom_enable ? SDPCM_HWEXT_LEN : 0); (void)osh; osh = bus->dhd->osh; /* restore pkt buffer pointer, but keeps the header pushed by dhd_prot_hdrpush */ frame = (uint8*)PKTDATA(osh, pkt); DHD_INFO(("%s PKTLEN before postprocess %d", __FUNCTION__, PKTLEN(osh, pkt))); /* PKTLEN still includes tail_padding, so exclude it. * We shall have head_padding + original pkt_len for PKTLEN afterwards. */ if (bus->txglom_enable) { /* txglom pkts have tail_padding length in HW ext header */ tail_padding = ltoh32_ua(frame + SDPCM_FRAMETAG_LEN + 4) >> 16; PKTSETLEN(osh, pkt, PKTLEN(osh, pkt) - tail_padding); DHD_INFO((" txglom pkt: tail_padding %d PKTLEN %d\n", tail_padding, PKTLEN(osh, pkt))); } else { /* non-txglom pkts have head_padding + original pkt length in HW frame tag. * We cannot refer to this field for txglom pkts as the first pkt of the chain will * have the field for the total length of the chain. */ PKTSETLEN(osh, pkt, *(uint16*)frame); DHD_INFO((" non-txglom pkt: HW frame tag len %d after PKTLEN %d\n", *(uint16*)frame, PKTLEN(osh, pkt))); } data_offset = ltoh32_ua(frame + swhdr_offset); data_offset = (data_offset & SDPCM_DOFFSET_MASK) >> SDPCM_DOFFSET_SHIFT; /* Get rid of sdpcm header + head_padding */ PKTPULL(osh, pkt, data_offset); DHD_INFO(("%s data_offset %d, PKTLEN %d\n", __FUNCTION__, data_offset, PKTLEN(osh, pkt))); return BCME_OK; } static int dhdsdio_txpkt(dhd_bus_t *bus, uint chan, void** pkts, int num_pkt, bool free_pkt) { int i; int ret = 0; osl_t *osh; bcmsdh_info_t *sdh; void *pkt = NULL; void *pkt_chain; int total_len = 0; void *head_pkt = NULL; void *prev_pkt = NULL; int pad_pkt_len = 0; int new_pkt_num = 0; void *new_pkts[MAX_TX_PKTCHAIN_CNT]; bool wlfc_enabled = FALSE; if (bus->dhd->dongle_reset) return BCME_NOTREADY; if (num_pkt <= 0) return BCME_BADARG; sdh = bus->sdh; osh = bus->dhd->osh; /* init new_pkts[0] to make some compiler happy, not necessary as we check new_pkt_num */ new_pkts[0] = NULL; for (i = 0; i < num_pkt; i++) { int pkt_len; bool last_pkt; void *new_pkt = NULL; pkt = pkts[i]; ASSERT(pkt); last_pkt = (i == num_pkt - 1); pkt_len = dhdsdio_txpkt_preprocess(bus, pkt, chan, bus->tx_seq + i, total_len, last_pkt, &pad_pkt_len, &new_pkt); if (pkt_len <= 0) goto done; if (new_pkt) { pkt = new_pkt; new_pkts[new_pkt_num++] = new_pkt; } total_len += pkt_len; PKTSETNEXT(osh, pkt, NULL); /* insert the packet into the list */ head_pkt ? PKTSETNEXT(osh, prev_pkt, pkt) : (head_pkt = pkt); prev_pkt = pkt; } /* Update the HW frame tag (total length) in the first pkt of the glom */ if (bus->txglom_enable) { uint8 *frame; total_len += pad_pkt_len; frame = (uint8*)PKTDATA(osh, head_pkt); *(uint16*)frame = (uint16)htol16(total_len); *(((uint16*)frame) + 1) = (uint16)htol16(~total_len); } #ifdef DHDENABLE_TAILPAD /* if a padding packet if needed, insert it to the end of the link list */ if (pad_pkt_len) { PKTSETLEN(osh, bus->pad_pkt, pad_pkt_len); PKTSETNEXT(osh, pkt, bus->pad_pkt); } #endif /* DHDENABLE_TAILPAD */ /* dhd_bcmsdh_send_buf ignores the buffer pointer if he packet * parameter is not NULL, for non packet chian we pass NULL pkt pointer * so it will take the aligned length and buffer pointer. */ pkt_chain = PKTNEXT(osh, head_pkt) ? head_pkt : NULL; ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, PKTDATA(osh, head_pkt), total_len, pkt_chain, NULL, NULL, TXRETRIES); if (ret == BCME_OK) bus->tx_seq = (bus->tx_seq + num_pkt) % SDPCM_SEQUENCE_WRAP; /* if a padding packet was needed, remove it from the link list as it not a data pkt */ if (pad_pkt_len && pkt) PKTSETNEXT(osh, pkt, NULL); done: pkt = head_pkt; while (pkt) { void *pkt_next = PKTNEXT(osh, pkt); PKTSETNEXT(osh, pkt, NULL); dhdsdio_txpkt_postprocess(bus, pkt); pkt = pkt_next; } /* new packets might be allocated due to insufficient room for padding, but we * still have to indicate the original packets to upper layer */ for (i = 0; i < num_pkt; i++) { pkt = pkts[i]; wlfc_enabled = FALSE; #ifdef PROP_TXSTATUS if (DHD_PKTTAG_WLFCPKT(PKTTAG(pkt))) { wlfc_enabled = (dhd_wlfc_txcomplete(bus->dhd, pkt, ret == 0) != WLFC_UNSUPPORTED); } #endif /* PROP_TXSTATUS */ if (!wlfc_enabled) { PKTSETNEXT(osh, pkt, NULL); dhd_txcomplete(bus->dhd, pkt, ret != 0); if (free_pkt) PKTFREE(osh, pkt, TRUE); } } for (i = 0; i < new_pkt_num; i++) PKTFREE(osh, new_pkts[i], TRUE); return ret; } static uint dhdsdio_sendfromq(dhd_bus_t *bus, uint maxframes) { uint cnt = 0; uint8 tx_prec_map; uint16 txpktqlen = 0; uint32 intstatus = 0; uint retries = 0; osl_t *osh; uint datalen = 0; dhd_pub_t *dhd = bus->dhd; sdpcmd_regs_t *regs = bus->regs; #ifdef DHD_LOSSLESS_ROAMING uint8 *pktdata; struct ether_header *eh; #ifdef BDC struct bdc_header *bdc_header; uint8 data_offset; #endif #endif /* DHD_LOSSLESS_ROAMING */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } osh = dhd->osh; tx_prec_map = ~bus->flowcontrol; #ifdef DHD_LOSSLESS_ROAMING tx_prec_map &= dhd->dequeue_prec_map; #endif /* DHD_LOSSLESS_ROAMING */ for (cnt = 0; (cnt < maxframes) && DATAOK(bus);) { int i; int num_pkt = 1; void *pkts[MAX_TX_PKTCHAIN_CNT]; int prec_out; dhd_os_sdlock_txq(bus->dhd); if (bus->txglom_enable) { uint32 glomlimit = (uint32)bus->txglomsize; #if defined(BCMSDIOH_STD) if (bus->blocksize == 64) { glomlimit = MIN((uint32)bus->txglomsize, BLK_64_MAXTXGLOM); } #endif /* BCMSDIOH_STD */ num_pkt = MIN((uint32)DATABUFCNT(bus), glomlimit); num_pkt = MIN(num_pkt, ARRAYSIZE(pkts)); } num_pkt = MIN(num_pkt, pktq_mlen(&bus->txq, tx_prec_map)); for (i = 0; i < num_pkt; i++) { pkts[i] = pktq_mdeq(&bus->txq, tx_prec_map, &prec_out); if (!pkts[i]) { DHD_ERROR(("%s: pktq_mlen non-zero when no pkt\n", __FUNCTION__)); ASSERT(0); break; } #ifdef DHD_LOSSLESS_ROAMING pktdata = (uint8 *)PKTDATA(osh, pkts[i]); #ifdef BDC /* Skip BDC header */ bdc_header = (struct bdc_header *)pktdata; data_offset = bdc_header->dataOffset; pktdata += BDC_HEADER_LEN + (data_offset << 2); #endif eh = (struct ether_header *)pktdata; if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) { uint8 prio = (uint8)PKTPRIO(pkts[i]); /* Restore to original priority for 802.1X packet */ if (prio == PRIO_8021D_NC) { PKTSETPRIO(pkts[i], dhd->prio_8021x); #ifdef BDC /* Restore to original priority in BDC header */ bdc_header->priority = (dhd->prio_8021x & BDC_PRIORITY_MASK); #endif } } #endif /* DHD_LOSSLESS_ROAMING */ PKTORPHAN(pkts[i]); datalen += PKTLEN(osh, pkts[i]); } dhd_os_sdunlock_txq(bus->dhd); if (i == 0) break; if (dhdsdio_txpkt(bus, SDPCM_DATA_CHANNEL, pkts, i, TRUE) != BCME_OK) dhd->tx_errors++; else dhd->dstats.tx_bytes += datalen; cnt += i; /* In poll mode, need to check for other events */ if (!bus->intr && cnt) { /* Check device status, signal pending interrupt */ R_SDREG(intstatus, ®s->intstatus, retries); bus->f2txdata++; if (bcmsdh_regfail(bus->sdh)) break; if (intstatus & bus->hostintmask) bus->ipend = TRUE; } } dhd_os_sdlock_txq(bus->dhd); txpktqlen = pktq_n_pkts_tot(&bus->txq); dhd_os_sdunlock_txq(bus->dhd); /* Do flow-control if needed */ if (dhd->up && (dhd->busstate == DHD_BUS_DATA) && (txpktqlen < FCLOW)) { bool wlfc_enabled = FALSE; #ifdef PROP_TXSTATUS wlfc_enabled = (dhd_wlfc_flowcontrol(dhd, OFF, TRUE) != WLFC_UNSUPPORTED); #endif if (!wlfc_enabled && dhd_doflow && dhd->txoff) { dhd_txflowcontrol(dhd, ALL_INTERFACES, OFF); } } return cnt; } static void dhdsdio_sendpendctl(dhd_bus_t *bus) { bcmsdh_info_t *sdh = bus->sdh; int ret; uint8* frame_seq = bus->ctrl_frame_buf + SDPCM_FRAMETAG_LEN; if (bus->txglom_enable) frame_seq += SDPCM_HWEXT_LEN; if (*frame_seq != bus->tx_seq) { DHD_INFO(("%s IOCTL frame seq lag detected!" " frm_seq:%d != bus->tx_seq:%d, corrected\n", __FUNCTION__, *frame_seq, bus->tx_seq)); *frame_seq = bus->tx_seq; } ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, (uint8 *)bus->ctrl_frame_buf, (uint32)bus->ctrl_frame_len, NULL, NULL, NULL, 1); if (ret == BCME_OK) bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; bus->ctrl_frame_stat = FALSE; dhd_wait_event_wakeup(bus->dhd); } int dhd_bus_txctl(struct dhd_bus *bus, uchar *msg, uint msglen) { static int err_nodevice = 0; uint8 *frame; uint16 len; uint32 swheader; uint8 doff = 0; int ret = -1; uint8 sdpcm_hdrlen = bus->txglom_enable ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->dongle_reset) return -EIO; /* Back the pointer to make a room for bus header */ frame = msg - sdpcm_hdrlen; len = (msglen += sdpcm_hdrlen); /* Add alignment padding (optional for ctl frames) */ if (dhd_alignctl) { if ((doff = ((uintptr)frame % DHD_SDALIGN))) { frame -= doff; len += doff; msglen += doff; bzero(frame, doff + sdpcm_hdrlen); } ASSERT(doff < DHD_SDALIGN); } doff += sdpcm_hdrlen; #ifndef BCMSPI /* Round send length to next SDIO block */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { uint16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % DHD_SDALIGN) { len += DHD_SDALIGN - (len % DHD_SDALIGN); } #endif /* BCMSPI */ /* Satisfy length-alignment requirements */ if (forcealign && (len & (ALIGNMENT - 1))) len = ROUNDUP(len, ALIGNMENT); ASSERT(ISALIGNED((uintptr)frame, 2)); /* Need to lock here to protect txseq and SDIO tx calls */ dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ *(uint16*)frame = htol16((uint16)msglen); *(((uint16*)frame) + 1) = htol16(~msglen); if (bus->txglom_enable) { uint32 hwheader1, hwheader2; /* Software tag: channel, sequence number, data offset */ swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN + SDPCM_HWEXT_LEN); htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN + SDPCM_HWEXT_LEN + sizeof(swheader)); hwheader1 = (msglen - SDPCM_FRAMETAG_LEN) | (1 << 24); hwheader2 = (len - (msglen)) << 16; htol32_ua_store(hwheader1, frame + SDPCM_FRAMETAG_LEN); htol32_ua_store(hwheader2, frame + SDPCM_FRAMETAG_LEN + 4); *(uint16*)frame = htol16(len); *(((uint16*)frame) + 1) = htol16(~(len)); } else { /* Software tag: channel, sequence number, data offset */ swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN); htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); } if (!TXCTLOK(bus)) { DHD_INFO(("%s: No bus credit bus->tx_max %d, bus->tx_seq %d\n", __FUNCTION__, bus->tx_max, bus->tx_seq)); bus->ctrl_frame_stat = TRUE; /* Send from dpc */ bus->ctrl_frame_buf = frame; bus->ctrl_frame_len = len; #if defined(NDIS) dhd_os_sdunlock(bus->dhd); dhd_wait_for_event(bus->dhd, &bus->ctrl_frame_stat); dhd_os_sdlock(bus->dhd); #else if (!bus->dpc_sched) { bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } if (bus->ctrl_frame_stat) { dhd_wait_for_event(bus->dhd, &bus->ctrl_frame_stat); } #endif /* NDIS */ if (bus->ctrl_frame_stat == FALSE) { DHD_INFO(("%s: ctrl_frame_stat == FALSE\n", __FUNCTION__)); ret = 0; } else { bus->dhd->txcnt_timeout++; if (!bus->dhd->hang_was_sent) { #ifdef CUSTOMER_HW4_DEBUG /* XXX Add Debug code for find root cause from CSP:565333 */ uint32 status, retry = 0; R_SDREG(status, &bus->regs->intstatus, retry); DHD_TRACE_HW4(("%s: txcnt_timeout, INT status=0x%08X\n", __FUNCTION__, status)); DHD_TRACE_HW4(("%s : tx_max : %d, tx_seq : %d, clkstate : %d \n", __FUNCTION__, bus->tx_max, bus->tx_seq, bus->clkstate)); #endif /* CUSTOMER_HW4_DEBUG */ DHD_ERROR(("%s: ctrl_frame_stat == TRUE txcnt_timeout=%d\n", __FUNCTION__, bus->dhd->txcnt_timeout)); } #ifdef DHD_FW_COREDUMP /* Collect socram dump */ if ((bus->dhd->memdump_enabled) && (bus->dhd->txcnt_timeout >= MAX_CNTL_TX_TIMEOUT)) { /* collect core dump */ bus->dhd->memdump_type = DUMP_TYPE_RESUMED_ON_TIMEOUT_TX; dhd_os_sdunlock(bus->dhd); dhd_bus_mem_dump(bus->dhd); dhd_os_sdlock(bus->dhd); } #endif /* DHD_FW_COREDUMP */ ret = -1; bus->ctrl_frame_stat = FALSE; goto done; } } bus->dhd->txcnt_timeout = 0; bus->ctrl_frame_stat = TRUE; if (ret == -1) { #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_CTL_ON()) { prhex("Tx Frame", frame, len); } else if (DHD_HDRS_ON()) { prhex("TxHdr", frame, MIN(len, 16)); } #endif ret = dhd_bcmsdh_send_buffer(bus, frame, len); } bus->ctrl_frame_stat = FALSE; done: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } dhd_os_sdunlock(bus->dhd); /* XXX Need to validate return code (ranges) */ if (ret) bus->dhd->tx_ctlerrs++; else bus->dhd->tx_ctlpkts++; if (bus->dhd->txcnt_timeout >= MAX_CNTL_TX_TIMEOUT) { #ifdef DHD_PM_CONTROL_FROM_FILE if (g_pm_control == TRUE) { return -BCME_ERROR; } else { return -ETIMEDOUT; } #else return -ETIMEDOUT; #endif /* DHD_PM_CONTROL_FROM_FILE */ } if (ret == BCME_NODEVICE) err_nodevice++; else err_nodevice = 0; return ret ? err_nodevice >= ERROR_BCME_NODEVICE_MAX ? -ETIMEDOUT : -EIO : 0; } int dhd_bus_rxctl(struct dhd_bus *bus, uchar *msg, uint msglen) { int timeleft; uint rxlen = 0; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->dongle_reset) return -EIO; /* Wait until control frame is available */ timeleft = dhd_os_ioctl_resp_wait(bus->dhd, &bus->rxlen); dhd_os_sdlock(bus->dhd); rxlen = bus->rxlen; bcopy(bus->rxctl, msg, MIN(msglen, rxlen)); bus->rxlen = 0; dhd_os_sdunlock(bus->dhd); if (rxlen) { DHD_CTL(("%s: resumed on rxctl frame, got %d expected %d\n", __FUNCTION__, rxlen, msglen)); } else { if (timeleft == 0) { #ifdef DHD_DEBUG uint32 status, retry = 0; R_SDREG(status, &bus->regs->intstatus, retry); DHD_ERROR(("%s: resumed on timeout, INT status=0x%08X\n", __FUNCTION__, status)); #else DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__)); #endif /* DHD_DEBUG */ if (!bus->dhd->dongle_trap_occured) { #ifdef DHD_FW_COREDUMP bus->dhd->memdump_type = DUMP_TYPE_RESUMED_ON_TIMEOUT; #endif /* DHD_FW_COREDUMP */ dhd_os_sdlock(bus->dhd); dhdsdio_checkdied(bus, NULL, 0); dhd_os_sdunlock(bus->dhd); } } else { DHD_CTL(("%s: resumed for unknown reason?\n", __FUNCTION__)); if (!bus->dhd->dongle_trap_occured) { #ifdef DHD_FW_COREDUMP bus->dhd->memdump_type = DUMP_TYPE_RESUMED_UNKNOWN; #endif /* DHD_FW_COREDUMP */ dhd_os_sdlock(bus->dhd); dhdsdio_checkdied(bus, NULL, 0); dhd_os_sdunlock(bus->dhd); } } #ifdef DHD_FW_COREDUMP /* Dump the ram image */ if (bus->dhd->memdump_enabled && !bus->dhd->dongle_trap_occured) dhdsdio_mem_dump(bus); #endif /* DHD_FW_COREDUMP */ } if (timeleft == 0) { if (rxlen == 0) bus->dhd->rxcnt_timeout++; DHD_ERROR(("%s: rxcnt_timeout=%d, rxlen=%d\n", __FUNCTION__, bus->dhd->rxcnt_timeout, rxlen)); #ifdef DHD_FW_COREDUMP /* collect socram dump */ if (bus->dhd->memdump_enabled) { bus->dhd->memdump_type = DUMP_TYPE_RESUMED_ON_TIMEOUT_RX; dhd_bus_mem_dump(bus->dhd); } #endif /* DHD_FW_COREDUMP */ } else { bus->dhd->rxcnt_timeout = 0; } if (rxlen) bus->dhd->rx_ctlpkts++; else bus->dhd->rx_ctlerrs++; if (bus->dhd->rxcnt_timeout >= MAX_CNTL_RX_TIMEOUT) { #ifdef DHD_PM_CONTROL_FROM_FILE if (g_pm_control == TRUE) { return -BCME_ERROR; } else { return -ETIMEDOUT; } #else return -ETIMEDOUT; #endif /* DHD_PM_CONTROL_FROM_FILE */ } if (bus->dhd->dongle_trap_occured) return -EREMOTEIO; return rxlen ? (int)rxlen : -EIO; /* XXX Returns EIO error */ } /* IOVar table */ enum { IOV_INTR = 1, IOV_POLLRATE, IOV_SDREG, IOV_SBREG, IOV_SDCIS, IOV_RAMSIZE, IOV_RAMSTART, #ifdef DHD_DEBUG IOV_CHECKDIED, IOV_SERIALCONS, #endif /* DHD_DEBUG */ IOV_SET_DOWNLOAD_STATE, IOV_SOCRAM_STATE, IOV_FORCEEVEN, IOV_SDIOD_DRIVE, IOV_READAHEAD, IOV_SDRXCHAIN, IOV_ALIGNCTL, IOV_SDALIGN, IOV_DEVRESET, IOV_CPU, #if defined(USE_SDIOFIFO_IOVAR) IOV_WATERMARK, IOV_MESBUSYCTRL, #endif /* USE_SDIOFIFO_IOVAR */ #ifdef SDTEST IOV_PKTGEN, IOV_EXTLOOP, #endif /* SDTEST */ IOV_SPROM, IOV_TXBOUND, IOV_RXBOUND, IOV_TXMINMAX, IOV_IDLETIME, IOV_IDLECLOCK, IOV_SD1IDLE, IOV_SLEEP, IOV_DONGLEISOLATION, IOV_KSO, IOV_DEVSLEEP, IOV_DEVCAP, IOV_VARS, #ifdef SOFTAP IOV_FWPATH, #endif IOV_TXGLOMSIZE, IOV_TXGLOMMODE, IOV_HANGREPORT, IOV_TXINRX_THRES, IOV_SDIO_SUSPEND #if defined(DEBUGGER) || defined(DHD_DSCOPE) IOV_GDB_SERVER, /**< starts gdb server on given interface */ #endif /* DEBUGGER || DHD_DSCOPE */ }; const bcm_iovar_t dhdsdio_iovars[] = { {"intr", IOV_INTR, 0, 0, IOVT_BOOL, 0 }, {"sleep", IOV_SLEEP, 0, 0, IOVT_BOOL, 0 }, {"pollrate", IOV_POLLRATE, 0, 0, IOVT_UINT32, 0 }, {"idletime", IOV_IDLETIME, 0, 0, IOVT_INT32, 0 }, {"idleclock", IOV_IDLECLOCK, 0, 0, IOVT_INT32, 0 }, {"sd1idle", IOV_SD1IDLE, 0, 0, IOVT_BOOL, 0 }, {"ramsize", IOV_RAMSIZE, 0, 0, IOVT_UINT32, 0 }, {"ramstart", IOV_RAMSTART, 0, 0, IOVT_UINT32, 0 }, {"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, 0, IOVT_BOOL, 0 }, {"socram_state", IOV_SOCRAM_STATE, 0, 0, IOVT_BOOL, 0 }, {"vars", IOV_VARS, 0, 0, IOVT_BUFFER, 0 }, {"sdiod_drive", IOV_SDIOD_DRIVE, 0, 0, IOVT_UINT32, 0 }, {"readahead", IOV_READAHEAD, 0, 0, IOVT_BOOL, 0 }, {"sdrxchain", IOV_SDRXCHAIN, 0, 0, IOVT_BOOL, 0 }, {"alignctl", IOV_ALIGNCTL, 0, 0, IOVT_BOOL, 0 }, {"sdalign", IOV_SDALIGN, 0, 0, IOVT_BOOL, 0 }, {"devreset", IOV_DEVRESET, 0, 0, IOVT_BOOL, 0 }, #ifdef DHD_DEBUG {"sdreg", IOV_SDREG, 0, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sbreg", IOV_SBREG, 0, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sd_cis", IOV_SDCIS, 0, 0, IOVT_BUFFER, DHD_IOCTL_MAXLEN }, {"forcealign", IOV_FORCEEVEN, 0, 0, IOVT_BOOL, 0 }, {"txbound", IOV_TXBOUND, 0, 0, IOVT_UINT32, 0 }, {"rxbound", IOV_RXBOUND, 0, 0, IOVT_UINT32, 0 }, {"txminmax", IOV_TXMINMAX, 0, 0, IOVT_UINT32, 0 }, {"cpu", IOV_CPU, 0, 0, IOVT_BOOL, 0 }, #ifdef DHD_DEBUG {"checkdied", IOV_CHECKDIED, 0, 0, IOVT_BUFFER, 0 }, {"serial", IOV_SERIALCONS, 0, 0, IOVT_UINT32, 0 }, #endif /* DHD_DEBUG */ #endif /* DHD_DEBUG */ #if defined(DHD_SPROM) {"sprom", IOV_SPROM, 0, 0, IOVT_BUFFER, 2 * sizeof(int) }, #endif #ifdef SDTEST {"extloop", IOV_EXTLOOP, 0, 0, IOVT_BOOL, 0 }, {"pktgen", IOV_PKTGEN, 0, 0, IOVT_BUFFER, sizeof(dhd_pktgen_t) }, #endif /* SDTEST */ #if defined(USE_SDIOFIFO_IOVAR) {"watermark", IOV_WATERMARK, 0, 0, IOVT_UINT32, 0 }, {"mesbusyctrl", IOV_MESBUSYCTRL, 0, 0, IOVT_UINT32, 0 }, #endif /* USE_SDIOFIFO_IOVAR */ {"devcap", IOV_DEVCAP, 0, 0, IOVT_UINT32, 0 }, {"dngl_isolation", IOV_DONGLEISOLATION, 0, 0, IOVT_UINT32, 0 }, {"kso", IOV_KSO, 0, 0, IOVT_UINT32, 0 }, {"devsleep", IOV_DEVSLEEP, 0, 0, IOVT_UINT32, 0 }, #ifdef SOFTAP {"fwpath", IOV_FWPATH, 0, 0, IOVT_BUFFER, 0 }, #endif {"txglomsize", IOV_TXGLOMSIZE, 0, 0, IOVT_UINT32, 0 }, {"fw_hang_report", IOV_HANGREPORT, 0, 0, IOVT_BOOL, 0 }, {"txinrx_thres", IOV_TXINRX_THRES, 0, 0, IOVT_INT32, 0 }, {"sdio_suspend", IOV_SDIO_SUSPEND, 0, 0, IOVT_UINT32, 0 }, #if defined(DEBUGGER) || defined(DHD_DSCOPE) {"gdb_server", IOV_GDB_SERVER, 0, 0, IOVT_UINT32, 0 }, #endif /* DEBUGGER || DHD_DSCOPE */ {NULL, 0, 0, 0, 0, 0 } }; static void dhd_dump_pct(struct bcmstrbuf *strbuf, char *desc, uint num, uint div) { uint q1, q2; if (!div) { bcm_bprintf(strbuf, "%s N/A", desc); } else { q1 = num / div; q2 = (100 * (num - (q1 * div))) / div; bcm_bprintf(strbuf, "%s %d.%02d", desc, q1, q2); } } void dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf) { dhd_bus_t *bus = dhdp->bus; #if defined(DHD_WAKE_STATUS) && defined(DHD_WAKE_EVENT_STATUS) int i; #endif bcm_bprintf(strbuf, "Bus SDIO structure:\n"); bcm_bprintf(strbuf, "hostintmask 0x%08x intstatus 0x%08x sdpcm_ver %d\n", bus->hostintmask, bus->intstatus, bus->sdpcm_ver); bcm_bprintf(strbuf, "fcstate %d qlen %u tx_seq %d, max %d, rxskip %d rxlen %u rx_seq %d\n", bus->fcstate, pktq_n_pkts_tot(&bus->txq), bus->tx_seq, bus->tx_max, bus->rxskip, bus->rxlen, bus->rx_seq); bcm_bprintf(strbuf, "intr %d intrcount %u lastintrs %u spurious %u\n", bus->intr, bus->intrcount, bus->lastintrs, bus->spurious); #ifdef DHD_WAKE_STATUS bcm_bprintf(strbuf, "wake %u rxwake %u readctrlwake %u\n", bcmsdh_get_total_wake(bus->sdh), bus->wake_counts.rxwake, bus->wake_counts.rcwake); #ifdef DHD_WAKE_RX_STATUS bcm_bprintf(strbuf, " unicast %u multicast %u broadcast %u arp %u\n", bus->wake_counts.rx_ucast, bus->wake_counts.rx_mcast, bus->wake_counts.rx_bcast, bus->wake_counts.rx_arp); bcm_bprintf(strbuf, " multi4 %u multi6 %u icmp %u icmp6 %u multiother %u\n", bus->wake_counts.rx_multi_ipv4, bus->wake_counts.rx_multi_ipv6, bus->wake_counts.rx_icmp, bus->wake_counts.rx_icmpv6, bus->wake_counts.rx_multi_other); bcm_bprintf(strbuf, " icmp6_ra %u, icmp6_na %u, icmp6_ns %u\n", bus->wake_counts.rx_icmpv6_ra, bus->wake_counts.rx_icmpv6_na, bus->wake_counts.rx_icmpv6_ns); #endif /* DHD_WAKE_RX_STATUS */ #ifdef DHD_WAKE_EVENT_STATUS for (i = 0; i < WLC_E_LAST; i++) if (bus->wake_counts.rc_event[i] != 0) bcm_bprintf(strbuf, " %s = %u\n", bcmevent_get_name(i), bus->wake_counts.rc_event[i]); bcm_bprintf(strbuf, "\n"); #endif /* DHD_WAKE_EVENT_STATUS */ #endif /* DHD_WAKE_STATUS */ bcm_bprintf(strbuf, "pollrate %u pollcnt %u regfails %u\n", bus->pollrate, bus->pollcnt, bus->regfails); bcm_bprintf(strbuf, "\nAdditional counters:\n"); #ifdef DHDENABLE_TAILPAD bcm_bprintf(strbuf, "tx_tailpad_chain %u tx_tailpad_pktget %u\n", bus->tx_tailpad_chain, bus->tx_tailpad_pktget); #endif /* DHDENABLE_TAILPAD */ bcm_bprintf(strbuf, "tx_sderrs %u fcqueued %u rxrtx %u rx_toolong %u rxc_errors %u\n", bus->tx_sderrs, bus->fcqueued, bus->rxrtx, bus->rx_toolong, bus->rxc_errors); bcm_bprintf(strbuf, "rx_hdrfail %u badhdr %u badseq %u\n", bus->rx_hdrfail, bus->rx_badhdr, bus->rx_badseq); bcm_bprintf(strbuf, "fc_rcvd %u, fc_xoff %u, fc_xon %u\n", bus->fc_rcvd, bus->fc_xoff, bus->fc_xon); bcm_bprintf(strbuf, "rxglomfail %u, rxglomframes %u, rxglompkts %u\n", bus->rxglomfail, bus->rxglomframes, bus->rxglompkts); bcm_bprintf(strbuf, "f2rx (hdrs/data) %u (%u/%u), f2tx %u f1regs %u\n", (bus->f2rxhdrs + bus->f2rxdata), bus->f2rxhdrs, bus->f2rxdata, bus->f2txdata, bus->f1regdata); { dhd_dump_pct(strbuf, "\nRx: pkts/f2rd", bus->dhd->rx_packets, (bus->f2rxhdrs + bus->f2rxdata)); dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->rx_packets, bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->rx_packets, (bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->rx_packets, bus->intrcount); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Rx: glom pct", (100 * bus->rxglompkts), bus->dhd->rx_packets); dhd_dump_pct(strbuf, ", pkts/glom", bus->rxglompkts, bus->rxglomframes); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Tx: pkts/f2wr", bus->dhd->tx_packets, bus->f2txdata); dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->tx_packets, bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->tx_packets, (bus->f2txdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->tx_packets, bus->intrcount); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Total: pkts/f2rw", (bus->dhd->tx_packets + bus->dhd->rx_packets), (bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata)); dhd_dump_pct(strbuf, ", pkts/f1sd", (bus->dhd->tx_packets + bus->dhd->rx_packets), bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", (bus->dhd->tx_packets + bus->dhd->rx_packets), (bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", (bus->dhd->tx_packets + bus->dhd->rx_packets), bus->intrcount); bcm_bprintf(strbuf, "\n\n"); } #ifdef SDTEST /* XXX Add new stats, include pktq len */ if (bus->pktgen_count) { bcm_bprintf(strbuf, "pktgen config and count:\n"); bcm_bprintf(strbuf, "freq %u count %u print %u total %u min %u len %u\n", bus->pktgen_freq, bus->pktgen_count, bus->pktgen_print, bus->pktgen_total, bus->pktgen_minlen, bus->pktgen_maxlen); bcm_bprintf(strbuf, "send attempts %u rcvd %u fail %u\n", bus->pktgen_sent, bus->pktgen_rcvd, bus->pktgen_fail); } #endif /* SDTEST */ #ifdef DHD_DEBUG bcm_bprintf(strbuf, "dpc_sched %d host interrupt%spending\n", bus->dpc_sched, (bcmsdh_intr_pending(bus->sdh) ? " " : " not ")); bcm_bprintf(strbuf, "blocksize %u roundup %u\n", bus->blocksize, bus->roundup); #endif /* DHD_DEBUG */ bcm_bprintf(strbuf, "clkstate %d activity %d idletime %d idlecount %d sleeping %d\n", bus->clkstate, bus->activity, bus->idletime, bus->idlecount, bus->sleeping); } void dhd_bus_clearcounts(dhd_pub_t *dhdp) { dhd_bus_t *bus = (dhd_bus_t *)dhdp->bus; bus->intrcount = bus->lastintrs = bus->spurious = bus->regfails = 0; bus->rxrtx = bus->rx_toolong = bus->rxc_errors = 0; bus->rx_hdrfail = bus->rx_badhdr = bus->rx_badseq = 0; #ifdef DHDENABLE_TAILPAD bus->tx_tailpad_chain = bus->tx_tailpad_pktget = 0; #endif /* DHDENABLE_TAILPAD */ bus->tx_sderrs = bus->fc_rcvd = bus->fc_xoff = bus->fc_xon = 0; bus->rxglomfail = bus->rxglomframes = bus->rxglompkts = 0; bus->f2rxhdrs = bus->f2rxdata = bus->f2txdata = bus->f1regdata = 0; } #ifdef SDTEST static int dhdsdio_pktgen_get(dhd_bus_t *bus, uint8 *arg) { dhd_pktgen_t pktgen; pktgen.version = DHD_PKTGEN_VERSION; pktgen.freq = bus->pktgen_freq; pktgen.count = bus->pktgen_count; pktgen.print = bus->pktgen_print; pktgen.total = bus->pktgen_total; pktgen.minlen = bus->pktgen_minlen; pktgen.maxlen = bus->pktgen_maxlen; pktgen.numsent = bus->pktgen_sent; pktgen.numrcvd = bus->pktgen_rcvd; pktgen.numfail = bus->pktgen_fail; pktgen.mode = bus->pktgen_mode; pktgen.stop = bus->pktgen_stop; bcopy(&pktgen, arg, sizeof(pktgen)); return 0; } static int dhdsdio_pktgen_set(dhd_bus_t *bus, uint8 *arg) { dhd_pktgen_t pktgen; uint oldcnt, oldmode; bcopy(arg, &pktgen, sizeof(pktgen)); if (pktgen.version != DHD_PKTGEN_VERSION) return BCME_BADARG; oldcnt = bus->pktgen_count; oldmode = bus->pktgen_mode; bus->pktgen_freq = pktgen.freq; bus->pktgen_count = pktgen.count; bus->pktgen_print = pktgen.print; bus->pktgen_total = pktgen.total; bus->pktgen_minlen = pktgen.minlen; bus->pktgen_maxlen = pktgen.maxlen; bus->pktgen_mode = pktgen.mode; bus->pktgen_stop = pktgen.stop; bus->pktgen_tick = bus->pktgen_ptick = 0; #if defined(LINUX) bus->pktgen_prev_time = jiffies; #endif /* LINUX */ bus->pktgen_len = MAX(bus->pktgen_len, bus->pktgen_minlen); bus->pktgen_len = MIN(bus->pktgen_len, bus->pktgen_maxlen); /* Clear counts for a new pktgen (mode change, or was stopped) */ if (bus->pktgen_count && (!oldcnt || oldmode != bus->pktgen_mode)) { bus->pktgen_sent = bus->pktgen_prev_sent = bus->pktgen_rcvd = 0; bus->pktgen_prev_rcvd = bus->pktgen_fail = 0; } return 0; } #endif /* SDTEST */ static int dhdsdio_membytes(dhd_bus_t *bus, bool write, uint32 address, uint8 *data, uint size) { int bcmerror = 0; uint32 sdaddr; uint dsize; /* In remap mode, adjust address beyond socram and redirect * to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize * is not backplane accessible */ if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address)) { address -= bus->orig_ramsize; address += SOCDEVRAM_BP_ADDR; } /* Determine initial transfer parameters */ sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK; if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK) dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr); else dsize = size; /* Set the backplane window to include the start address */ if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) { DHD_ERROR(("%s: window change failed\n", __FUNCTION__)); goto xfer_done; } /* Do the transfer(s) */ while (size) { DHD_INFO(("%s: %s %d bytes at offset 0x%08x in window 0x%08x\n", __FUNCTION__, (write ? "write" : "read"), dsize, sdaddr, (address & SBSDIO_SBWINDOW_MASK))); if ((bcmerror = bcmsdh_rwdata(bus->sdh, write, sdaddr, data, dsize))) { DHD_ERROR(("%s: membytes transfer failed\n", __FUNCTION__)); break; } /* Adjust for next transfer (if any) */ if ((size -= dsize)) { data += dsize; address += dsize; if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) { DHD_ERROR(("%s: window change failed\n", __FUNCTION__)); break; } sdaddr = 0; dsize = MIN(SBSDIO_SB_OFT_ADDR_LIMIT, size); } } xfer_done: /* Return the window to backplane enumeration space for core access */ if (dhdsdio_set_siaddr_window(bus, bcmsdh_cur_sbwad(bus->sdh))) { DHD_ERROR(("%s: FAILED to set window back to 0x%x\n", __FUNCTION__, bcmsdh_cur_sbwad(bus->sdh))); } return bcmerror; } static int dhdsdio_readshared(dhd_bus_t *bus, sdpcm_shared_t *sh) { uint32 addr; int rv, i; uint32 shaddr = 0; if (bus->sih == NULL) { if (bus->dhd && bus->dhd->dongle_reset) { DHD_ERROR(("%s: Dongle is in reset state\n", __FUNCTION__)); return BCME_NOTREADY; } else { ASSERT(bus->dhd); ASSERT(bus->sih); DHD_ERROR(("%s: The address of sih is invalid\n", __FUNCTION__)); return BCME_ERROR; } } /* * If SR is not implemented in 43430 FW we should not adjust shaddr * XXX Should be REMOVED after SR will be implemented in 43430 FW */ if ((CHIPID(bus->sih->chip) == BCM43430_CHIP_ID || CHIPID(bus->sih->chip) == BCM43018_CHIP_ID) && !dhdsdio_sr_cap(bus)) bus->srmemsize = 0; shaddr = bus->dongle_ram_base + bus->ramsize - 4; i = 0; do { /* Read last word in memory to determine address of sdpcm_shared structure */ if ((rv = dhdsdio_membytes(bus, FALSE, shaddr, (uint8 *)&addr, 4)) < 0) return rv; addr = ltoh32(addr); DHD_INFO(("sdpcm_shared address 0x%08X\n", addr)); /* * Check if addr is valid. * NVRAM length at the end of memory should have been overwritten. */ if (addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff)) { if ((bus->srmemsize > 0) && (i++ == 0)) { shaddr -= bus->srmemsize; } else { DHD_ERROR(("%s: address (0x%08x) of sdpcm_shared invalid\n", __FUNCTION__, addr)); return BCME_ERROR; } } else break; } while (i < 2); /* Read hndrte_shared structure */ if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)sh, sizeof(sdpcm_shared_t))) < 0) return rv; /* Endianness */ sh->flags = ltoh32(sh->flags); sh->trap_addr = ltoh32(sh->trap_addr); sh->assert_exp_addr = ltoh32(sh->assert_exp_addr); sh->assert_file_addr = ltoh32(sh->assert_file_addr); sh->assert_line = ltoh32(sh->assert_line); sh->console_addr = ltoh32(sh->console_addr); sh->msgtrace_addr = ltoh32(sh->msgtrace_addr); /* * XXX - Allow a sdpcm_shared_t version mismatch between dhd structure * version 1 and firmware structure version 3. * The sdpcm_shared_t stucture fields used in this function are in the * same positions in these two structure versions. * For some chips in the FALCON release, the dhd driver is from the * FALCON branch (sdpcm_shared_t structure version 1) and the firmware * comes from the ROMTERM3 branch (sdpcm_shared_t structure version 1). */ if ((sh->flags & SDPCM_SHARED_VERSION_MASK) == 3 && SDPCM_SHARED_VERSION == 1) return BCME_OK; if ((sh->flags & SDPCM_SHARED_VERSION_MASK) != SDPCM_SHARED_VERSION) { DHD_ERROR(("%s: sdpcm_shared version %d in dhd " "is different than sdpcm_shared version %d in dongle\n", __FUNCTION__, SDPCM_SHARED_VERSION, sh->flags & SDPCM_SHARED_VERSION_MASK)); return BCME_ERROR; } return BCME_OK; } #define CONSOLE_LINE_MAX 192 #ifdef DHD_DEBUG static int dhdsdio_readconsole(dhd_bus_t *bus) { dhd_console_t *c = &bus->console; uint8 line[CONSOLE_LINE_MAX], ch; uint32 n, idx, addr; int rv; /* Don't do anything until FWREADY updates console address */ if (bus->console_addr == 0) return 0; if (!KSO_ENAB(bus)) return 0; /* Read console log struct */ addr = bus->console_addr + OFFSETOF(hnd_cons_t, log); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0) return rv; /* Allocate console buffer (one time only) */ if (c->buf == NULL) { c->bufsize = ltoh32(c->log.buf_size); if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL) return BCME_NOMEM; } idx = ltoh32(c->log.idx); /* Protect against corrupt value */ if (idx > c->bufsize) return BCME_ERROR; /* Skip reading the console buffer if the index pointer has not moved */ if (idx == c->last) return BCME_OK; /* Read the console buffer */ /* xxx this could optimize and read only the portion of the buffer needed, but * it would also have to handle wrap-around. */ addr = ltoh32(c->log.buf); if ((rv = dhdsdio_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0) return rv; while (c->last != idx) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { if (c->last == idx) { /* This would output a partial line. Instead, back up * the buffer pointer and output this line next time around. */ if (c->last >= n) c->last -= n; else c->last = c->bufsize - n; goto break2; } ch = c->buf[c->last]; c->last = (c->last + 1) % c->bufsize; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; printf("CONSOLE: %s\n", line); #ifdef LOG_INTO_TCPDUMP dhd_sendup_log(bus->dhd, line, n); #endif /* LOG_INTO_TCPDUMP */ } } break2: return BCME_OK; } #endif /* DHD_DEBUG */ static int dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size) { int bcmerror = 0; uint msize = 512; char *mbuffer = NULL; char *console_buffer = NULL; uint maxstrlen = 256; char *str = NULL; sdpcm_shared_t l_sdpcm_shared; struct bcmstrbuf strbuf; uint32 console_ptr, console_size, console_index; uint8 line[CONSOLE_LINE_MAX], ch; uint32 n, i, addr; int rv; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (DHD_NOCHECKDIED_ON()) return 0; if (data == NULL) { /* * Called after a rx ctrl timeout. "data" is NULL. * allocate memory to trace the trap or assert. */ size = msize; mbuffer = data = MALLOC(bus->dhd->osh, msize); if (mbuffer == NULL) { DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize)); bcmerror = BCME_NOMEM; goto done; } } if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) { DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen)); bcmerror = BCME_NOMEM; goto done; } if ((bcmerror = dhdsdio_readshared(bus, &l_sdpcm_shared)) < 0) goto done; bcm_binit(&strbuf, data, size); bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n", l_sdpcm_shared.msgtrace_addr, l_sdpcm_shared.console_addr); if ((l_sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT) == 0) { /* NOTE: Misspelled assert is intentional - DO NOT FIX. * (Avoids conflict with real asserts for programmatic parsing of output.) */ bcm_bprintf(&strbuf, "Assrt not built in dongle\n"); } if ((l_sdpcm_shared.flags & (SDPCM_SHARED_ASSERT|SDPCM_SHARED_TRAP)) == 0) { /* NOTE: Misspelled assert is intentional - DO NOT FIX. * (Avoids conflict with real asserts for programmatic parsing of output.) */ bcm_bprintf(&strbuf, "No trap%s in dongle", (l_sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT) ?"/assrt" :""); } else { if (l_sdpcm_shared.flags & SDPCM_SHARED_ASSERT) { /* Download assert */ bcm_bprintf(&strbuf, "Dongle assert"); if (l_sdpcm_shared.assert_exp_addr != 0) { str[0] = '\0'; if ((bcmerror = dhdsdio_membytes(bus, FALSE, l_sdpcm_shared.assert_exp_addr, (uint8 *)str, maxstrlen)) < 0) goto done; str[maxstrlen - 1] = '\0'; bcm_bprintf(&strbuf, " expr \"%s\"", str); } if (l_sdpcm_shared.assert_file_addr != 0) { str[0] = '\0'; if ((bcmerror = dhdsdio_membytes(bus, FALSE, l_sdpcm_shared.assert_file_addr, (uint8 *)str, maxstrlen)) < 0) goto done; str[maxstrlen - 1] = '\0'; bcm_bprintf(&strbuf, " file \"%s\"", str); } bcm_bprintf(&strbuf, " line %d ", l_sdpcm_shared.assert_line); } if (l_sdpcm_shared.flags & SDPCM_SHARED_TRAP) { trap_t *tr = &bus->dhd->last_trap_info; bus->dhd->dongle_trap_occured = TRUE; if ((bcmerror = dhdsdio_membytes(bus, FALSE, l_sdpcm_shared.trap_addr, (uint8*)tr, sizeof(trap_t))) < 0) goto done; bus->dongle_trap_addr = ltoh32(l_sdpcm_shared.trap_addr); dhd_bus_dump_trap_info(bus, &strbuf); addr = l_sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_ptr, sizeof(console_ptr))) < 0) goto printbuf; addr = l_sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log.buf_size); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_size, sizeof(console_size))) < 0) goto printbuf; addr = l_sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log.idx); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_index, sizeof(console_index))) < 0) goto printbuf; console_ptr = ltoh32(console_ptr); console_size = ltoh32(console_size); console_index = ltoh32(console_index); if (console_size > CONSOLE_BUFFER_MAX || !(console_buffer = MALLOC(bus->dhd->osh, console_size))) goto printbuf; if ((rv = dhdsdio_membytes(bus, FALSE, console_ptr, (uint8 *)console_buffer, console_size)) < 0) goto printbuf; for (i = 0, n = 0; i < console_size; i += n + 1) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { ch = console_buffer[(console_index + i + n) % console_size]; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; /* Don't use DHD_ERROR macro since we print * a lot of information quickly. The macro * will truncate a lot of the printfs */ if (dhd_msg_level & DHD_ERROR_VAL) printf("CONSOLE: %s\n", line); } } } } printbuf: if (l_sdpcm_shared.flags & (SDPCM_SHARED_ASSERT | SDPCM_SHARED_TRAP)) { DHD_ERROR(("%s: %s\n", __FUNCTION__, strbuf.origbuf)); } #if defined(DHD_FW_COREDUMP) if (bus->dhd->memdump_enabled && (l_sdpcm_shared.flags & SDPCM_SHARED_TRAP)) { /* Mem dump to a file on device */ bus->dhd->memdump_type = DUMP_TYPE_DONGLE_TRAP; /* xxx this sdunlock has been put as a WAR here. We tried to come up * with a better solution but with the current structure of sdlocks it is very * unlikely to have a better fix for now. The better Rearch of sdio bus * locking has been put up as a cleanup activity and a thorough * code walkthrough is needed. */ dhd_os_sdunlock(bus->dhd); dhdsdio_mem_dump(bus); dhd_os_sdlock(bus->dhd); #ifdef NDIS /* Windows would like to crash and collect memory dump for analysis */ ASSERT(0 && "Dongle firmware died."); /* For free drivers ASSERT will not bugcheck */ KeBugCheckEx(__LINE__, 0, 0, 0, 0); #endif } #endif /* #if defined(DHD_FW_COREDUMP) */ done: if (mbuffer) MFREE(bus->dhd->osh, mbuffer, msize); if (str) MFREE(bus->dhd->osh, str, maxstrlen); if (console_buffer) MFREE(bus->dhd->osh, console_buffer, console_size); return bcmerror; } #if defined(DHD_FW_COREDUMP) int dhd_bus_mem_dump(dhd_pub_t *dhdp) { dhd_bus_t *bus = dhdp->bus; if (dhdp->busstate == DHD_BUS_SUSPEND) { DHD_ERROR(("%s: Bus is suspend so skip\n", __FUNCTION__)); return 0; } return dhdsdio_mem_dump(bus); } int dhd_bus_get_mem_dump(dhd_pub_t *dhdp) { if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return BCME_ERROR; } return dhdsdio_get_mem_dump(dhdp->bus); } static int dhdsdio_get_mem_dump(dhd_bus_t *bus) { int ret = BCME_ERROR; int size = bus->ramsize; /* Full mem size */ uint32 start = bus->dongle_ram_base; /* Start address */ uint read_size = 0; /* Read size of each iteration */ uint8 *p_buf = NULL, *databuf = NULL; #if defined(DHD_FILE_DUMP_EVENT) && defined(DHD_FW_COREDUMP) dhd_dongledump_status_t dump_status; #endif /* DHD_FILE_DUMP_EVENT && DHD_FW_COREDUMP */ /* Get full mem size */ p_buf = dhd_get_fwdump_buf(bus->dhd, size); if (!p_buf) { DHD_ERROR(("%s: Out of memory (%d bytes)\n", __FUNCTION__, size)); ret = BCME_ERROR; goto exit; } dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); #if defined(DHD_FILE_DUMP_EVENT) && defined(DHD_FW_COREDUMP) dump_status = dhd_get_dump_status(bus->dhd); if (dump_status != DUMP_IN_PROGRESS) { dhd_set_dump_status(bus->dhd, DUMP_IN_PROGRESS); } #endif /* DHD_FILE_DUMP_EVENT && DHD_FW_COREDUMP */ /* Read mem content */ DHD_ERROR(("Dump dongle memory\n")); databuf = p_buf; while (size) { read_size = MIN(MEMBLOCK, size); ret = dhdsdio_membytes(bus, FALSE, start, databuf, read_size); if (ret) { DHD_ERROR(("%s: Error membytes %d\n", __FUNCTION__, ret)); ret = BCME_ERROR; break; } /* Decrement size and increment start address */ size -= read_size; start += read_size; databuf += read_size; } if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } exit: #if defined(DHD_FILE_DUMP_EVENT) && defined(DHD_FW_COREDUMP) if (ret != BCME_OK) { dhd_set_dump_status(bus->dhd, DUMP_FAILURE); } #endif /* DHD_FILE_DUMP_EVENT && DHD_FW_COREDUMP */ dhd_os_sdunlock(bus->dhd); return ret; } static int dhdsdio_mem_dump(dhd_bus_t *bus) { dhd_pub_t *dhdp; int ret = BCME_ERROR; dhdp = bus->dhd; if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return ret; } ret = dhdsdio_get_mem_dump(bus); if (ret) { DHD_ERROR(("%s: failed to get mem dump, err=%d\n", __FUNCTION__, ret)); } else { /* schedule a work queue to perform actual memdump. * dhd_mem_dump() performs the job */ dhd_schedule_memdump(dhdp, dhdp->soc_ram, dhdp->soc_ram_length); /* soc_ram free handled in dhd_{free,clear} */ } return ret; } #endif /* DHD_FW_COREDUMP */ int dhd_socram_dump(dhd_bus_t * bus) { #if defined(DHD_FW_COREDUMP) return (dhdsdio_mem_dump(bus)); #else return -1; #endif } int dhdsdio_downloadvars(dhd_bus_t *bus, void *arg, int len) { int bcmerror = BCME_OK; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->up && 1) { bcmerror = BCME_NOTDOWN; goto err; } if (!len) { bcmerror = BCME_BUFTOOSHORT; goto err; } /* Free the old ones and replace with passed variables */ if (bus->vars) MFREE(bus->dhd->osh, bus->vars, bus->varsz); bus->vars = MALLOC(bus->dhd->osh, len); bus->varsz = bus->vars ? len : 0; if (bus->vars == NULL) { bcmerror = BCME_NOMEM; goto err; } /* Copy the passed variables, which should include the terminating double-null */ bcopy(arg, bus->vars, bus->varsz); err: return bcmerror; } #ifdef DHD_DEBUG static int dhd_serialconsole(dhd_bus_t *bus, bool set, bool enable, int *bcmerror) { int int_val; uint32 addr, data, uart_enab = 0; addr = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_addr); data = SI_ENUM_BASE(bus->sih) + OFFSETOF(chipcregs_t, chipcontrol_data); *bcmerror = 0; bcmsdh_reg_write(bus->sdh, addr, 4, 1); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } int_val = bcmsdh_reg_read(bus->sdh, data, 4); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } if (!set) return (int_val & uart_enab); if (enable) int_val |= uart_enab; else int_val &= ~uart_enab; bcmsdh_reg_write(bus->sdh, data, 4, int_val); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } return (int_val & uart_enab); } #endif static int dhdsdio_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name, void *params, uint plen, void *arg, uint len, uint val_size) { int bcmerror = 0; int32 int_val = 0; bool bool_val = 0; DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n", __FUNCTION__, actionid, name, params, plen, arg, len, val_size)); if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0) goto exit; if (plen >= sizeof(int_val)) bcopy(params, &int_val, sizeof(int_val)); bool_val = (int_val != 0) ? TRUE : FALSE; /* Some ioctls use the bus */ dhd_os_sdlock(bus->dhd); /* Check if dongle is in reset. If so, only allow DEVRESET iovars */ if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) || actionid == IOV_GVAL(IOV_DEVRESET))) { bcmerror = BCME_NOTREADY; goto exit; } /* * Special handling for keepSdioOn: New SDIO Wake-up Mechanism */ if ((vi->varid == IOV_KSO) && (IOV_ISSET(actionid))) { dhdsdio_clk_kso_iovar(bus, bool_val); goto exit; } else if ((vi->varid == IOV_DEVSLEEP) && (IOV_ISSET(actionid))) { { dhdsdio_clk_devsleep_iovar(bus, bool_val); if (!SLPAUTO_ENAB(bus) && (bool_val == FALSE) && (bus->ipend)) { DHD_ERROR(("INT pending in devsleep 1, dpc_sched: %d\n", bus->dpc_sched)); if (!bus->dpc_sched) { bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } } goto exit; } /* Handle sleep stuff before any clock mucking */ if (vi->varid == IOV_SLEEP) { if (IOV_ISSET(actionid)) { bcmerror = dhdsdio_bussleep(bus, bool_val); } else { int_val = (int32)bus->sleeping; bcopy(&int_val, arg, val_size); } goto exit; } /* Request clock to allow SDIO accesses */ if (!bus->dhd->dongle_reset) { BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); } switch (actionid) { case IOV_GVAL(IOV_INTR): int_val = (int32)bus->intr; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_INTR): bus->intr = bool_val; bus->intdis = FALSE; if (bus->dhd->up) { if (bus->intr) { DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__)); bcmsdh_intr_enable(bus->sdh); } else { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); bcmsdh_intr_disable(bus->sdh); } } break; case IOV_GVAL(IOV_POLLRATE): int_val = (int32)bus->pollrate; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_POLLRATE): bus->pollrate = (uint)int_val; bus->poll = (bus->pollrate != 0); break; case IOV_GVAL(IOV_IDLETIME): int_val = bus->idletime; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_IDLETIME): if ((int_val < 0) && (int_val != DHD_IDLE_IMMEDIATE)) { bcmerror = BCME_BADARG; } else { bus->idletime = int_val; } break; case IOV_GVAL(IOV_IDLECLOCK): int_val = (int32)bus->idleclock; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_IDLECLOCK): bus->idleclock = int_val; break; case IOV_GVAL(IOV_SD1IDLE): int_val = (int32)sd1idle; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SD1IDLE): sd1idle = bool_val; break; #ifdef DHD_DEBUG case IOV_GVAL(IOV_CHECKDIED): bcmerror = dhdsdio_checkdied(bus, arg, len); break; #endif /* DHD_DEBUG */ case IOV_GVAL(IOV_RAMSIZE): int_val = (int32)bus->ramsize; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_RAMSTART): int_val = (int32)bus->dongle_ram_base; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_SDIOD_DRIVE): int_val = (int32)dhd_sdiod_drive_strength; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDIOD_DRIVE): dhd_sdiod_drive_strength = int_val; si_sdiod_drive_strength_init(bus->sih, bus->dhd->osh, dhd_sdiod_drive_strength); break; case IOV_SVAL(IOV_SET_DOWNLOAD_STATE): bcmerror = dhdsdio_download_state(bus, bool_val); break; case IOV_SVAL(IOV_SOCRAM_STATE): bcmerror = dhdsdio_download_state(bus, bool_val); break; case IOV_SVAL(IOV_VARS): bcmerror = dhdsdio_downloadvars(bus, arg, len); break; case IOV_GVAL(IOV_READAHEAD): int_val = (int32)dhd_readahead; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_READAHEAD): if (bool_val && !dhd_readahead) bus->nextlen = 0; dhd_readahead = bool_val; break; case IOV_GVAL(IOV_SDRXCHAIN): int_val = (int32)bus->use_rxchain; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDRXCHAIN): if (bool_val && !bus->sd_rxchain) bcmerror = BCME_UNSUPPORTED; else bus->use_rxchain = bool_val; break; #ifndef BCMSPI case IOV_GVAL(IOV_ALIGNCTL): int_val = (int32)dhd_alignctl; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_ALIGNCTL): dhd_alignctl = bool_val; break; #endif /* BCMSPI */ case IOV_GVAL(IOV_SDALIGN): int_val = DHD_SDALIGN; bcopy(&int_val, arg, val_size); break; #ifdef DHD_DEBUG case IOV_GVAL(IOV_VARS): if (bus->varsz < (uint)len) bcopy(bus->vars, arg, bus->varsz); else bcmerror = BCME_BUFTOOSHORT; break; #endif /* DHD_DEBUG */ #ifdef DHD_DEBUG /* XXX Until these return BCME ranges, make assumptions here */ case IOV_GVAL(IOV_SDREG): { sdreg_t *sd_ptr; uintptr addr; uint size; sd_ptr = (sdreg_t *)params; addr = ((uintptr)bus->regs + sd_ptr->offset); size = sd_ptr->func; int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; bcopy(&int_val, arg, sizeof(int32)); break; } case IOV_SVAL(IOV_SDREG): { sdreg_t *sd_ptr; uintptr addr; uint size; sd_ptr = (sdreg_t *)params; addr = ((uintptr)bus->regs + sd_ptr->offset); size = sd_ptr->func; bcmsdh_reg_write(bus->sdh, addr, size, sd_ptr->value); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; break; } /* XXX Same as above */ /* Same as above, but offset is not backplane (not SDIO core) */ case IOV_GVAL(IOV_SBREG): { sdreg_t sdreg; uint32 addr, size; bcopy(params, &sdreg, sizeof(sdreg)); addr = SI_ENUM_BASE(bus->sih) + sdreg.offset; size = sdreg.func; int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; bcopy(&int_val, arg, sizeof(int32)); break; } case IOV_SVAL(IOV_SBREG): { sdreg_t sdreg; uint32 addr, size; bcopy(params, &sdreg, sizeof(sdreg)); addr = SI_ENUM_BASE(bus->sih) + sdreg.offset; size = sdreg.func; bcmsdh_reg_write(bus->sdh, addr, size, sdreg.value); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; break; } case IOV_GVAL(IOV_SDCIS): { *(char *)arg = 0; /* XXX Ignoring return codes, should be evident from printed results */ bcmstrcat(arg, "\nFunc 0\n"); bcmsdh_cis_read(bus->sdh, 0x10, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); bcmstrcat(arg, "\nFunc 1\n"); bcmsdh_cis_read(bus->sdh, 0x11, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); bcmstrcat(arg, "\nFunc 2\n"); bcmsdh_cis_read(bus->sdh, 0x12, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); break; } case IOV_GVAL(IOV_FORCEEVEN): int_val = (int32)forcealign; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_FORCEEVEN): forcealign = bool_val; break; case IOV_GVAL(IOV_TXBOUND): int_val = (int32)dhd_txbound; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXBOUND): dhd_txbound = (uint)int_val; break; case IOV_GVAL(IOV_RXBOUND): int_val = (int32)dhd_rxbound; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_RXBOUND): dhd_rxbound = (uint)int_val; break; case IOV_GVAL(IOV_TXMINMAX): int_val = (int32)dhd_txminmax; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXMINMAX): dhd_txminmax = (uint)int_val; break; #ifdef DHD_DEBUG case IOV_GVAL(IOV_SERIALCONS): int_val = dhd_serialconsole(bus, FALSE, 0, &bcmerror); if (bcmerror != 0) break; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SERIALCONS): dhd_serialconsole(bus, TRUE, bool_val, &bcmerror); break; #endif /* DHD_DEBUG */ #endif /* DHD_DEBUG */ #if defined(DHD_SPROM) case IOV_SVAL(IOV_SPROM): case IOV_GVAL(IOV_SPROM): { uint32 offset; uint size, dsize; bool set = (actionid == IOV_SVAL(IOV_SPROM)); ASSERT(plen >= 2*sizeof(int)); offset = (uint32)int_val; bcopy((char *)params + sizeof(int_val), &int_val, sizeof(int_val)); size = (uint)int_val; /* Avoid bigger size of srom reads that may be requested from app. * gSPI has only F1 OTP visible from CC. There is no CIS in gSPI. */ if (bus->bus == SPI_BUS) size = SBSDIO_CIS_SIZE_LIMIT; /* Do some validation */ dsize = set ? plen - (2 * sizeof(int)) : len; if (dsize < size) { DHD_ERROR(("%s: error on srom %s, addr 0x%08x size %d dsize %d\n", __FUNCTION__, (set ? "write" : "read"), offset, size, dsize)); bcmerror = BCME_BADARG; break; } if ((offset > SROM_MAX) || ((offset + size) > SROM_MAX)) { DHD_ERROR(("%s: error on srom %s, offset %d size %d exceeds limit %d\n", __FUNCTION__, (set ? "write" : "read"), offset, size, SROM_MAX)); bcmerror = BCME_BADARG; break; } if (!set) { if (!ISALIGNED((uintptr)arg, sizeof(uint16))) { DHD_ERROR(("%s: srom data pointer %p not word-aligned\n", __FUNCTION__, arg)); bcmerror = BCME_BADARG; break; } GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); bcmerror = srom_read(bus->sih, DHD_BUS, (void*)bus->regs, bus->dhd->osh, offset, size, (uint16*)arg, FALSE); GCC_DIAGNOSTIC_POP(); } else { arg = (void*)((uintptr)arg + 2 * sizeof(int)); if (!ISALIGNED((uintptr)arg, sizeof(uint16))) { DHD_ERROR(("%s: srom data pointer %p not word-aligned\n", __FUNCTION__, arg)); bcmerror = BCME_BADARG; break; } GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST(); bcmerror = srom_write(bus->sih, DHD_BUS, (void*)bus->regs, bus->dhd->osh, offset, size, (uint16*)arg); GCC_DIAGNOSTIC_POP(); } break; } #endif /* DHD_SPROM */ #ifdef SDTEST case IOV_GVAL(IOV_EXTLOOP): int_val = (int32)bus->ext_loop; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_EXTLOOP): bus->ext_loop = bool_val; break; case IOV_GVAL(IOV_PKTGEN): bcmerror = dhdsdio_pktgen_get(bus, arg); break; case IOV_SVAL(IOV_PKTGEN): bcmerror = dhdsdio_pktgen_set(bus, arg); break; #endif /* SDTEST */ #if defined(USE_SDIOFIFO_IOVAR) case IOV_GVAL(IOV_WATERMARK): int_val = (int32)watermark; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_WATERMARK): watermark = (uint)int_val; watermark = (watermark > SBSDIO_WATERMARK_MASK) ? SBSDIO_WATERMARK_MASK : watermark; DHD_ERROR(("Setting watermark as 0x%x.\n", watermark)); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, (uint8)watermark, NULL); break; case IOV_GVAL(IOV_MESBUSYCTRL): int_val = (int32)mesbusyctrl; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_MESBUSYCTRL): mesbusyctrl = (uint)int_val; mesbusyctrl = (mesbusyctrl > SBSDIO_MESBUSYCTRL_MASK) ? SBSDIO_MESBUSYCTRL_MASK : mesbusyctrl; DHD_ERROR(("Setting mesbusyctrl as 0x%x.\n", mesbusyctrl)); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL, ((uint8)mesbusyctrl | 0x80), NULL); break; #endif case IOV_GVAL(IOV_DONGLEISOLATION): int_val = bus->dhd->dongle_isolation; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_DONGLEISOLATION): bus->dhd->dongle_isolation = bool_val; break; case IOV_SVAL(IOV_DEVRESET): DHD_TRACE(("%s: Called set IOV_DEVRESET=%d dongle_reset=%d busstate=%d\n", __FUNCTION__, bool_val, bus->dhd->dongle_reset, bus->dhd->busstate)); ASSERT(bus->dhd->osh); /* ASSERT(bus->cl_devid); */ /* must release sdlock, since devreset also acquires it */ dhd_os_sdunlock(bus->dhd); dhd_bus_devreset(bus->dhd, (uint8)bool_val); dhd_os_sdlock(bus->dhd); break; /* * softap firmware is updated through module parameter or android private command */ case IOV_GVAL(IOV_DEVRESET): DHD_TRACE(("%s: Called get IOV_DEVRESET\n", __FUNCTION__)); /* Get its status */ int_val = (bool) bus->dhd->dongle_reset; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_KSO): int_val = dhdsdio_sleepcsr_get(bus); bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_DEVCAP): int_val = dhdsdio_devcap_get(bus); bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_DEVCAP): dhdsdio_devcap_set(bus, (uint8) int_val); break; case IOV_GVAL(IOV_TXGLOMSIZE): int_val = (int32)bus->txglomsize; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXGLOMSIZE): if (int_val > SDPCM_MAXGLOM_SIZE) { bcmerror = BCME_ERROR; } else { bus->txglomsize = (uint)int_val; } break; case IOV_SVAL(IOV_HANGREPORT): bus->dhd->hang_report = bool_val; DHD_ERROR(("%s: Set hang_report as %d\n", __FUNCTION__, bus->dhd->hang_report)); break; case IOV_GVAL(IOV_HANGREPORT): int_val = (int32)bus->dhd->hang_report; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_TXINRX_THRES): int_val = bus->txinrx_thres; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXINRX_THRES): if (int_val < 0) { bcmerror = BCME_BADARG; } else { bus->txinrx_thres = int_val; } break; case IOV_GVAL(IOV_SDIO_SUSPEND): int_val = (bus->dhd->busstate == DHD_BUS_SUSPEND) ? 1 : 0; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDIO_SUSPEND): if (bool_val) { /* Suspend */ dhdsdio_suspend(bus); } else { /* Resume */ dhdsdio_resume(bus); } break; #if defined(DEBUGGER) || defined(DHD_DSCOPE) case IOV_SVAL(IOV_GDB_SERVER): if (bool_val == TRUE) { debugger_init((void *) bus, &bus_ops, int_val, SI_ENUM_BASE(bus->sih)); } else { debugger_close(); } break; #endif /* DEBUGGER || DHD_DSCOPE */ default: bcmerror = BCME_UNSUPPORTED; break; } exit: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } dhd_os_sdunlock(bus->dhd); return bcmerror; } static int dhdsdio_write_vars(dhd_bus_t *bus) { int bcmerror = 0; uint32 varsize, phys_size; uint32 varaddr; uint8 *vbuffer; uint32 varsizew; #ifdef DHD_DEBUG uint8 *nvram_ularray; #endif /* DHD_DEBUG */ /* Even if there are no vars are to be written, we still need to set the ramsize. */ varsize = bus->varsz ? ROUNDUP(bus->varsz, 4) : 0; varaddr = (bus->ramsize - 4) - varsize; varaddr += bus->dongle_ram_base; if (bus->vars) { /* XXX: WAR for PR85623 */ if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 7)) { if (((varaddr & 0x3C) == 0x3C) && (varsize > 4)) { DHD_ERROR(("PR85623WAR in place\n")); varsize += 4; varaddr -= 4; } } /* XXX In case the controller has trouble with odd bytes... */ vbuffer = (uint8 *)MALLOC(bus->dhd->osh, varsize); if (!vbuffer) return BCME_NOMEM; bzero(vbuffer, varsize); bcopy(bus->vars, vbuffer, bus->varsz); /* Write the vars list */ bcmerror = dhdsdio_membytes(bus, TRUE, varaddr, vbuffer, varsize); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, varsize, varaddr)); return bcmerror; } #ifdef DHD_DEBUG /* Verify NVRAM bytes */ DHD_INFO(("Compare NVRAM dl & ul; varsize=%d\n", varsize)); nvram_ularray = (uint8*)MALLOC(bus->dhd->osh, varsize); if (!nvram_ularray) { MFREE(bus->dhd->osh, vbuffer, varsize); return BCME_NOMEM; } /* Upload image to verify downloaded contents. */ memset(nvram_ularray, 0xaa, varsize); /* Read the vars list to temp buffer for comparison */ bcmerror = dhdsdio_membytes(bus, FALSE, varaddr, nvram_ularray, varsize); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d nvram bytes at 0x%08x\n", __FUNCTION__, bcmerror, varsize, varaddr)); } /* Compare the org NVRAM with the one read from RAM */ if (memcmp(vbuffer, nvram_ularray, varsize)) { DHD_ERROR(("%s: Downloaded NVRAM image is corrupted.\n", __FUNCTION__)); } else DHD_ERROR(("%s: Download, Upload and compare of NVRAM succeeded.\n", __FUNCTION__)); MFREE(bus->dhd->osh, nvram_ularray, varsize); #endif /* DHD_DEBUG */ MFREE(bus->dhd->osh, vbuffer, varsize); } phys_size = REMAP_ENAB(bus) ? bus->ramsize : bus->orig_ramsize; phys_size += bus->dongle_ram_base; /* adjust to the user specified RAM */ DHD_INFO(("Physical memory size: %d, usable memory size: %d\n", phys_size, bus->ramsize)); DHD_INFO(("Vars are at %d, orig varsize is %d\n", varaddr, varsize)); varsize = ((phys_size - 4) - varaddr); /* * Determine the length token: * Varsize, converted to words, in lower 16-bits, checksum in upper 16-bits. */ #ifdef DHD_DEBUG if (bcmerror) { varsizew = 0; } else #endif /* DHD_DEBUG */ { varsizew = varsize / 4; varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF); varsizew = htol32(varsizew); } DHD_INFO(("New varsize is %d, length token=0x%08x\n", varsize, varsizew)); /* Write the length token to the last word */ bcmerror = dhdsdio_membytes(bus, TRUE, (phys_size - 4), (uint8*)&varsizew, 4); return bcmerror; } bool dhd_bus_is_multibp_capable(struct dhd_bus *bus) { return MULTIBP_CAP(bus->sih); } static int dhdsdio_download_state(dhd_bus_t *bus, bool enter) { uint retries; int bcmerror = 0; int foundcr4 = 0; if (!bus->sih) return BCME_ERROR; /* To enter download state, disable ARM and reset SOCRAM. * To exit download state, simply reset ARM (default is RAM boot). */ if (enter) { bus->alp_only = TRUE; if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) && !(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) { if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) { foundcr4 = 1; } else { DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } } if (!foundcr4) { si_core_disable(bus->sih, 0); if (bcmsdh_regfail(bus->sdh)) { bcmerror = BCME_SDIO_ERROR; goto fail; } if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } si_core_reset(bus->sih, 0, 0); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s: Failure trying reset SOCRAM core?\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; goto fail; } if (CHIPID(bus->sih->chip) == BCM43430_CHIP_ID || CHIPID(bus->sih->chip) == BCM43018_CHIP_ID) { /* Disabling Remap for SRAM_3 */ si_socram_set_bankpda(bus->sih, 0x3, 0x0); } /* Clear the top bit of memory */ if (bus->ramsize) { uint32 zeros = 0; if (dhdsdio_membytes(bus, TRUE, bus->ramsize - 4, (uint8*)&zeros, 4) < 0) { bcmerror = BCME_SDIO_ERROR; goto fail; } } } else { /* For CR4, * Halt ARM * Remove ARM reset * Read RAM base address [0x18_0000] * [next] Download firmware * [done at else] Populate the reset vector * [done at else] Remove ARM halt */ /* Halt ARM & remove reset */ si_core_reset(bus->sih, SICF_CPUHALT, SICF_CPUHALT); } } else { if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) { if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } if (!si_iscoreup(bus->sih)) { DHD_ERROR(("%s: SOCRAM core is down after reset?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } if ((bcmerror = dhdsdio_write_vars(bus))) { DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__)); goto fail; } #ifdef BCMSDIOLITE if (!si_setcore(bus->sih, CC_CORE_ID, 0)) { DHD_ERROR(("%s: Can't set to Chip Common core?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } #else if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) && !si_setcore(bus->sih, SDIOD_CORE_ID, 0)) { DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } #endif W_SDREG(0xFFFFFFFF, &bus->regs->intstatus, retries); /* XXX Change standby configuration here if necessary */ if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) && !(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } } else { /* cr4 has no socram, but tcm's */ /* write vars */ if ((bcmerror = dhdsdio_write_vars(bus))) { DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__)); goto fail; } #ifdef BCMSDIOLITE if (!si_setcore(bus->sih, CC_CORE_ID, 0)) { DHD_ERROR(("%s: Can't set to Chip Common core?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } #else if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) && !si_setcore(bus->sih, SDIOD_CORE_ID, 0)) { DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } #endif W_SDREG(0xFFFFFFFF, &bus->regs->intstatus, retries); /* switch back to arm core again */ if (!(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find ARM CR4 core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } /* write address 0 with reset instruction */ bcmerror = dhdsdio_membytes(bus, TRUE, 0, (uint8 *)&bus->resetinstr, sizeof(bus->resetinstr)); if (bcmerror == BCME_OK) { uint32 tmp; /* verify write */ bcmerror = dhdsdio_membytes(bus, FALSE, 0, (uint8 *)&tmp, sizeof(tmp)); if (bcmerror == BCME_OK && tmp != bus->resetinstr) { DHD_ERROR(("%s: Failed to write 0x%08x to addr 0\n", __FUNCTION__, bus->resetinstr)); DHD_ERROR(("%s: contents of addr 0 is 0x%08x\n", __FUNCTION__, tmp)); bcmerror = BCME_SDIO_ERROR; goto fail; } } /* now remove reset and halt and continue to run CR4 */ } si_core_reset(bus->sih, 0, 0); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s: Failure trying to reset ARM core?\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; goto fail; } /* Allow HT Clock now that the ARM is running. */ bus->alp_only = FALSE; bus->dhd->busstate = DHD_BUS_LOAD; } fail: /* Always return to SDIOD core */ if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0)) si_setcore(bus->sih, SDIOD_CORE_ID, 0); return bcmerror; } int dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name, void *params, uint plen, void *arg, uint len, bool set) { dhd_bus_t *bus = dhdp->bus; const bcm_iovar_t *vi = NULL; int bcmerror = 0; uint val_size; uint32 actionid; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(name); /* Get MUST have return space */ ASSERT(set || (arg && len)); /* Set does NOT take qualifiers */ ASSERT(!set || (!params && !plen)); /* Look up var locally; if not found pass to host driver */ if ((vi = bcm_iovar_lookup(dhdsdio_iovars, name)) == NULL) { dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); /* Turn on clock in case SD command needs backplane */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); bcmerror = bcmsdh_iovar_op(bus->sdh, name, params, plen, arg, len, set); /* Check for bus configuration changes of interest */ /* If it was divisor change, read the new one */ if (set && strcmp(name, "sd_divisor") == 0) { if (bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) { bus->sd_divisor = -1; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name)); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, name, bus->sd_divisor)); } } /* If it was a mode change, read the new one */ if (set && strcmp(name, "sd_mode") == 0) { if (bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0, &bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) { bus->sd_mode = -1; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name)); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, name, bus->sd_mode)); } } /* Similar check for blocksize change */ if (set && strcmp(name, "sd_blocksize") == 0) { int32 fnum = 2; if (bcmsdh_iovar_op(bus->sdh, "sd_blocksize", &fnum, sizeof(int32), &bus->blocksize, sizeof(int32), FALSE) != BCME_OK) { bus->blocksize = 0; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize")); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, "sd_blocksize", bus->blocksize)); dhdsdio_tune_fifoparam(bus); } } bus->roundup = MIN(max_roundup, bus->blocksize); if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } dhd_os_sdunlock(bus->dhd); goto exit; } DHD_CTL(("%s: %s %s, len %d plen %d\n", __FUNCTION__, name, (set ? "set" : "get"), len, plen)); /* set up 'params' pointer in case this is a set command so that * the convenience int and bool code can be common to set and get */ if (params == NULL) { params = arg; plen = len; } if (vi->type == IOVT_VOID) val_size = 0; else if (vi->type == IOVT_BUFFER) val_size = len; else /* all other types are integer sized */ val_size = sizeof(int); actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); bcmerror = dhdsdio_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size); exit: return bcmerror; } void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex) { osl_t *osh; uint32 local_hostintmask; uint8 saveclk; uint retries; int err; bool wlfc_enabled = FALSE; unsigned long flags; if (!bus->dhd) return; osh = bus->dhd->osh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_waitlockfree(bus->sdh); if (enforce_mutex) dhd_os_sdlock(bus->dhd); if ((bus->dhd->busstate == DHD_BUS_DOWN) || bus->dhd->hang_was_sent) { /* if Firmware already hangs disbale any interrupt */ DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; bus->hostintmask = 0; bcmsdh_intr_disable(bus->sdh); } else { BUS_WAKE(bus); if (KSO_ENAB(bus)) { /* Enable clock for device interrupts */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Disable and clear interrupts at the chip level also */ W_SDREG(0, &bus->regs->hostintmask, retries); local_hostintmask = bus->hostintmask; bus->hostintmask = 0; /* Change our idea of bus state */ DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { DHD_ERROR(("%s: Failed to force clock for F2: err %d\n", __FUNCTION__, err)); } /* Turn off the bus (F2), free any pending packets */ /* XXX How to wake up any waiting processes? */ /* XXX New API: bcmsdh_fn_set(bus->sdh, SDIO_FUNC_2, FALSE); */ DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); #if !defined(NDIS) bcmsdh_intr_disable(bus->sdh); /* XXX bcmsdh_intr_mask(bus->sdh); */ #endif /* !defined(NDIS) */ #ifndef BCMSPI bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL); #endif /* !BCMSPI */ /* Clear any pending interrupts now that F2 is disabled */ W_SDREG(local_hostintmask, &bus->regs->intstatus, retries); } /* Turn off the backplane clock (only) */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } #ifdef PROP_TXSTATUS wlfc_enabled = (dhd_wlfc_cleanup_txq(bus->dhd, NULL, 0) != WLFC_UNSUPPORTED); #endif if (!wlfc_enabled) { #ifdef DHDTCPACK_SUPPRESS /* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt, * when there is a newly coming packet from network stack. */ dhd_tcpack_info_tbl_clean(bus->dhd); #endif /* DHDTCPACK_SUPPRESS */ dhd_os_sdlock_txq(bus->dhd); /* Clear the data packet queues */ pktq_flush(osh, &bus->txq, TRUE); dhd_os_sdunlock_txq(bus->dhd); } /* Clear any held glomming stuff */ if (bus->glomd) PKTFREE(osh, bus->glomd, FALSE); if (bus->glom) PKTFREE(osh, bus->glom, FALSE); bus->glom = bus->glomd = NULL; /* Clear rx control and wake any waiters */ /* XXX More important in disconnect, but no context? */ bus->rxlen = 0; dhd_os_ioctl_resp_wake(bus->dhd); /* Reset some F2 state stuff */ bus->rxskip = FALSE; bus->tx_seq = bus->rx_seq = 0; /* Initializing tx_max to a reasonable value to start xfer * Gets updated to correct value after receving the first * packet from firmware * XXX - Need to find a right mechanism to querry from * firmware when the device is coming up */ bus->tx_max = 4; if (enforce_mutex) dhd_os_sdunlock(bus->dhd); } #if defined(BCMSDIOH_TXGLOM) && defined(BCMSDIOH_STD) extern uint sd_txglom; #endif void dhd_txglom_enable(dhd_pub_t *dhdp, bool enable) { /* can't enable host txglom by default, some platforms have no * (or crappy) ADMA support and txglom will cause kernel assertions (e.g. * panda board) */ dhd_bus_t *bus = dhdp->bus; #ifdef BCMSDIOH_TXGLOM uint32 rxglom; int32 ret; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #ifdef BCMSDIOH_STD if (enable) enable = sd_txglom; #endif /* BCMSDIOH_STD */ if (enable) { rxglom = 1; ret = dhd_iovar(dhdp, 0, "bus:rxglom", (char *)&rxglom, sizeof(rxglom), NULL, 0, TRUE); if (ret >= 0) bus->txglom_enable = TRUE; else { #ifdef BCMSDIOH_STD sd_txglom = 0; #endif /* BCMSDIOH_STD */ bus->txglom_enable = FALSE; } } else #endif /* BCMSDIOH_TXGLOM */ bus->txglom_enable = FALSE; } int dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex) { dhd_bus_t *bus = dhdp->bus; dhd_timeout_t tmo; uint retries = 0; uint8 ready, enable; int err, ret = 0; #ifdef BCMSPI uint32 dstatus = 0; /* gSPI device-status bits */ #else /* BCMSPI */ uint8 saveclk; #endif /* BCMSPI */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(bus->dhd); if (!bus->dhd) return 0; if (enforce_mutex) dhd_os_sdlock(bus->dhd); /* Make sure backplane clock is on, needed to generate F2 interrupt */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); if (bus->clkstate != CLK_AVAIL) { DHD_ERROR(("%s: clock state is wrong. state = %d\n", __FUNCTION__, bus->clkstate)); ret = -1; goto exit; } #ifdef BCMSPI /* fake "ready" for spi, wake-wlan would have already enabled F1 and F2 */ ready = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); enable = 0; /* Give the dongle some time to do its thing and set IOR2 */ dhd_timeout_start(&tmo, WAIT_F2RXFIFORDY * WAIT_F2RXFIFORDY_DELAY * 1000); while (!enable && !dhd_timeout_expired(&tmo)) { dstatus = bcmsdh_cfg_read_word(bus->sdh, SDIO_FUNC_0, SPID_STATUS_REG, NULL); if (dstatus & STATUS_F2_RX_READY) enable = TRUE; } if (enable) { DHD_ERROR(("Took %u usec before dongle is ready\n", tmo.elapsed)); enable = ready; } else { DHD_ERROR(("dstatus when timed out on f2-fifo not ready = 0x%x\n", dstatus)); DHD_ERROR(("Waited %u usec, dongle is not ready\n", tmo.elapsed)); ret = -1; goto exit; } #else /* !BCMSPI */ /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { #ifndef BCMQT /* QT requires HT clock */ if (bus->sih->chip == BCM43012_CHIP_ID || bus->sih->chip == BCM43013_CHIP_ID || bus->sih->chip == BCM43014_CHIP_ID) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_HT_AVAIL_REQ), &err); } else #endif /* BCMQT */ { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } } if (err) { DHD_ERROR(("%s: Failed to force clock for F2: err %d\n", __FUNCTION__, err)); ret = -1; goto exit; } /* Enable function 2 (frame transfers) */ /* XXX New API: change to bcmsdh_fn_set(sdh, SDIO_FUNC_2, TRUE); */ W_SDREG((SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT), &bus->regs->tosbmailboxdata, retries); enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL); /* Give the dongle some time to do its thing and set IOR2 */ #ifdef BCMSLTGT dhd_timeout_start(&tmo, DHD_WAIT_F2RDY * 1000 * htclkratio); #else dhd_timeout_start(&tmo, DHD_WAIT_F2RDY * 1000); #endif /* BCMSLTGT */ ready = 0; while (ready != enable && !dhd_timeout_expired(&tmo)) ready = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IORDY, NULL); #endif /* !BCMSPI */ DHD_ERROR(("%s: enable 0x%02x, ready 0x%02x (waited %uus)\n", __FUNCTION__, enable, ready, tmo.elapsed)); /* XXX For simplicity, fail and await next call if F2 not ready. * XXX Should really set timer to poll, and/or enable interrupt; * XXX then put this process in wait until a result... */ /* If F2 successfully enabled, set core and enable interrupts */ if (ready == enable) { /* Make sure we're talking to the core. */ #ifdef BCMSDIOLITE bus->regs = si_setcore(bus->sih, CC_CORE_ID, 0); ASSERT(bus->regs != NULL); #else if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0))) bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0); ASSERT(bus->regs != NULL); #endif /* Set up the interrupt mask and enable interrupts */ bus->hostintmask = HOSTINTMASK; /* corerev 4 could use the newer interrupt logic to detect the frames */ #ifndef BCMSPI if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 4) && (bus->rxint_mode != SDIO_DEVICE_HMB_RXINT)) { bus->hostintmask &= ~I_HMB_FRAME_IND; bus->hostintmask |= I_XMTDATA_AVAIL; } #endif /* BCMSPI */ W_SDREG(bus->hostintmask, &bus->regs->hostintmask, retries); /* PR47410 - Lower F2 Watermark to avoid DMA Hang * in F2 when SD Clock is stopped. */ if (bus->sih->buscorerev < 15) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, (uint8)watermark, &err); } /* Set bus state according to enable result */ dhdp->busstate = DHD_BUS_DATA; /* Need to set fn2 block size to match fn1 block size. * Requests to fn2 go thru fn1. * * faltwig has this code contitioned with #if !BCMSPI_ANDROID. * It would be cleaner to use the ->sdh->block_sz[fno] instead of * 64, but this layer has no access to sdh types. */ #if defined(NDIS) { uint8 *ptr = NULL; uint16 block_sz = 64; ptr = (uint8*) &block_sz; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, (SDIOD_FBR_BASE(SDIO_FUNC_2) + SDIOD_CCCR_BLKSIZE_0), *ptr++, &err); if (err == BCME_OK) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, (SDIOD_FBR_BASE(SDIO_FUNC_2) + SDIOD_CCCR_BLKSIZE_1), *ptr++, &err); if (err != BCME_OK) { printf("%s: set block size for func 2 failed\n", __FUNCTION__); ret = -1; goto exit; } } #endif /* NDIS */ /* XXX These need to change w/API updates */ /* bcmsdh_intr_unmask(bus->sdh); */ bus->intdis = FALSE; if (bus->intr) { DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__)); } else { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); bcmsdh_intr_disable(bus->sdh); } #ifdef DEBUG_LOST_INTERRUPTS { uint32 intstatus; bool hostpending; uint8 devena, devpend; uint sdr_retries = 0; hostpending = bcmsdh_intr_pending(bus->sdh); devena = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTEN, NULL); devpend = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTPEND, NULL); R_SDREG(intstatus, &bus->regs->intstatus, sdr_retries); intstatus &= bus->hostintmask; DHD_ERROR(("%s: interrupts -- host %s device ena/pend 0x%02x/0x%02x\n" "intstatus 0x%08x, hostmask 0x%08x\n", __FUNCTION__, (hostpending ? "PENDING" : "NOT PENDING"), devena, devpend, intstatus, bus->hostintmask)); } #endif /* DEBUG_LOST_INTERRUPTS */ } #ifndef BCMSPI else { /* Disable F2 again */ enable = SDIO_FUNC_ENABLE_1; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL); } if (dhdsdio_sr_cap(bus)) { dhdsdio_sr_init(bus); /* Masking the chip active interrupt permanantly */ bus->hostintmask &= ~I_CHIPACTIVE; W_SDREG(bus->hostintmask, &bus->regs->hostintmask, retries); DHD_INFO(("%s: disable I_CHIPACTIVE in hostintmask[0x%08x]\n", __FUNCTION__, bus->hostintmask)); } else { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err); } #endif /* !BCMSPI */ /* If we didn't come up, turn off backplane clock */ if (dhdp->busstate != DHD_BUS_DATA) dhdsdio_clkctl(bus, CLK_NONE, FALSE); exit: if (enforce_mutex) dhd_os_sdunlock(bus->dhd); /* XXX Temp errnum workaround: return ok, caller checks bus state */ return ret; } static void dhdsdio_rxfail(dhd_bus_t *bus, bool abort, bool rtx) { bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint retries = 0; uint16 lastrbc; uint8 hi, lo; int err; DHD_ERROR(("%s: %sterminate frame%s\n", __FUNCTION__, (abort ? "abort command, " : ""), (rtx ? ", send NAK" : ""))); if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return; } if (abort) { bcmsdh_abort(sdh, SDIO_FUNC_2); } bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err); if (err) { DHD_ERROR(("%s: SBSDIO_FUNC1_FRAMECTRL cmd err\n", __FUNCTION__)); goto fail; } bus->f1regdata++; /* Wait until the packet has been flushed (device/FIFO stable) */ for (lastrbc = retries = 0xffff; retries > 0; retries--) { hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCLO, &err); if (err) { DHD_ERROR(("%s: SBSDIO_FUNC1_RFAMEBCLO cmd err\n", __FUNCTION__)); goto fail; } bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) { DHD_ERROR(("%s: count growing: last 0x%04x now 0x%04x\n", __FUNCTION__, lastrbc, ((hi << 8) + lo))); } lastrbc = (hi << 8) + lo; } if (!retries) { DHD_ERROR(("%s: count never zeroed: last 0x%04x\n", __FUNCTION__, lastrbc)); } else { DHD_INFO(("%s: flush took %d iterations\n", __FUNCTION__, (0xffff - retries))); } if (rtx) { bus->rxrtx++; W_SDREG(SMB_NAK, ®s->tosbmailbox, retries); bus->f1regdata++; if (retries <= retry_limit) { bus->rxskip = TRUE; } } /* Clear partial in any case */ bus->nextlen = 0; fail: /* If we can't reach the device, signal failure */ if (err || bcmsdh_regfail(sdh)) { DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; } } static void dhdsdio_read_control(dhd_bus_t *bus, uint8 *hdr, uint len, uint doff) { bcmsdh_info_t *sdh = bus->sdh; uint rdlen, pad; int sdret; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Control data already received in aligned rxctl */ if ((bus->bus == SPI_BUS) && (!bus->usebufpool)) goto gotpkt; ASSERT(bus->rxbuf); /* Set rxctl for frame (w/optional alignment) */ bus->rxctl = bus->rxbuf; if (dhd_alignctl) { bus->rxctl += firstread; if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN))) bus->rxctl += (DHD_SDALIGN - pad); bus->rxctl -= firstread; } ASSERT(bus->rxctl >= bus->rxbuf); /* Copy the already-read portion over */ bcopy(hdr, bus->rxctl, firstread); if (len <= firstread) goto gotpkt; /* Copy the full data pkt in gSPI case and process ioctl. */ if (bus->bus == SPI_BUS) { bcopy(hdr, bus->rxctl, len); goto gotpkt; } /* Raise rdlen to next SDIO block to avoid tail command */ rdlen = len - firstread; if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((len + pad) < bus->dhd->maxctl)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } /* Satisfy length-alignment requirements */ if (forcealign && (rdlen & (ALIGNMENT - 1))) rdlen = ROUNDUP(rdlen, ALIGNMENT); /* Drop if the read is too big or it exceeds our maximum */ if ((rdlen + firstread) > bus->dhd->maxctl) { DHD_ERROR(("%s: %d-byte control read exceeds %d-byte buffer\n", __FUNCTION__, rdlen, bus->dhd->maxctl)); bus->dhd->rx_errors++; dhdsdio_rxfail(bus, FALSE, FALSE); goto done; } if ((len - doff) > bus->dhd->maxctl) { DHD_ERROR(("%s: %d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n", __FUNCTION__, len, (len - doff), bus->dhd->maxctl)); bus->dhd->rx_errors++; bus->rx_toolong++; dhdsdio_rxfail(bus, FALSE, FALSE); goto done; } /* XXX Could block readers with rxlen=0? */ /* Read remainder of frame body into the rxctl buffer */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, (bus->rxctl + firstread), rdlen, NULL, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); /* Control frame failures need retransmission */ if (sdret < 0) { DHD_ERROR(("%s: read %d control bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); bus->rxc_errors++; /* dhd.rx_ctlerrs is higher level */ dhdsdio_rxfail(bus, TRUE, TRUE); goto done; } gotpkt: #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_CTL_ON()) { prhex("RxCtrl", bus->rxctl, len); } #endif /* Point to valid data and indicate its length */ bus->rxctl += doff; bus->rxlen = len - doff; done: /* Awake any waiters */ dhd_os_ioctl_resp_wake(bus->dhd); } int dhd_process_pkt_reorder_info(dhd_pub_t *dhd, uchar *reorder_info_buf, uint reorder_info_len, void **pkt, uint32 *pkt_count); static uint8 dhdsdio_rxglom(dhd_bus_t *bus, uint8 rxseq) { uint16 dlen, totlen; uint8 *dptr, num = 0; uint16 sublen, check; void *pfirst, *plast, *pnext; void * list_tail[DHD_MAX_IFS] = { NULL }; void * list_head[DHD_MAX_IFS] = { NULL }; uint8 idx; osl_t *osh = bus->dhd->osh; int errcode; uint8 chan, seq, doff, sfdoff; uint8 txmax; uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN]; uint reorder_info_len; int ifidx = 0; bool usechain = bus->use_rxchain; /* If packets, issue read(s) and send up packet chain */ /* Return sequence numbers consumed? */ DHD_TRACE(("dhdsdio_rxglom: start: glomd %p glom %p\n", bus->glomd, bus->glom)); /* If there's a descriptor, generate the packet chain */ if (bus->glomd) { dhd_os_sdlock_rxq(bus->dhd); pfirst = plast = pnext = NULL; dlen = (uint16)PKTLEN(osh, bus->glomd); dptr = PKTDATA(osh, bus->glomd); if (!dlen || (dlen & 1)) { DHD_ERROR(("%s: bad glomd len (%d), ignore descriptor\n", __FUNCTION__, dlen)); dlen = 0; } for (totlen = num = 0; dlen; num++) { /* Get (and move past) next length */ sublen = ltoh16_ua(dptr); dlen -= sizeof(uint16); dptr += sizeof(uint16); if ((sublen < SDPCM_HDRLEN) || ((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) { DHD_ERROR(("%s: descriptor len %d bad: %d\n", __FUNCTION__, num, sublen)); pnext = NULL; break; } if (sublen % DHD_SDALIGN) { DHD_ERROR(("%s: sublen %d not a multiple of %d\n", __FUNCTION__, sublen, DHD_SDALIGN)); usechain = FALSE; } totlen += sublen; /* For last frame, adjust read len so total is a block multiple */ if (!dlen) { sublen += (ROUNDUP(totlen, bus->blocksize) - totlen); totlen = ROUNDUP(totlen, bus->blocksize); } /* Allocate/chain packet for next subframe */ if ((pnext = PKTGET(osh, sublen + DHD_SDALIGN, FALSE)) == NULL) { DHD_ERROR(("%s: PKTGET failed, num %d len %d\n", __FUNCTION__, num, sublen)); break; } ASSERT(!PKTLINK(pnext)); if (!pfirst) { ASSERT(!plast); pfirst = plast = pnext; } else { ASSERT(plast); PKTSETNEXT(osh, plast, pnext); plast = pnext; } /* Adhere to start alignment requirements */ PKTALIGN(osh, pnext, sublen, DHD_SDALIGN); } /* If all allocations succeeded, save packet chain in bus structure */ if (pnext) { DHD_GLOM(("%s: allocated %d-byte packet chain for %d subframes\n", __FUNCTION__, totlen, num)); if (DHD_GLOM_ON() && bus->nextlen) { if (totlen != bus->nextlen) { DHD_GLOM(("%s: glomdesc mismatch: nextlen %d glomdesc %d " "rxseq %d\n", __FUNCTION__, bus->nextlen, totlen, rxseq)); } } bus->glom = pfirst; pfirst = pnext = NULL; } else { if (pfirst) PKTFREE(osh, pfirst, FALSE); bus->glom = NULL; num = 0; } /* Done with descriptor packet */ PKTFREE(osh, bus->glomd, FALSE); bus->glomd = NULL; bus->nextlen = 0; dhd_os_sdunlock_rxq(bus->dhd); } /* Ok -- either we just generated a packet chain, or had one from before */ if (bus->glom) { if (DHD_GLOM_ON()) { DHD_GLOM(("%s: attempt superframe read, packet chain:\n", __FUNCTION__)); for (pnext = bus->glom; pnext; pnext = PKTNEXT(osh, pnext)) { DHD_GLOM((" %p: %p len 0x%04x (%d)\n", pnext, (uint8*)PKTDATA(osh, pnext), PKTLEN(osh, pnext), PKTLEN(osh, pnext))); } } pfirst = bus->glom; dlen = (uint16)pkttotlen(osh, pfirst); /* Do an SDIO read for the superframe. Configurable iovar to * read directly into the chained packet, or allocate a large * packet and and copy into the chain. */ if (usechain) { errcode = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2, F2SYNC, (uint8*)PKTDATA(osh, pfirst), dlen, pfirst, NULL, NULL); } else if (bus->dataptr) { errcode = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2, F2SYNC, bus->dataptr, dlen, NULL, NULL, NULL); sublen = (uint16)pktfrombuf(osh, pfirst, 0, dlen, bus->dataptr); if (sublen != dlen) { DHD_ERROR(("%s: FAILED TO COPY, dlen %d sublen %d\n", __FUNCTION__, dlen, sublen)); errcode = -1; } pnext = NULL; BCM_REFERENCE(pnext); } else { DHD_ERROR(("COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n", dlen)); errcode = -1; } bus->f2rxdata++; ASSERT(errcode != BCME_PENDING); /* On failure, kill the superframe, allow a couple retries */ if (errcode < 0) { DHD_ERROR(("%s: glom read of %d bytes failed: %d\n", __FUNCTION__, dlen, errcode)); bus->dhd->rx_errors++; /* XXX Account for rtx?? */ if (bus->glomerr++ < 3) { dhdsdio_rxfail(bus, TRUE, TRUE); } else { bus->glomerr = 0; dhdsdio_rxfail(bus, TRUE, FALSE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(osh, bus->glom, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->rxglomfail++; bus->glom = NULL; } return 0; } #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("SUPERFRAME", PKTDATA(osh, pfirst), MIN(PKTLEN(osh, pfirst), 48)); } #endif /* Validate the superframe header */ dptr = (uint8 *)PKTDATA(osh, pfirst); sublen = ltoh16_ua(dptr); check = ltoh16_ua(dptr + sizeof(uint16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s: got frame w/nextlen too large (%d) seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); errcode = 0; if ((uint16)~(sublen^check)) { DHD_ERROR(("%s (superframe): HW hdr error: len/check 0x%04x/0x%04x\n", __FUNCTION__, sublen, check)); errcode = -1; } else if (ROUNDUP(sublen, bus->blocksize) != dlen) { DHD_ERROR(("%s (superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n", __FUNCTION__, sublen, ROUNDUP(sublen, bus->blocksize), dlen)); errcode = -1; } else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) != SDPCM_GLOM_CHANNEL) { DHD_ERROR(("%s (superframe): bad channel %d\n", __FUNCTION__, SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]))); errcode = -1; } else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) { DHD_ERROR(("%s (superframe): got second descriptor?\n", __FUNCTION__)); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > (PKTLEN(osh, pfirst) - SDPCM_HDRLEN))) { DHD_ERROR(("%s (superframe): Bad data offset %d: HW %d pkt %d min %d\n", __FUNCTION__, doff, sublen, PKTLEN(osh, pfirst), SDPCM_HDRLEN)); errcode = -1; } /* Check sequence number of superframe SW header */ if (rxseq != seq) { DHD_INFO(("%s: (superframe) rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x70) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; } bus->tx_max = txmax; /* Remove superframe header, remember offset */ PKTPULL(osh, pfirst, doff); sfdoff = doff; /* Validate all the subframe headers */ for (num = 0, pnext = pfirst; pnext && !errcode; num++, pnext = PKTNEXT(osh, pnext)) { dptr = (uint8 *)PKTDATA(osh, pnext); dlen = (uint16)PKTLEN(osh, pnext); sublen = ltoh16_ua(dptr); check = ltoh16_ua(dptr + sizeof(uint16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("subframe", dptr, 32); } #endif if ((uint16)~(sublen^check)) { DHD_ERROR(("%s (subframe %d): HW hdr error: " "len/check 0x%04x/0x%04x\n", __FUNCTION__, num, sublen, check)); errcode = -1; } else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) { DHD_ERROR(("%s (subframe %d): length mismatch: " "len 0x%04x, expect 0x%04x\n", __FUNCTION__, num, sublen, dlen)); errcode = -1; } else if ((chan != SDPCM_DATA_CHANNEL) && (chan != SDPCM_EVENT_CHANNEL)) { DHD_ERROR(("%s (subframe %d): bad channel %d\n", __FUNCTION__, num, chan)); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) { DHD_ERROR(("%s (subframe %d): Bad data offset %d: HW %d min %d\n", __FUNCTION__, num, doff, sublen, SDPCM_HDRLEN)); errcode = -1; } } if (errcode) { /* Terminate frame on error, request a couple retries */ if (bus->glomerr++ < 3) { /* Restore superframe header space */ PKTPUSH(osh, pfirst, sfdoff); dhdsdio_rxfail(bus, TRUE, TRUE); } else { bus->glomerr = 0; dhdsdio_rxfail(bus, TRUE, FALSE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(osh, bus->glom, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->rxglomfail++; bus->glom = NULL; } bus->nextlen = 0; return 0; } /* Basic SD framing looks ok - process each packet (header) */ bus->glom = NULL; plast = NULL; dhd_os_sdlock_rxq(bus->dhd); for (num = 0; pfirst; rxseq++, pfirst = pnext) { pnext = PKTNEXT(osh, pfirst); PKTSETNEXT(osh, pfirst, NULL); dptr = (uint8 *)PKTDATA(osh, pfirst); sublen = ltoh16_ua(dptr); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); DHD_GLOM(("%s: Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n", __FUNCTION__, num, pfirst, PKTDATA(osh, pfirst), PKTLEN(osh, pfirst), sublen, chan, seq)); ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL)); if (rxseq != seq) { DHD_GLOM(("%s: rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Subframe Data", dptr, dlen); } #endif PKTSETLEN(osh, pfirst, sublen); PKTPULL(osh, pfirst, doff); reorder_info_len = sizeof(reorder_info_buf); if (PKTLEN(osh, pfirst) == 0) { PKTFREE(bus->dhd->osh, pfirst, FALSE); continue; } else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pfirst, reorder_info_buf, &reorder_info_len) != 0) { DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__)); bus->dhd->rx_errors++; PKTFREE(osh, pfirst, FALSE); continue; } if (reorder_info_len) { uint32 free_buf_count; void *ppfirst; ppfirst = pfirst; /* Reordering info from the firmware */ dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf, reorder_info_len, &ppfirst, &free_buf_count); if (free_buf_count == 0) { continue; } else { void *temp; /* go to the end of the chain and attach the pnext there */ temp = ppfirst; while (PKTNEXT(osh, temp) != NULL) { temp = PKTNEXT(osh, temp); } pfirst = temp; if (list_tail[ifidx] == NULL) list_head[ifidx] = ppfirst; else PKTSETNEXT(osh, list_tail[ifidx], ppfirst); list_tail[ifidx] = pfirst; } num += (uint8)free_buf_count; } else { /* this packet will go up, link back into chain and count it */ if (list_tail[ifidx] == NULL) { list_head[ifidx] = list_tail[ifidx] = pfirst; } else { PKTSETNEXT(osh, list_tail[ifidx], pfirst); list_tail[ifidx] = pfirst; } num++; } #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { DHD_GLOM(("%s subframe %d to stack, %p(%p/%d) nxt/lnk %p/%p\n", __FUNCTION__, num, pfirst, PKTDATA(osh, pfirst), PKTLEN(osh, pfirst), PKTNEXT(osh, pfirst), PKTLINK(pfirst))); prhex("", (uint8 *)PKTDATA(osh, pfirst), MIN(PKTLEN(osh, pfirst), 32)); } #endif /* DHD_DEBUG */ } dhd_os_sdunlock_rxq(bus->dhd); for (idx = 0; idx < DHD_MAX_IFS; idx++) { if (list_head[idx]) { void *temp; uint8 cnt = 0; temp = list_head[idx]; do { temp = PKTNEXT(osh, temp); cnt++; } while (temp); if (cnt) { dhd_os_sdunlock(bus->dhd); dhd_rx_frame(bus->dhd, idx, list_head[idx], cnt, 0); dhd_os_sdlock(bus->dhd); } } } bus->rxglomframes++; bus->rxglompkts += num; } return num; } /* Return TRUE if there may be more frames to read */ static uint dhdsdio_readframes(dhd_bus_t *bus, uint maxframes, bool *finished) { osl_t *osh = bus->dhd->osh; bcmsdh_info_t *sdh = bus->sdh; uint16 len, check; /* Extracted hardware header fields */ uint8 chan, seq, doff; /* Extracted software header fields */ uint8 fcbits; /* Extracted fcbits from software header */ uint8 delta; void *pkt; /* Packet for event or data frames */ uint16 pad; /* Number of pad bytes to read */ uint16 rdlen; /* Total number of bytes to read */ uint8 rxseq; /* Next sequence number to expect */ uint rxleft = 0; /* Remaining number of frames allowed */ int sdret; /* Return code from bcmsdh calls */ uint8 txmax; /* Maximum tx sequence offered */ #ifdef BCMSPI uint32 dstatus = 0; /* gSPI device status bits of */ #endif /* BCMSPI */ bool len_consistent; /* Result of comparing readahead len and len from hw-hdr */ uint8 *rxbuf; int ifidx = 0; uint rxcount = 0; /* Total frames read */ uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN]; uint reorder_info_len; uint pkt_count; #if defined(DHD_DEBUG) || defined(SDTEST) bool sdtest = FALSE; /* To limit message spew from test mode */ #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bus->readframes = TRUE; if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: KSO off\n", __FUNCTION__)); bus->readframes = FALSE; return 0; } ASSERT(maxframes); #ifdef SDTEST /* Allow pktgen to override maxframes */ if (bus->pktgen_count && (bus->pktgen_mode == DHD_PKTGEN_RECV)) { maxframes = bus->pktgen_count; sdtest = TRUE; } #endif /* Not finished unless we encounter no more frames indication */ *finished = FALSE; #ifdef BCMSPI /* Get pktlen from gSPI device F0 reg. */ if (bus->bus == SPI_BUS) { /* Peek in dstatus bits and find out size to do rx-read. */ dstatus = bcmsdh_get_dstatus(bus->sdh); if (dstatus == 0) DHD_ERROR(("%s:ZERO spi dstatus, a case observed in PR61352 hit !!!\n", __FUNCTION__)); DHD_TRACE(("Device status from regread = 0x%x\n", dstatus)); DHD_TRACE(("Device status from bit-reconstruction = 0x%x\n", bcmsdh_get_dstatus((void *)bus->sdh))); /* Check underflow also, WAR for PR55150 */ if ((dstatus & STATUS_F2_PKT_AVAILABLE) && (((dstatus & STATUS_UNDERFLOW)) == 0)) { bus->nextlen = ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT); /* '0' size with pkt-available interrupt is eqvt to 2048 bytes */ bus->nextlen = (bus->nextlen == 0) ? SPI_MAX_PKT_LEN : bus->nextlen; if (bus->dwordmode) bus->nextlen = bus->nextlen << 2; DHD_TRACE(("Entering %s: length to be read from gSPI = %d\n", __FUNCTION__, bus->nextlen)); } else { if (dstatus & STATUS_F2_PKT_AVAILABLE) DHD_ERROR(("Underflow during %s.\n", __FUNCTION__)); else DHD_ERROR(("False pkt-available intr.\n")); *finished = TRUE; return (maxframes - rxleft); } } #endif /* BCMSPI */ for (rxseq = bus->rx_seq, rxleft = maxframes; !bus->rxskip && rxleft && bus->dhd->busstate != DHD_BUS_DOWN; rxseq++, rxleft--) { #ifdef DHDTCPACK_SUP_DBG if (bus->dhd->tcpack_sup_mode != TCPACK_SUP_DELAYTX) { if (bus->dotxinrx == FALSE) DHD_ERROR(("%s %d: dotxinrx FALSE with tcpack_sub_mode %d\n", __FUNCTION__, __LINE__, bus->dhd->tcpack_sup_mode)); } #ifdef DEBUG_COUNTER else if (pktq_mlen(&bus->txq, ~bus->flowcontrol) > 0) { tack_tbl.cnt[bus->dotxinrx ? 6 : 7]++; } #endif /* DEBUG_COUNTER */ #endif /* DHDTCPACK_SUP_DBG */ /* tx more to improve rx performance */ if (TXCTLOK(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) { dhdsdio_sendpendctl(bus); } else if (bus->dotxinrx && (bus->clkstate == CLK_AVAIL) && !bus->fcstate && DATAOK(bus) && (pktq_mlen(&bus->txq, ~bus->flowcontrol) > bus->txinrx_thres)) { dhdsdio_sendfromq(bus, dhd_txbound); #ifdef DHDTCPACK_SUPPRESS /* In TCPACK_SUP_DELAYTX mode, do txinrx only if * 1. Any DATA packet to TX * 2. TCPACK to TCPDATA PSH packets. * in bus txq. */ bus->dotxinrx = (bus->dhd->tcpack_sup_mode == TCPACK_SUP_DELAYTX) ? FALSE : TRUE; #endif } /* Handle glomming separately */ if (bus->glom || bus->glomd) { uint8 cnt; DHD_GLOM(("%s: calling rxglom: glomd %p, glom %p\n", __FUNCTION__, bus->glomd, bus->glom)); cnt = dhdsdio_rxglom(bus, rxseq); DHD_GLOM(("%s: rxglom returned %d\n", __FUNCTION__, cnt)); rxseq += cnt - 1; rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1; continue; } /* Try doing single read if we can */ if (dhd_readahead && bus->nextlen) { uint16 nextlen = bus->nextlen; bus->nextlen = 0; if (bus->bus == SPI_BUS) { rdlen = len = nextlen; } else { rdlen = len = nextlen << 4; /* Pad read to blocksize for efficiency */ if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((rdlen + pad + firstread) < MAX_RX_DATASZ)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } } /* We use bus->rxctl buffer in WinXP for initial control pkt receives. * Later we use buffer-poll for data as well as control packets. * This is required because dhd receives full frame in gSPI unlike SDIO. * After the frame is received we have to distinguish whether it is data * or non-data frame. */ /* Allocate a packet buffer */ dhd_os_sdlock_rxq(bus->dhd); if (!(pkt = PKTGET(osh, rdlen + DHD_SDALIGN, FALSE))) { if (bus->bus == SPI_BUS) { bus->usebufpool = FALSE; bus->rxctl = bus->rxbuf; if (dhd_alignctl) { bus->rxctl += firstread; if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN))) bus->rxctl += (DHD_SDALIGN - pad); bus->rxctl -= firstread; } ASSERT(bus->rxctl >= bus->rxbuf); rxbuf = bus->rxctl; /* Read the entire frame */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, rxbuf, rdlen, NULL, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); #ifdef BCMSPI /* PR55150 WAR: Wait for next pkt-available interrupt for * further processing */ if (bcmsdh_get_dstatus((void *)bus->sdh) & STATUS_UNDERFLOW) { bus->nextlen = 0; *finished = TRUE; DHD_ERROR(("%s: read %d control bytes failed " "due to spi underflow\n", __FUNCTION__, rdlen)); /* dhd.rx_ctlerrs is higher level */ bus->rxc_errors++; dhd_os_sdunlock_rxq(bus->dhd); continue; } #endif /* BCMSPI */ /* Control frame failures need retransmission */ if (sdret < 0) { DHD_ERROR(("%s: read %d control bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); /* dhd.rx_ctlerrs is higher level */ bus->rxc_errors++; dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); continue; } } else { /* Give up on data, request rtx of events */ DHD_ERROR(("%s (nextlen): PKTGET failed: len %d rdlen %d " "expected rxseq %d\n", __FUNCTION__, len, rdlen, rxseq)); /* XXX Can't issue retry (NAK), frame not started. */ /* Just go try again w/normal header read */ dhd_os_sdunlock_rxq(bus->dhd); continue; } } else { if (bus->bus == SPI_BUS) bus->usebufpool = TRUE; ASSERT(!PKTLINK(pkt)); PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN); rxbuf = (uint8 *)PKTDATA(osh, pkt); /* Read the entire frame */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, rxbuf, rdlen, pkt, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); #ifdef BCMSPI /* PR55150 WAR: Wait for next pkt-available interrupt for further * processing */ if (bcmsdh_get_dstatus((void *)bus->sdh) & STATUS_UNDERFLOW) { bus->nextlen = 0; *finished = TRUE; DHD_ERROR(("%s (nextlen): read %d bytes failed due " "to spi underflow\n", __FUNCTION__, rdlen)); PKTFREE(bus->dhd->osh, pkt, FALSE); bus->dhd->rx_errors++; dhd_os_sdunlock_rxq(bus->dhd); continue; } #endif /* BCMSPI */ if (sdret < 0) { DHD_ERROR(("%s (nextlen): read %d bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); PKTFREE(bus->dhd->osh, pkt, FALSE); bus->dhd->rx_errors++; /* XXX Account for rtx?? */ dhd_os_sdunlock_rxq(bus->dhd); /* Force retry w/normal header read. Don't attempt NAK for * gSPI */ dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); continue; } } dhd_os_sdunlock_rxq(bus->dhd); /* Now check the header */ bcopy(rxbuf, bus->rxhdr, SDPCM_HDRLEN); /* Extract hardware header fields */ len = ltoh16_ua(bus->rxhdr); check = ltoh16_ua(bus->rxhdr + sizeof(uint16)); /* All zeros means readahead info was bad */ if (!(len|check)) { DHD_INFO(("%s (nextlen): read zeros in HW header???\n", __FUNCTION__)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); GSPI_PR55150_BAILOUT; continue; } /* Validate check bytes */ if ((uint16)~(len^check)) { DHD_ERROR(("%s (nextlen): HW hdr error: nextlen/len/check" " 0x%04x/0x%04x/0x%04x\n", __FUNCTION__, nextlen, len, check)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); bus->rx_badhdr++; dhdsdio_rxfail(bus, FALSE, FALSE); GSPI_PR55150_BAILOUT; continue; } /* Validate frame length */ if (len < SDPCM_HDRLEN) { /* XXX Might choose to allow length 4 for signaling */ DHD_ERROR(("%s (nextlen): HW hdr length invalid: %d\n", __FUNCTION__, len)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); GSPI_PR55150_BAILOUT; continue; } /* Check for consistency with readahead info */ #ifdef BCMSPI if (bus->bus == SPI_BUS) { if (bus->dwordmode) { uint16 spilen; spilen = ROUNDUP(len, 4); len_consistent = (nextlen != spilen); } else len_consistent = (nextlen != len); } else #endif /* BCMSPI */ len_consistent = (nextlen != (ROUNDUP(len, 16) >> 4)); if (len_consistent) { /* Mismatch, force retry w/normal header (may be >4K) */ DHD_ERROR(("%s (nextlen): mismatch, nextlen %d len %d rnd %d; " "expected rxseq %d\n", __FUNCTION__, nextlen, len, ROUNDUP(len, 16), rxseq)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); GSPI_PR55150_BAILOUT; continue; } /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); #ifdef BCMSPI /* Save the readahead length if there is one */ if (bus->bus == SPI_BUS) { /* Use reconstructed dstatus bits and find out readahead size */ dstatus = bcmsdh_get_dstatus((void *)bus->sdh); DHD_INFO(("Device status from bit-reconstruction = 0x%x\n", bcmsdh_get_dstatus((void *)bus->sdh))); if (dstatus & STATUS_F2_PKT_AVAILABLE) { bus->nextlen = ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT); bus->nextlen = (bus->nextlen == 0) ? SPI_MAX_PKT_LEN : bus->nextlen; if (bus->dwordmode) bus->nextlen = bus->nextlen << 2; DHD_INFO(("readahead len from gSPI = %d \n", bus->nextlen)); bus->dhd->rx_readahead_cnt ++; } else { bus->nextlen = 0; *finished = TRUE; } } else { #endif /* BCMSPI */ bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s (nextlen): got frame w/nextlen too large" " (%d), seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } bus->dhd->rx_readahead_cnt ++; #ifdef BCMSPI } #endif /* BCMSPI */ /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); delta = 0; if (~bus->flowcontrol & fcbits) { bus->fc_xoff++; delta = 1; } if (bus->flowcontrol & ~fcbits) { bus->fc_xon++; delta = 1; } if (delta) { bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { DHD_INFO(("%s (nextlen): rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x70) { #ifdef BCMSPI if ((bus->bus == SPI_BUS) && !(dstatus & STATUS_F2_RX_READY)) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_seq + 2; } else { #endif /* BCMSPI */ DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; #ifdef BCMSPI } #endif /* BCMSPI */ } bus->tx_max = txmax; #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Data", rxbuf, len); } else if (DHD_HDRS_ON()) { prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN); } #endif if (chan == SDPCM_CONTROL_CHANNEL) { if (bus->bus == SPI_BUS) { dhdsdio_read_control(bus, rxbuf, len, doff); if (bus->usebufpool) { dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); } continue; } else { DHD_ERROR(("%s (nextlen): readahead on control" " packet %d?\n", __FUNCTION__, seq)); /* Force retry w/normal header read */ bus->nextlen = 0; dhdsdio_rxfail(bus, FALSE, TRUE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); continue; } } if ((bus->bus == SPI_BUS) && !bus->usebufpool) { DHD_ERROR(("Received %d bytes on %d channel. Running out of " "rx pktbuf's or not yet malloced.\n", len, chan)); continue; } /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { DHD_ERROR(("%s (nextlen): bad data offset %d: HW len %d min %d\n", __FUNCTION__, doff, len, SDPCM_HDRLEN)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); ASSERT(0); dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* All done with this one -- now deliver the packet */ goto deliver; } /* gSPI frames should not be handled in fractions */ if (bus->bus == SPI_BUS) { break; } /* Read frame header (hardware and software) */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, bus->rxhdr, firstread, NULL, NULL, NULL); bus->f2rxhdrs++; ASSERT(sdret != BCME_PENDING); if (sdret < 0) { DHD_ERROR(("%s: RXHEADER FAILED: %d\n", __FUNCTION__, sdret)); bus->rx_hdrfail++; dhdsdio_rxfail(bus, TRUE, TRUE); continue; } #ifdef DHD_DEBUG if (DHD_BYTES_ON() || DHD_HDRS_ON()) { prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN); } #endif /* Extract hardware header fields */ len = ltoh16_ua(bus->rxhdr); check = ltoh16_ua(bus->rxhdr + sizeof(uint16)); /* All zeros means no more frames */ if (!(len|check)) { *finished = TRUE; break; } /* Validate check bytes */ if ((uint16)~(len^check)) { DHD_ERROR(("%s: HW hdr error: len/check 0x%04x/0x%04x\n", __FUNCTION__, len, check)); bus->rx_badhdr++; dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* Validate frame length */ if (len < SDPCM_HDRLEN) { /* XXX Might choose to allow length 4 for signaling */ DHD_ERROR(("%s: HW hdr length invalid: %d\n", __FUNCTION__, len)); continue; } /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { DHD_ERROR(("%s: Bad data offset %d: HW len %d, min %d seq %d\n", __FUNCTION__, doff, len, SDPCM_HDRLEN, seq)); bus->rx_badhdr++; ASSERT(0); dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* Save the readahead length if there is one */ bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s (nextlen): got frame w/nextlen too large (%d), seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); delta = 0; if (~bus->flowcontrol & fcbits) { bus->fc_xoff++; delta = 1; } if (bus->flowcontrol & ~fcbits) { bus->fc_xon++; delta = 1; } if (delta) { bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { DHD_INFO(("%s: rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x70) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; } bus->tx_max = txmax; /* Call a separate function for control frames */ if (chan == SDPCM_CONTROL_CHANNEL) { dhdsdio_read_control(bus, bus->rxhdr, len, doff); continue; } ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL) || (chan == SDPCM_TEST_CHANNEL) || (chan == SDPCM_GLOM_CHANNEL)); /* Length to read */ rdlen = (len > firstread) ? (len - firstread) : 0; /* May pad read to blocksize for efficiency */ if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((rdlen + pad + firstread) < MAX_RX_DATASZ)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } /* Satisfy length-alignment requirements */ if (forcealign && (rdlen & (ALIGNMENT - 1))) rdlen = ROUNDUP(rdlen, ALIGNMENT); if ((rdlen + firstread) > MAX_RX_DATASZ) { /* Too long -- skip this frame */ DHD_ERROR(("%s: too long: len %d rdlen %d\n", __FUNCTION__, len, rdlen)); bus->dhd->rx_errors++; bus->rx_toolong++; dhdsdio_rxfail(bus, FALSE, FALSE); continue; } dhd_os_sdlock_rxq(bus->dhd); if (!(pkt = PKTGET(osh, (rdlen + firstread + DHD_SDALIGN), FALSE))) { /* Give up on data, request rtx of events */ DHD_ERROR(("%s: PKTGET failed: rdlen %d chan %d\n", __FUNCTION__, rdlen, chan)); bus->dhd->rx_dropped++; dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, FALSE, RETRYCHAN(chan)); continue; } dhd_os_sdunlock_rxq(bus->dhd); ASSERT(!PKTLINK(pkt)); /* XXX Should check len for small packets in case we're done? */ /* Leave room for what we already read, and align remainder */ ASSERT(firstread < (PKTLEN(osh, pkt))); PKTPULL(osh, pkt, firstread); PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN); /* Read the remaining frame data */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, ((uint8 *)PKTDATA(osh, pkt)), rdlen, pkt, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); if (sdret < 0) { DHD_ERROR(("%s: read %d %s bytes failed: %d\n", __FUNCTION__, rdlen, ((chan == SDPCM_EVENT_CHANNEL) ? "event" : ((chan == SDPCM_DATA_CHANNEL) ? "data" : "test")), sdret)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->dhd->rx_errors++; /* XXX Account for rtx?? */ dhdsdio_rxfail(bus, TRUE, RETRYCHAN(chan)); continue; } /* Copy the already-read portion */ PKTPUSH(osh, pkt, firstread); bcopy(bus->rxhdr, PKTDATA(osh, pkt), firstread); #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Data", PKTDATA(osh, pkt), len); } #endif deliver: /* Save superframe descriptor and allocate packet frame */ if (chan == SDPCM_GLOM_CHANNEL) { if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) { DHD_GLOM(("%s: got glom descriptor, %d bytes:\n", __FUNCTION__, len)); #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("Glom Data", PKTDATA(osh, pkt), len); } #endif PKTSETLEN(osh, pkt, len); ASSERT(doff == SDPCM_HDRLEN); PKTPULL(osh, pkt, SDPCM_HDRLEN); bus->glomd = pkt; } else { DHD_ERROR(("%s: glom superframe w/o descriptor!\n", __FUNCTION__)); dhdsdio_rxfail(bus, FALSE, FALSE); } continue; } /* Fill in packet len and prio, deliver upward */ PKTSETLEN(osh, pkt, len); PKTPULL(osh, pkt, doff); #ifdef SDTEST /* Test channel packets are processed separately */ if (chan == SDPCM_TEST_CHANNEL) { dhdsdio_testrcv(bus, pkt, seq); continue; } #endif /* SDTEST */ if (PKTLEN(osh, pkt) == 0) { dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); continue; } else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pkt, reorder_info_buf, &reorder_info_len) != 0) { DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->dhd->rx_errors++; continue; } if (reorder_info_len) { /* Reordering info from the firmware */ dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf, reorder_info_len, &pkt, &pkt_count); if (pkt_count == 0) continue; } else { pkt_count = 1; } /* XXX Release the lock around the rx delivery: an OS (like Windows) * might call tx in the same thread context, resulting in deadlock. */ /* Unlock during rx call */ dhd_os_sdunlock(bus->dhd); dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, chan); dhd_os_sdlock(bus->dhd); } rxcount = maxframes - rxleft; #ifdef DHD_DEBUG /* Message if we hit the limit */ if (!rxleft && !sdtest) DHD_DATA(("%s: hit rx limit of %d frames\n", __FUNCTION__, maxframes)); else #endif /* DHD_DEBUG */ DHD_DATA(("%s: processed %d frames\n", __FUNCTION__, rxcount)); /* Back off rxseq if awaiting rtx, update rx_seq */ if (bus->rxskip) rxseq--; bus->rx_seq = rxseq; if (bus->reqbussleep) { dhdsdio_bussleep(bus, TRUE); bus->reqbussleep = FALSE; } bus->readframes = FALSE; return rxcount; } static uint32 dhdsdio_hostmail(dhd_bus_t *bus, uint32 *hmbd) { sdpcmd_regs_t *regs = bus->regs; uint32 intstatus = 0; uint32 hmb_data; uint8 fcbits; uint retries = 0; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Read mailbox data and ack that we did so */ R_SDREG(hmb_data, ®s->tohostmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_INT_ACK, ®s->tosbmailbox, retries); bus->f1regdata += 2; /* Dongle recomposed rx frames, accept them again */ if (hmb_data & HMB_DATA_NAKHANDLED) { DHD_INFO(("Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq)); /* XXX ASSERT(bus->rxskip); */ if (!bus->rxskip) { DHD_ERROR(("%s: unexpected NAKHANDLED!\n", __FUNCTION__)); } bus->rxskip = FALSE; intstatus |= FRAME_AVAIL_MASK(bus); } /* * DEVREADY does not occur with gSPI. */ if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) { bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT; if (bus->sdpcm_ver != SDPCM_PROT_VERSION) DHD_ERROR(("Version mismatch, dongle reports %d, expecting %d\n", bus->sdpcm_ver, SDPCM_PROT_VERSION)); else DHD_INFO(("Dongle ready, protocol version %d\n", bus->sdpcm_ver)); #ifndef BCMSPI /* make sure for the SDIO_DEVICE_RXDATAINT_MODE_1 corecontrol is proper */ if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) && (bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1)) { uint32 val; val = R_REG(bus->dhd->osh, &bus->regs->corecontrol); val &= ~CC_XMTDATAAVAIL_MODE; val |= CC_XMTDATAAVAIL_CTRL; W_REG(bus->dhd->osh, &bus->regs->corecontrol, val); val = R_REG(bus->dhd->osh, &bus->regs->corecontrol); } #endif /* BCMSPI */ #ifdef DHD_DEBUG /* Retrieve console state address now that firmware should have updated it */ { sdpcm_shared_t shared; if (dhdsdio_readshared(bus, &shared) == 0) bus->console_addr = shared.console_addr; } #endif /* DHD_DEBUG */ } /* * Flow Control has been moved into the RX headers and this out of band * method isn't used any more. Leave this here for possibly remaining backward * compatible with older dongles */ if (hmb_data & HMB_DATA_FC) { fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT; if (fcbits & ~bus->flowcontrol) bus->fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->fc_xon++; bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* At least print a message if FW halted */ if (hmb_data & HMB_DATA_FWHALT) { DHD_ERROR(("FIRMWARE HALTED\n")); dhdsdio_checkdied(bus, NULL, 0); } /* Shouldn't be any others */ if (hmb_data & ~(HMB_DATA_DEVREADY | HMB_DATA_FWHALT | HMB_DATA_NAKHANDLED | HMB_DATA_FC | HMB_DATA_FWREADY | HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK)) { DHD_ERROR(("Unknown mailbox data content: 0x%02x\n", hmb_data)); } if (hmbd) { *hmbd = hmb_data; } return intstatus; } static bool dhdsdio_dpc(dhd_bus_t *bus) { bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint32 intstatus, newstatus = 0; uint retries = 0; uint rxlimit = dhd_rxbound; /* Rx frames to read before resched */ uint txlimit = dhd_txbound; /* Tx frames to send before resched */ uint framecnt = 0; /* Temporary counter of tx/rx frames */ bool rxdone = TRUE; /* Flag for no more read data */ bool resched = FALSE; /* Flag indicating resched wanted */ unsigned long flags; #ifdef DEBUG_DPC_THREAD_WATCHDOG bool is_resched_by_readframe = FALSE; #endif /* DEBUG_DPC_THREAD_WATCHDOG */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); dhd_os_sdlock(bus->dhd); DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); if (bus->dhd->busstate == DHD_BUS_DOWN) { DHD_ERROR(("%s: Bus down, ret\n", __FUNCTION__)); bus->intstatus = 0; DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); dhd_os_sdunlock(bus->dhd); return 0; } DHD_BUS_BUSY_SET_IN_DPC(bus->dhd); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); /* Start with leftover status bits */ intstatus = bus->intstatus; if (!SLPAUTO_ENAB(bus) && !KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); goto exit; } /* If waiting for HTAVAIL, check status */ if (!SLPAUTO_ENAB(bus) && (bus->clkstate == CLK_PENDING)) { int err; uint8 clkctl, devctl = 0; #ifdef DHD_DEBUG /* Check for inconsistent device control */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: error reading DEVCTL: %d\n", __FUNCTION__, err)); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; } else { ASSERT(devctl & SBSDIO_DEVCTL_CA_INT_ONLY); } #endif /* DHD_DEBUG */ /* Read CSR, if clock on switch to AVAIL, else ignore */ clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { DHD_ERROR(("%s: error reading CSR: %d\n", __FUNCTION__, err)); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; } DHD_INFO(("DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl)); if (SBSDIO_HTAV(clkctl)) { devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: error reading DEVCTL: %d\n", __FUNCTION__, err)); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; } devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); if (err) { DHD_ERROR(("%s: error writing DEVCTL: %d\n", __FUNCTION__, err)); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; } bus->clkstate = CLK_AVAIL; } else { goto clkwait; } } BUS_WAKE(bus); /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, TRUE); if (bus->clkstate != CLK_AVAIL) goto clkwait; /* Pending interrupt indicates new device status */ if (bus->ipend) { bus->ipend = FALSE; #if defined(BT_OVER_SDIO) bcmsdh_btsdio_process_f3_intr(); #endif /* defined (BT_OVER_SDIO) */ R_SDREG(newstatus, ®s->intstatus, retries); bus->f1regdata++; if (bcmsdh_regfail(bus->sdh)) newstatus = 0; newstatus &= bus->hostintmask; bus->fcstate = !!(newstatus & I_HMB_FC_STATE); if (newstatus) { bus->f1regdata++; #ifndef BCMSPI if ((bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_0) && (newstatus == I_XMTDATA_AVAIL)) { } else #endif /* BCMSPI */ W_SDREG(newstatus, ®s->intstatus, retries); } } /* Merge new bits with previous */ intstatus |= newstatus; bus->intstatus = 0; /* Handle flow-control change: read new state in case our ack * crossed another change interrupt. If change still set, assume * FC ON for safety, let next loop through do the debounce. */ if (intstatus & I_HMB_FC_CHANGE) { intstatus &= ~I_HMB_FC_CHANGE; W_SDREG(I_HMB_FC_CHANGE, ®s->intstatus, retries); R_SDREG(newstatus, ®s->intstatus, retries); bus->f1regdata += 2; bus->fcstate = !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE)); intstatus |= (newstatus & bus->hostintmask); } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { uint32 hmbdata = 0; intstatus &= ~I_HMB_HOST_INT; intstatus |= dhdsdio_hostmail(bus, &hmbdata); } #ifdef DHD_UCODE_DOWNLOAD exit_ucode: #endif /* DHD_UCODE_DOWNLOAD */ /* Just being here means nothing more to do for chipactive */ if (intstatus & I_CHIPACTIVE) { /* ASSERT(bus->clkstate == CLK_AVAIL); */ intstatus &= ~I_CHIPACTIVE; } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { intstatus &= ~I_HMB_HOST_INT; intstatus |= dhdsdio_hostmail(bus, NULL); } /* Generally don't ask for these, can get CRC errors... */ /* XXX Besides noting the error, should we ABORT/TERM? */ if (intstatus & I_WR_OOSYNC) { DHD_ERROR(("Dongle reports WR_OOSYNC\n")); intstatus &= ~I_WR_OOSYNC; } if (intstatus & I_RD_OOSYNC) { DHD_ERROR(("Dongle reports RD_OOSYNC\n")); intstatus &= ~I_RD_OOSYNC; } /* XXX Should reset or something here... */ if (intstatus & I_SBINT) { DHD_ERROR(("Dongle reports SBINT\n")); intstatus &= ~I_SBINT; } /* Would be active due to wake-wlan in gSPI */ if (intstatus & I_CHIPACTIVE) { DHD_INFO(("Dongle reports CHIPACTIVE\n")); intstatus &= ~I_CHIPACTIVE; } if (intstatus & I_HMB_FC_STATE) { DHD_INFO(("Dongle reports HMB_FC_STATE\n")); intstatus &= ~I_HMB_FC_STATE; } /* Ignore frame indications if rxskip is set */ if (bus->rxskip) { intstatus &= ~FRAME_AVAIL_MASK(bus); } /* On frame indication, read available frames */ if (PKT_AVAILABLE(bus, intstatus)) { framecnt = dhdsdio_readframes(bus, rxlimit, &rxdone); if (rxdone || bus->rxskip) intstatus &= ~FRAME_AVAIL_MASK(bus); rxlimit -= MIN(framecnt, rxlimit); } /* Keep still-pending events for next scheduling */ bus->intstatus = intstatus; clkwait: /* Re-enable interrupts to detect new device events (mailbox, rx frame) * or clock availability. (Allows tx loop to check ipend if desired.) * (Unless register access seems hosed, as we may not be able to ACK...) */ if (bus->intr && bus->intdis && !bcmsdh_regfail(sdh)) { DHD_INTR(("%s: enable SDIO interrupts, rxdone %d framecnt %d\n", __FUNCTION__, rxdone, framecnt)); bus->intdis = FALSE; #if defined(OOB_INTR_ONLY) bcmsdh_oob_intr_set(bus->sdh, TRUE); #endif /* defined(OOB_INTR_ONLY) */ #if !defined(NDIS) bcmsdh_intr_enable(sdh); #endif /* !defined(NDIS) */ if (*dhd_spi_lockcount == 0) bcmsdh_oob_intr_set(bus->sdh, TRUE); } #if defined(OOB_INTR_ONLY) && !defined(HW_OOB) /* In case of SW-OOB(using edge trigger), * Check interrupt status in the dongle again after enable irq on the host. * and rechedule dpc if interrupt is pended in the dongle. * There is a chance to miss OOB interrupt while irq is disabled on the host. * No need to do this with HW-OOB(level trigger) */ R_SDREG(newstatus, ®s->intstatus, retries); if (bcmsdh_regfail(bus->sdh)) newstatus = 0; if (newstatus & bus->hostintmask) { bus->ipend = TRUE; resched = TRUE; } #endif /* defined(OOB_INTR_ONLY) && !defined(HW_OOB) */ #ifdef PROP_TXSTATUS dhd_wlfc_commit_packets(bus->dhd, (f_commitpkt_t)dhd_bus_txdata, (void *)bus, NULL, FALSE); #endif if (TXCTLOK(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) dhdsdio_sendpendctl(bus); /* Send queued frames (limit 1 if rx may still be pending) */ else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && DATAOK(bus)) { framecnt = rxdone ? txlimit : MIN(txlimit, dhd_txminmax); framecnt = dhdsdio_sendfromq(bus, framecnt); txlimit -= framecnt; } /* Resched the DPC if ctrl cmd is pending on bus credit */ if (bus->ctrl_frame_stat) resched = TRUE; /* Resched if events or tx frames are pending, else await next interrupt */ /* On failed register access, all bets are off: no resched or interrupts */ if ((bus->dhd->busstate == DHD_BUS_DOWN) || bcmsdh_regfail(sdh)) { if ((bus->sih && bus->sih->buscorerev >= 12) && !(dhdsdio_sleepcsr_get(bus) & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { /* Bus failed because of KSO */ DHD_ERROR(("%s: Bus failed due to KSO\n", __FUNCTION__)); bus->kso = FALSE; } else { DHD_ERROR(("%s: failed backplane access over SDIO, halting operation\n", __FUNCTION__)); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; bus->intstatus = 0; /* XXX Under certain conditions it may be reasonable to enable interrupts. * E.g. if we get occasional 'bcmsdh_regfail' we should be able to continue * operation. May want to make the decision to enable or not based on count * of failures, so in case of bus lock up we avoid continuous interrupt. */ } } else if (bus->clkstate == CLK_PENDING) { /* Awaiting I_CHIPACTIVE; don't resched */ } else if (bus->intstatus || bus->ipend || (!bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && DATAOK(bus)) || PKT_AVAILABLE(bus, bus->intstatus)) { /* Read multiple frames */ resched = TRUE; } bus->dpc_sched = resched; /* If we're done for now, turn off clock request. */ /* XXX Leave request on if just waiting for new credit? */ if ((bus->idletime == DHD_IDLE_IMMEDIATE) && (bus->clkstate != CLK_PENDING) && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } exit: if (!resched && dhd_dpcpoll) { if (dhdsdio_readframes(bus, dhd_rxbound, &rxdone) != 0) { resched = TRUE; #ifdef DEBUG_DPC_THREAD_WATCHDOG is_resched_by_readframe = TRUE; #endif /* DEBUG_DPC_THREAD_WATCHDOG */ } } dhd_os_sdunlock(bus->dhd); #ifdef DEBUG_DPC_THREAD_WATCHDOG if (bus->dhd->dhd_bug_on) { DHD_INFO(("%s: resched = %d ctrl_frame_stat = %d intstatus 0x%08x" " ipend = %d pktq_mlen = %d is_resched_by_readframe = %d \n", __FUNCTION__, resched, bus->ctrl_frame_stat, bus->intstatus, bus->ipend, pktq_mlen(&bus->txq, ~bus->flowcontrol), is_resched_by_readframe)); bus->dhd->dhd_bug_on = FALSE; } #endif /* DEBUG_DPC_THREAD_WATCHDOG */ DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_BUS_BUSY_CLEAR_IN_DPC(bus->dhd); dhd_os_busbusy_wake(bus->dhd); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); return resched; } bool dhd_bus_dpc(struct dhd_bus *bus) { bool resched; /* Call the DPC directly. */ DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__)); resched = dhdsdio_dpc(bus); return resched; } void dhdsdio_isr(void *arg) { dhd_bus_t *bus = (dhd_bus_t*)arg; bcmsdh_info_t *sdh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!bus) { DHD_ERROR(("%s : bus is null pointer , exit \n", __FUNCTION__)); return; } sdh = bus->sdh; if (bus->dhd->busstate == DHD_BUS_DOWN) { DHD_ERROR(("%s : bus is down. we have nothing to do\n", __FUNCTION__)); return; } /* XXX Overall operation: * XXX - Mask further interrupts * XXX - Read/ack intstatus * XXX - Take action based on bits and state * XXX - Reenable interrupts (as per state) */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Count the interrupt call */ bus->intrcount++; bus->ipend = TRUE; /* Shouldn't get this interrupt if we're sleeping? */ if (!SLPAUTO_ENAB(bus)) { if (bus->sleeping) { DHD_ERROR(("INTERRUPT WHILE SLEEPING??\n")); return; } else if (!KSO_ENAB(bus)) { DHD_ERROR(("ISR in devsleep 1\n")); } } /* Disable additional interrupts (is this needed now)? */ if (bus->intr) { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); } else { DHD_ERROR(("dhdsdio_isr() w/o interrupt configured!\n")); } bcmsdh_oob_intr_set(bus->sdh, FALSE); #if !defined(NDIS) bcmsdh_intr_disable(sdh); /* XXX New API: bcmsdh_intr_mask()? */ #endif /* !defined(NDIS) */ bus->intdis = TRUE; #if defined(SDIO_ISR_THREAD) DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__)); DHD_OS_WAKE_LOCK(bus->dhd); dhdsdio_dpc(bus); DHD_OS_WAKE_UNLOCK(bus->dhd); #else #if !defined(NDIS) bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); #endif /* !defined(NDIS) */ #endif /* defined(SDIO_ISR_THREAD) */ } #ifdef SDTEST static void dhdsdio_pktgen_init(dhd_bus_t *bus) { /* Default to specified length, or full range */ if (dhd_pktgen_len) { bus->pktgen_maxlen = MIN(dhd_pktgen_len, MAX_PKTGEN_LEN); bus->pktgen_minlen = bus->pktgen_maxlen; } else { bus->pktgen_maxlen = MAX_PKTGEN_LEN; bus->pktgen_minlen = 0; } bus->pktgen_len = (uint16)bus->pktgen_minlen; /* Default to per-watchdog burst with 10s print time */ bus->pktgen_freq = 1; bus->pktgen_print = dhd_watchdog_ms ? (10000 / dhd_watchdog_ms) : 0; bus->pktgen_count = (dhd_pktgen * dhd_watchdog_ms + 999) / 1000; /* Default to echo mode */ bus->pktgen_mode = DHD_PKTGEN_ECHO; bus->pktgen_stop = 1; } static void dhdsdio_pktgen(dhd_bus_t *bus) { void *pkt; uint8 *data; uint pktcount; uint fillbyte; osl_t *osh = bus->dhd->osh; uint16 len; #if defined(LINUX) ulong time_lapse; uint sent_pkts; uint rcvd_pkts; #endif /* LINUX */ /* Display current count if appropriate */ if (bus->pktgen_print && (++bus->pktgen_ptick >= bus->pktgen_print)) { bus->pktgen_ptick = 0; printf("%s: send attempts %d, rcvd %d, errors %d\n", __FUNCTION__, bus->pktgen_sent, bus->pktgen_rcvd, bus->pktgen_fail); #if defined(LINUX) /* Print throughput stats only for constant length packet runs */ if (bus->pktgen_minlen == bus->pktgen_maxlen) { time_lapse = jiffies - bus->pktgen_prev_time; bus->pktgen_prev_time = jiffies; sent_pkts = bus->pktgen_sent - bus->pktgen_prev_sent; bus->pktgen_prev_sent = bus->pktgen_sent; rcvd_pkts = bus->pktgen_rcvd - bus->pktgen_prev_rcvd; bus->pktgen_prev_rcvd = bus->pktgen_rcvd; printf("%s: Tx Throughput %d kbps, Rx Throughput %d kbps\n", __FUNCTION__, (sent_pkts * bus->pktgen_len / jiffies_to_msecs(time_lapse)) * 8, (rcvd_pkts * bus->pktgen_len / jiffies_to_msecs(time_lapse)) * 8); } #endif /* LINUX */ } /* For recv mode, just make sure dongle has started sending */ if (bus->pktgen_mode == DHD_PKTGEN_RECV) { if (bus->pktgen_rcv_state == PKTGEN_RCV_IDLE) { bus->pktgen_rcv_state = PKTGEN_RCV_ONGOING; dhdsdio_sdtest_set(bus, bus->pktgen_total); } return; } /* Otherwise, generate or request the specified number of packets */ for (pktcount = 0; pktcount < bus->pktgen_count; pktcount++) { /* Stop if total has been reached */ if (bus->pktgen_total && (bus->pktgen_sent >= bus->pktgen_total)) { bus->pktgen_count = 0; break; } /* Allocate an appropriate-sized packet */ if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) { len = SDPCM_TEST_PKT_CNT_FLD_LEN; } else { len = bus->pktgen_len; } if (!(pkt = PKTGET(osh, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN), TRUE))) {; DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__)); break; } PKTALIGN(osh, pkt, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN), DHD_SDALIGN); data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; /* Write test header cmd and extra based on mode */ switch (bus->pktgen_mode) { case DHD_PKTGEN_ECHO: *data++ = SDPCM_TEST_ECHOREQ; *data++ = (uint8)bus->pktgen_sent; break; case DHD_PKTGEN_SEND: *data++ = SDPCM_TEST_DISCARD; *data++ = (uint8)bus->pktgen_sent; break; case DHD_PKTGEN_RXBURST: *data++ = SDPCM_TEST_BURST; *data++ = (uint8)bus->pktgen_count; /* Just for backward compatability */ break; default: DHD_ERROR(("Unrecognized pktgen mode %d\n", bus->pktgen_mode)); PKTFREE(osh, pkt, TRUE); bus->pktgen_count = 0; return; } /* Write test header length field */ *data++ = (bus->pktgen_len >> 0); *data++ = (bus->pktgen_len >> 8); /* Write frame count in a 4 byte field adjucent to SDPCM test header for * burst mode */ if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) { *data++ = (uint8)(bus->pktgen_count >> 0); *data++ = (uint8)(bus->pktgen_count >> 8); *data++ = (uint8)(bus->pktgen_count >> 16); *data++ = (uint8)(bus->pktgen_count >> 24); } else { /* Then fill in the remainder -- N/A for burst */ for (fillbyte = 0; fillbyte < len; fillbyte++) *data++ = SDPCM_TEST_FILL(fillbyte, (uint8)bus->pktgen_sent); } #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; prhex("dhdsdio_pktgen: Tx Data", data, PKTLEN(osh, pkt) - SDPCM_HDRLEN); } #endif /* Send it */ if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) != BCME_OK) { bus->pktgen_fail++; if (bus->pktgen_stop && bus->pktgen_stop == bus->pktgen_fail) bus->pktgen_count = 0; } bus->pktgen_sent++; /* Bump length if not fixed, wrap at max */ if (++bus->pktgen_len > bus->pktgen_maxlen) bus->pktgen_len = (uint16)bus->pktgen_minlen; /* Special case for burst mode: just send one request! */ if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) break; } } static void dhdsdio_sdtest_set(dhd_bus_t *bus, uint count) { void *pkt; uint8 *data; osl_t *osh = bus->dhd->osh; /* Allocate the packet */ if (!(pkt = PKTGET(osh, SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + SDPCM_TEST_PKT_CNT_FLD_LEN + DHD_SDALIGN, TRUE))) { DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__)); return; } PKTALIGN(osh, pkt, (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + SDPCM_TEST_PKT_CNT_FLD_LEN), DHD_SDALIGN); data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; /* Fill in the test header */ *data++ = SDPCM_TEST_SEND; *data++ = (count > 0)?TRUE:FALSE; *data++ = (bus->pktgen_maxlen >> 0); *data++ = (bus->pktgen_maxlen >> 8); *data++ = (uint8)(count >> 0); *data++ = (uint8)(count >> 8); *data++ = (uint8)(count >> 16); *data++ = (uint8)(count >> 24); /* Send it */ if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) != BCME_OK) bus->pktgen_fail++; } static void dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq) { osl_t *osh = bus->dhd->osh; uint8 *data; uint pktlen; uint8 cmd; uint8 extra; uint16 len; uint16 offset; /* Check for min length */ if ((pktlen = PKTLEN(osh, pkt)) < SDPCM_TEST_HDRLEN) { DHD_ERROR(("dhdsdio_restrcv: toss runt frame, pktlen %d\n", pktlen)); PKTFREE(osh, pkt, FALSE); return; } /* Extract header fields */ data = PKTDATA(osh, pkt); cmd = *data++; extra = *data++; len = *data++; len += *data++ << 8; DHD_TRACE(("%s:cmd:%d, xtra:%d,len:%d\n", __FUNCTION__, cmd, extra, len)); /* Check length for relevant commands */ if (cmd == SDPCM_TEST_DISCARD || cmd == SDPCM_TEST_ECHOREQ || cmd == SDPCM_TEST_ECHORSP) { if (pktlen != len + SDPCM_TEST_HDRLEN) { DHD_ERROR(("dhdsdio_testrcv: frame length mismatch, pktlen %d seq %d" " cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len)); PKTFREE(osh, pkt, FALSE); return; } } /* Process as per command */ switch (cmd) { case SDPCM_TEST_ECHOREQ: /* Rx->Tx turnaround ok (even on NDIS w/current implementation) */ *(uint8 *)(PKTDATA(osh, pkt)) = SDPCM_TEST_ECHORSP; if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) == BCME_OK) { bus->pktgen_sent++; } else { bus->pktgen_fail++; PKTFREE(osh, pkt, FALSE); } bus->pktgen_rcvd++; break; case SDPCM_TEST_ECHORSP: if (bus->ext_loop) { PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; } for (offset = 0; offset < len; offset++, data++) { if (*data != SDPCM_TEST_FILL(offset, extra)) { DHD_ERROR(("dhdsdio_testrcv: echo data mismatch: " "offset %d (len %d) expect 0x%02x rcvd 0x%02x\n", offset, len, SDPCM_TEST_FILL(offset, extra), *data)); break; } } PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; case SDPCM_TEST_DISCARD: { int i = 0; uint8 *prn = data; uint8 testval = extra; for (i = 0; i < len; i++) { if (*prn != testval) { DHD_ERROR(("DIErr@Pkt#:%d,Ix:%d, expected:0x%x, got:0x%x\n", i, bus->pktgen_rcvd_rcvsession, testval, *prn)); prn++; testval++; } } } PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; case SDPCM_TEST_BURST: case SDPCM_TEST_SEND: default: DHD_INFO(("dhdsdio_testrcv: unsupported or unknown command, pktlen %d seq %d" " cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len)); PKTFREE(osh, pkt, FALSE); break; } /* For recv mode, stop at limit (and tell dongle to stop sending) */ if (bus->pktgen_mode == DHD_PKTGEN_RECV) { if (bus->pktgen_rcv_state != PKTGEN_RCV_IDLE) { bus->pktgen_rcvd_rcvsession++; if (bus->pktgen_total && (bus->pktgen_rcvd_rcvsession >= bus->pktgen_total)) { bus->pktgen_count = 0; DHD_ERROR(("Pktgen:rcv test complete!\n")); bus->pktgen_rcv_state = PKTGEN_RCV_IDLE; dhdsdio_sdtest_set(bus, FALSE); bus->pktgen_rcvd_rcvsession = 0; } } } } #endif /* SDTEST */ int dhd_bus_oob_intr_register(dhd_pub_t *dhdp) { int err = 0; err = bcmsdh_oob_intr_register(dhdp->bus->sdh, dhdsdio_isr, dhdp->bus); return err; } void dhd_bus_oob_intr_unregister(dhd_pub_t *dhdp) { bcmsdh_oob_intr_unregister(dhdp->bus->sdh); } void dhd_bus_oob_intr_set(dhd_pub_t *dhdp, bool enable) { bcmsdh_oob_intr_set(dhdp->bus->sdh, enable); } int dhd_bus_get_oob_irq_num(dhd_pub_t *dhdp) { int irq_num = 0; irq_num = bcmsdh_get_oob_intr_num(dhdp->bus->sdh); return irq_num; } #ifdef LINUX struct device *dhd_bus_to_dev(struct dhd_bus *bus) { return (struct device *)bcmsdh_get_dev(bus->sdh); } #endif /* LINUX */ void dhd_bus_dev_pm_stay_awake(dhd_pub_t *dhdpub) { #ifdef LINUX bcmsdh_dev_pm_stay_awake(dhdpub->bus->sdh); #endif } void dhd_bus_dev_pm_relax(dhd_pub_t *dhdpub) { #ifdef LINUX bcmsdh_dev_relax(dhdpub->bus->sdh); #endif } bool dhd_bus_dev_pm_enabled(dhd_pub_t *dhdpub) { bool enabled = FALSE; #ifdef LINUX enabled = bcmsdh_dev_pm_enabled(dhdpub->bus->sdh); #endif return enabled; } extern bool dhd_bus_watchdog(dhd_pub_t *dhdp) { dhd_bus_t *bus; unsigned long flags; DHD_TIMER(("%s: Enter\n", __FUNCTION__)); bus = dhdp->bus; if (bus->dhd->dongle_reset) return FALSE; if (bus->dhd->hang_was_sent) { dhd_os_wd_timer(bus->dhd, 0); return FALSE; } /* Ignore the timer if simulating bus down */ if (!SLPAUTO_ENAB(bus) && bus->sleeping) return FALSE; DHD_LINUX_GENERAL_LOCK(dhdp, flags); if (DHD_BUS_CHECK_DOWN_OR_DOWN_IN_PROGRESS(dhdp) || DHD_BUS_CHECK_SUSPEND_OR_SUSPEND_IN_PROGRESS(dhdp)) { DHD_LINUX_GENERAL_UNLOCK(dhdp, flags); return FALSE; } DHD_BUS_BUSY_SET_IN_WD(dhdp); DHD_LINUX_GENERAL_UNLOCK(dhdp, flags); dhd_os_sdlock(bus->dhd); /* Poll period: check device if appropriate. */ if (!SLPAUTO_ENAB(bus) && (bus->poll && (++bus->polltick >= bus->pollrate))) { uint32 intstatus = 0; /* Reset poll tick */ bus->polltick = 0; /* Check device if no interrupts */ if (!bus->intr || (bus->intrcount == bus->lastintrs)) { #ifdef DEBUG_LOST_INTERRUPTS uint retries = 0; bool hostpending; uint8 devena, devpend; /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); hostpending = bcmsdh_intr_pending(bus->sdh); devena = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTEN, NULL); devpend = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTPEND, NULL); R_SDREG(intstatus, &bus->regs->intstatus, retries); intstatus &= bus->hostintmask; if (intstatus && !hostpending) { DHD_ERROR(("%s: !hpend: ena 0x%02x pend 0x%02x intstatus 0x%08x\n", __FUNCTION__, devena, devpend, intstatus)); } #endif /* DEBUG_LOST_INTERRUPTS */ #ifndef BCMSPI /* XXX Needs to be fixed for polling operation (in CE) */ if (!bus->dpc_sched) { uint8 devpend; devpend = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTPEND, NULL); intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2); } #else if (!bus->dpc_sched) { uint32 devpend; devpend = bcmsdh_cfg_read_word(bus->sdh, SDIO_FUNC_0, SPID_STATUS_REG, NULL); intstatus = devpend & STATUS_F2_PKT_AVAILABLE; } #endif /* !BCMSPI */ /* If there is something, make like the ISR and schedule the DPC */ if (intstatus) { bus->pollcnt++; bus->ipend = TRUE; if (bus->intr) { bcmsdh_intr_disable(bus->sdh); } bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } /* Update interrupt tracking */ bus->lastintrs = bus->intrcount; } #ifdef DHD_DEBUG /* Poll for console output periodically */ if (dhdp->busstate == DHD_BUS_DATA && dhdp->dhd_console_ms != 0) { bus->console.count += dhd_watchdog_ms; if (bus->console.count >= dhdp->dhd_console_ms) { bus->console.count -= dhdp->dhd_console_ms; /* Make sure backplane clock is on */ if (SLPAUTO_ENAB(bus)) dhdsdio_bussleep(bus, FALSE); else dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); if (dhdsdio_readconsole(bus) < 0) dhdp->dhd_console_ms = 0; /* On error, stop trying */ } } #endif /* DHD_DEBUG */ #ifdef SDTEST /* Generate packets if configured */ if (bus->pktgen_count && (++bus->pktgen_tick >= bus->pktgen_freq)) { /* Make sure backplane clock is on */ if (SLPAUTO_ENAB(bus)) dhdsdio_bussleep(bus, FALSE); else dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); bus->pktgen_tick = 0; dhdsdio_pktgen(bus); } #endif /* On idle timeout clear activity flag and/or turn off clock */ #ifdef DHD_USE_IDLECOUNT if (bus->activity) bus->activity = FALSE; else { bus->idlecount++; /* * If the condition to switch off the clock is reached And if * BT is inactive (in case of BT_OVER_SDIO build) turn off clk. * * Consider the following case, DHD is configured with * 1) idletime == DHD_IDLE_IMMEDIATE * 2) BT is the last user of the clock * We cannot disable the clock from __dhdsdio_clk_disable * since WLAN might be using it. If WLAN is active then * from the respective function/context after doing the job * the clk is turned off. * But if WLAN is actually inactive then the watchdog should * disable the clock. So the condition check below should be * bus->idletime != 0 instead of idletime == 0 */ if ((bus->idletime != 0) && (bus->idlecount >= bus->idletime) && NO_OTHER_ACTIVE_BUS_USER(bus)) { DHD_TIMER(("%s: DHD Idle state!!\n", __FUNCTION__)); if (SLPAUTO_ENAB(bus)) { if (dhdsdio_bussleep(bus, TRUE) != BCME_BUSY) dhd_os_wd_timer(bus->dhd, 0); } else dhdsdio_clkctl(bus, CLK_NONE, FALSE); bus->idlecount = 0; } } #else if ((bus->idletime != 0) && (bus->clkstate == CLK_AVAIL) && NO_OTHER_ACTIVE_BUS_USER(bus)) { if (++bus->idlecount >= bus->idletime) { bus->idlecount = 0; if (bus->activity) { bus->activity = FALSE; if (SLPAUTO_ENAB(bus)) { if (!bus->readframes) dhdsdio_bussleep(bus, TRUE); else bus->reqbussleep = TRUE; } else { dhdsdio_clkctl(bus, CLK_NONE, FALSE); } } } } #endif /* DHD_USE_IDLECOUNT */ dhd_os_sdunlock(bus->dhd); DHD_LINUX_GENERAL_LOCK(dhdp, flags); DHD_BUS_BUSY_CLEAR_IN_WD(dhdp); dhd_os_busbusy_wake(dhdp); DHD_LINUX_GENERAL_UNLOCK(dhdp, flags); return bus->ipend; } extern int dhd_bus_console_in(dhd_pub_t *dhdp, uchar *msg, uint msglen) { dhd_bus_t *bus = dhdp->bus; uint32 addr, val; int rv; void *pkt; /* Address could be zero if CONSOLE := 0 in dongle Makefile */ if (bus->console_addr == 0) return BCME_UNSUPPORTED; /* Exclusive bus access */ dhd_os_sdlock(bus->dhd); /* Don't allow input if dongle is in reset */ if (bus->dhd->dongle_reset) { dhd_os_sdunlock(bus->dhd); return BCME_NOTREADY; } /* Request clock to allow SDIO accesses */ BUS_WAKE(bus); /* No pend allowed since txpkt is called later, ht clk has to be on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Zero cbuf_index */ addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf_idx); /* handle difference in definition of hnd_log_t in certain branches */ if (dhdp->wlc_ver_major < 14) { addr -= sizeof(uint32); } val = htol32(0); if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0) goto done; /* Write message into cbuf */ addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf); /* handle difference in definition of hnd_log_t in certain branches */ if (dhdp->wlc_ver_major < 14) { addr -= sizeof(uint32); } if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0) goto done; /* Write length into vcons_in */ addr = bus->console_addr + OFFSETOF(hnd_cons_t, vcons_in); val = htol32(msglen); if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0) goto done; /* Bump dongle by sending an empty packet on the event channel. * sdpcm_sendup (RX) checks for virtual console input. */ if ((pkt = PKTGET(bus->dhd->osh, 4 + SDPCM_RESERVE, TRUE)) != NULL) rv = dhdsdio_txpkt(bus, SDPCM_EVENT_CHANNEL, &pkt, 1, TRUE); done: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched && NO_OTHER_ACTIVE_BUS_USER(bus)) { bus->activity = FALSE; dhdsdio_bussleep(bus, TRUE); dhdsdio_clkctl(bus, CLK_NONE, FALSE); } dhd_os_sdunlock(bus->dhd); return rv; } #if defined(DHD_DEBUG) && !defined(BCMSDIOLITE) static void dhd_dump_cis(uint fn, uint8 *cis) { uint byte, tag, tdata; DHD_INFO(("Function %d CIS:\n", fn)); for (tdata = byte = 0; byte < SBSDIO_CIS_SIZE_LIMIT; byte++) { if ((byte % 16) == 0) DHD_INFO((" ")); DHD_INFO(("%02x ", cis[byte])); if ((byte % 16) == 15) DHD_INFO(("\n")); if (!tdata--) { tag = cis[byte]; if (tag == 0xff) break; else if (!tag) tdata = 0; else if ((byte + 1) < SBSDIO_CIS_SIZE_LIMIT) tdata = cis[byte + 1] + 1; else DHD_INFO(("]")); } } if ((byte % 16) != 15) DHD_INFO(("\n")); } #endif /* DHD_DEBUG */ static bool dhdsdio_chipmatch(uint16 chipid) { if (chipid == BCM4335_CHIP_ID) return TRUE; if (chipid == BCM4339_CHIP_ID) return TRUE; if (BCM4345_CHIP(chipid)) return TRUE; if (chipid == BCM4350_CHIP_ID) return TRUE; if (chipid == BCM4354_CHIP_ID) return TRUE; if (chipid == BCM4358_CHIP_ID) return TRUE; if (chipid == BCM43430_CHIP_ID) return TRUE; if (chipid == BCM43018_CHIP_ID) return TRUE; if (BCM4349_CHIP(chipid)) return TRUE; if (chipid == BCM4364_CHIP_ID) return TRUE; if (chipid == BCM4381_CHIP_ID) { return TRUE; } if (chipid == BCM43012_CHIP_ID) return TRUE; if (chipid == BCM43014_CHIP_ID) return TRUE; if (chipid == BCM43013_CHIP_ID) return TRUE; if (chipid == BCM4369_CHIP_ID) return TRUE; if (BCM4378_CHIP(chipid)) { return TRUE; } if (chipid == BCM4362_CHIP_ID) return TRUE; if (chipid == BCM43751_CHIP_ID) return TRUE; if (chipid == BCM43752_CHIP_ID) return TRUE; return FALSE; } static void * dhdsdio_probe(uint16 venid, uint16 devid, uint16 bus_no, uint16 slot, uint16 func, uint bustype, void *regsva, osl_t * osh, void *sdh) { int ret; dhd_bus_t *bus; #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (mutex_is_locked(&_dhd_sdio_mutex_lock_) == 0) { DHD_ERROR(("%s : no mutex held. set lock\n", __FUNCTION__)); } else { DHD_ERROR(("%s : mutex is locked!. wait for unlocking\n", __FUNCTION__)); } mutex_lock(&_dhd_sdio_mutex_lock_); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) */ #endif /* defined(LINUX) && defined(MULTIPLE_SUPPLICANT) */ /* Init global variables at run-time, not as part of the declaration. * This is required to support init/de-init of the driver. Initialization * of globals as part of the declaration results in non-deterministic * behavior since the value of the globals may be different on the * first time that the driver is initialized vs subsequent initializations. */ dhd_txbound = DHD_TXBOUND; dhd_rxbound = DHD_RXBOUND; #ifdef BCMSPI dhd_alignctl = FALSE; #else dhd_alignctl = TRUE; #endif /* BCMSPI */ sd1idle = TRUE; dhd_readahead = TRUE; retrydata = FALSE; #ifdef DISABLE_FLOW_CONTROL dhd_doflow = FALSE; #endif /* DISABLE_FLOW_CONTROL */ dhd_dongle_ramsize = 0; dhd_txminmax = DHD_TXMINMAX; #ifdef BCMSPI forcealign = FALSE; #else forcealign = TRUE; #endif /* !BCMSPI */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); DHD_INFO(("%s: venid 0x%04x devid 0x%04x\n", __FUNCTION__, venid, devid)); /* We make assumptions about address window mappings */ ASSERT((uintptr)regsva == si_enum_base(devid)); /* BCMSDH passes venid and devid based on CIS parsing -- but low-power start * means early parse could fail, so here we should get either an ID * we recognize OR (-1) indicating we must request power first. */ /* Check the Vendor ID */ switch (venid) { case 0x0000: case VENDOR_BROADCOM: break; default: DHD_ERROR(("%s: unknown vendor: 0x%04x\n", __FUNCTION__, venid)); goto forcereturn; } /* Check the Device ID and make sure it's one that we support */ switch (devid) { case 0: DHD_INFO(("%s: allow device id 0, will check chip internals\n", __FUNCTION__)); break; default: DHD_ERROR(("%s: skipping 0x%04x/0x%04x, not a dongle\n", __FUNCTION__, venid, devid)); goto forcereturn; } if (osh == NULL) { DHD_ERROR(("%s: osh is NULL!\n", __FUNCTION__)); goto forcereturn; } /* Allocate private bus interface state */ if (!(bus = MALLOC(osh, sizeof(dhd_bus_t)))) { DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__)); goto fail; } bzero(bus, sizeof(dhd_bus_t)); bus->sdh = sdh; bus->cl_devid = (uint16)devid; bus->bus = DHD_BUS; bus->bus_num = bus_no; bus->slot_num = slot; bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1; bus->usebufpool = FALSE; /* Use bufpool if allocated, else use locally malloced rxbuf */ #ifdef BT_OVER_SDIO bus->bt_use_count = 0; #endif #if defined(LINUX) && defined(SUPPORT_P2P_GO_PS) init_waitqueue_head(&bus->bus_sleep); #endif /* LINUX && SUPPORT_P2P_GO_PS */ /* attempt to attach to the dongle */ if (!(dhdsdio_probe_attach(bus, osh, sdh, regsva, devid))) { DHD_ERROR(("%s: dhdsdio_probe_attach failed\n", __FUNCTION__)); goto fail; } /* Attach to the dhd/OS/network interface */ if (!(bus->dhd = dhd_attach(osh, bus, SDPCM_RESERVE))) { DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__)); goto fail; } /* Allocate buffers */ if (!(dhdsdio_probe_malloc(bus, osh, sdh))) { DHD_ERROR(("%s: dhdsdio_probe_malloc failed\n", __FUNCTION__)); goto fail; } if (!(dhdsdio_probe_init(bus, osh, sdh))) { DHD_ERROR(("%s: dhdsdio_probe_init failed\n", __FUNCTION__)); goto fail; } if (bus->intr) { /* Register interrupt callback, but mask it (not operational yet). */ DHD_INTR(("%s: disable SDIO interrupts (not interested yet)\n", __FUNCTION__)); bcmsdh_intr_disable(sdh); /* XXX New API: bcmsdh_intr_mask()? */ if ((ret = bcmsdh_intr_reg(sdh, dhdsdio_isr, bus)) != 0) { DHD_ERROR(("%s: FAILED: bcmsdh_intr_reg returned %d\n", __FUNCTION__, ret)); goto fail; } DHD_INTR(("%s: registered SDIO interrupt function ok\n", __FUNCTION__)); } else { DHD_INFO(("%s: SDIO interrupt function is NOT registered due to polling mode\n", __FUNCTION__)); } DHD_INFO(("%s: completed!!\n", __FUNCTION__)); /* if firmware path present try to download and bring up bus */ bus->dhd->hang_report = TRUE; #if defined(LINUX) || defined(linux) if (dhd_download_fw_on_driverload) { #endif /* LINUX || linux */ if ((ret = dhd_bus_start(bus->dhd)) != 0) { DHD_ERROR(("%s: dhd_bus_start failed\n", __FUNCTION__)); goto fail; } #if defined(LINUX) || defined(linux) } else { /* Set random MAC address during boot time */ get_random_bytes(&bus->dhd->mac.octet[3], 3); /* Adding BRCM OUI */ bus->dhd->mac.octet[0] = 0; bus->dhd->mac.octet[1] = 0x90; bus->dhd->mac.octet[2] = 0x4C; } #endif /* LINUX || linux */ #if defined(BT_OVER_SDIO) /* At this point Regulators are turned on and iconditionaly sdio bus is started * based upon dhd_download_fw_on_driverload check, so * increase the bus user count, this count will only be disabled inside * dhd_register_if() function if flag dhd_download_fw_on_driverload is set to false, * i.e FW download during insmod is not needed, otherwise it will not be decremented * so that WALN will always hold the bus untill rmmod is done. */ dhdsdio_bus_usr_cnt_inc(bus->dhd); #endif /* BT_OVER_SDIO */ /* Ok, have the per-port tell the stack we're open for business */ if (dhd_register_if(bus->dhd, 0, TRUE) != 0) { DHD_ERROR(("%s: Net attach failed!!\n", __FUNCTION__)); goto fail; } #ifdef BCMHOST_XTAL_PU_TIME_MOD bcmsdh_reg_write(bus->sdh, 0x18000620, 2, 11); bcmsdh_reg_write(bus->sdh, 0x18000628, 4, 0x00F80001); #endif /* BCMHOST_XTAL_PU_TIME_MOD */ #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&_dhd_sdio_mutex_lock_); DHD_ERROR(("%s : the lock is released.\n", __FUNCTION__)); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ #endif /* defined(LINUX) && defined(MULTIPLE_SUPPLICANT) */ return bus; fail: dhdsdio_release(bus, osh); forcereturn: #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&_dhd_sdio_mutex_lock_); DHD_ERROR(("%s : the lock is released.\n", __FUNCTION__)); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ #endif /* defined(LINUX) && defined(MULTIPLE_SUPPLICANT) */ return NULL; } static bool dhdsdio_probe_attach(struct dhd_bus *bus, osl_t *osh, void *sdh, void *regsva, uint16 devid) { #ifndef BCMSPI int err = 0; uint8 clkctl = 0; #endif /* !BCMSPI */ bus->alp_only = TRUE; bus->sih = NULL; /* Return the window to backplane enumeration space for core access */ if (dhdsdio_set_siaddr_window(bus, si_enum_base(devid))) { DHD_ERROR(("%s: FAILED to return to SI_ENUM_BASE\n", __FUNCTION__)); } #if defined(DHD_DEBUG) && !defined(CUSTOMER_HW4_DEBUG) DHD_ERROR(("F1 signature read @0x18000000=0x%4x\n", bcmsdh_reg_read(bus->sdh, si_enum_base(devid), 4))); #endif /* DHD_DEBUG && !CUSTOMER_HW4_DEBUG */ #ifndef BCMSPI /* wake-wlan in gSPI will bring up the htavail/alpavail clocks. */ /* Force PLL off until si_attach() programs PLL control regs */ /* XXX Ideally should not access F1 power control regs before * reading CIS and confirming device. But strapping option for * low-power start requires turning on ALP before reading CIS, * and at some point bcmsdh should read the CIS for the ID and * not even tell us if it's some other device. At this point * (see above) we should know it's us (powered on) or can't read * CIS so we need to power on and try. */ /* WAR for PR 39902: must force HT off until PLL programmed. */ /* WAR for PR43618, PR44891: don't do ALPReq until ALPAvail set */ /* XXX Replace write/read sequence with single bcmsdh_cfg_raw() call */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, DHD_INIT_CLKCTL1, &err); if (!err) clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err || ((clkctl & ~SBSDIO_AVBITS) != DHD_INIT_CLKCTL1)) { DHD_ERROR(("dhdsdio_probe: ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n", err, DHD_INIT_CLKCTL1, clkctl)); goto fail; } #endif /* !BCMSPI */ #ifdef DHD_DEBUG if (DHD_INFO_ON()) { uint fn, numfn; uint8 *cis = NULL; int local_err = 0; #ifndef BCMSPI numfn = bcmsdh_query_iofnum(sdh); ASSERT(numfn <= SDIOD_MAX_IOFUNCS); /* Make sure ALP is available before trying to read CIS */ SPINWAIT(((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkctl)), PMU_MAX_TRANSITION_DLY); /* Now request ALP be put on the bus */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, DHD_INIT_CLKCTL2, &local_err); /* XXX Account for possible delay between ALP available and on active */ OSL_DELAY(65); #else numfn = 0; /* internally func is hardcoded to 1 as gSPI has cis on F1 only */ #endif /* !BCMSPI */ #ifndef BCMSDIOLITE if (!(cis = MALLOC(osh, SBSDIO_CIS_SIZE_LIMIT))) { DHD_INFO(("dhdsdio_probe: cis malloc failed\n")); goto fail; } for (fn = 0; fn <= numfn; fn++) { bzero(cis, SBSDIO_CIS_SIZE_LIMIT); if ((err = bcmsdh_cis_read(sdh, fn, cis, SBSDIO_CIS_SIZE_LIMIT))) { DHD_INFO(("dhdsdio_probe: fn %d cis read err %d\n", fn, err)); break; } dhd_dump_cis(fn, cis); } MFREE(osh, cis, SBSDIO_CIS_SIZE_LIMIT); #else BCM_REFERENCE(cis); BCM_REFERENCE(fn); #endif /* DHD_DEBUG */ if (local_err) { DHD_ERROR(("dhdsdio_probe: failure reading or parsing CIS\n")); goto fail; } } #endif /* DHD_DEBUG */ /* si_attach() will provide an SI handle and scan the backplane */ if (!(bus->sih = si_attach((uint)devid, osh, regsva, DHD_BUS, sdh, &bus->vars, &bus->varsz))) { DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__)); goto fail; } #ifdef DHD_DEBUG DHD_ERROR(("F1 signature OK, socitype:0x%x chip:0x%4x rev:0x%x pkg:0x%x\n", bus->sih->socitype, bus->sih->chip, bus->sih->chiprev, bus->sih->chippkg)); #endif /* DHD_DEBUG */ /* XXX Let the layers below dhd know the chipid and chiprev for * controlling sw WARs for hw PRs */ bcmsdh_chipinfo(sdh, bus->sih->chip, bus->sih->chiprev); if (!dhdsdio_chipmatch((uint16)bus->sih->chip)) { DHD_ERROR(("%s: unsupported chip: 0x%04x\n", __FUNCTION__, bus->sih->chip)); goto fail; } if (bus->sih->buscorerev >= 12) { dhdsdio_clk_kso_init(bus); } else { bus->kso = TRUE; } /* to wake up completely incase sleep is triggered before bus start */ dhdsdio_set_wakeupctrl(bus); si_sdiod_drive_strength_init(bus->sih, osh, dhd_sdiod_drive_strength); /* Get info on the ARM and SOCRAM cores... */ /* XXX Should really be qualified by device id */ if (!DHD_NOPMU(bus)) { if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) || (si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) || (si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) { bus->armrev = si_corerev(bus->sih); } else { DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__)); goto fail; } if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) { if (!(bus->orig_ramsize = si_socram_size(bus->sih))) { DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__)); goto fail; } } else { /* cr4 has a different way to find the RAM size from TCM's */ if (!(bus->orig_ramsize = si_tcm_size(bus->sih))) { DHD_ERROR(("%s: failed to find CR4-TCM memory!\n", __FUNCTION__)); goto fail; } /* also populate base address */ switch ((uint16)bus->sih->chip) { case BCM4335_CHIP_ID: case BCM4339_CHIP_ID: bus->dongle_ram_base = CR4_4335_RAM_BASE; break; case BCM4350_CHIP_ID: case BCM4354_CHIP_ID: case BCM4358_CHIP_ID: bus->dongle_ram_base = CR4_4350_RAM_BASE; break; case BCM4360_CHIP_ID: bus->dongle_ram_base = CR4_4360_RAM_BASE; break; CASE_BCM4345_CHIP: bus->dongle_ram_base = (bus->sih->chiprev < 6) /* from 4345C0 */ ? CR4_4345_LT_C0_RAM_BASE : CR4_4345_GE_C0_RAM_BASE; break; case BCM4349_CHIP_GRPID: /* RAM based changed from 4349c0(revid=9) onwards */ bus->dongle_ram_base = ((bus->sih->chiprev < 9) ? CR4_4349_RAM_BASE: CR4_4349_RAM_BASE_FROM_REV_9); break; case BCM4364_CHIP_ID: bus->dongle_ram_base = CR4_4364_RAM_BASE; break; case BCM4381_CHIP_ID: bus->dongle_ram_base = CR4_4381_RAM_BASE; break; case BCM4362_CHIP_ID: bus->dongle_ram_base = CR4_4362_RAM_BASE; break; case BCM43751_CHIP_ID: bus->dongle_ram_base = CR4_43751_RAM_BASE; break; case BCM43752_CHIP_ID: bus->dongle_ram_base = CR4_43752_RAM_BASE; break; case BCM4369_CHIP_ID: bus->dongle_ram_base = CR4_4369_RAM_BASE; break; case BCM4378_CHIP_GRPID: bus->dongle_ram_base = CR4_4378_RAM_BASE; break; default: bus->dongle_ram_base = 0; DHD_ERROR(("%s: WARNING: Using default ram base at 0x%x\n", __FUNCTION__, bus->dongle_ram_base)); } } bus->ramsize = bus->orig_ramsize; if (dhd_dongle_ramsize) dhd_dongle_setramsize(bus, dhd_dongle_ramsize); DHD_ERROR(("DHD: dongle ram size is set to %d(orig %d) at 0x%x\n", bus->ramsize, bus->orig_ramsize, bus->dongle_ram_base)); bus->srmemsize = si_socram_srmem_size(bus->sih); } /* ...but normally deal with the SDPCMDEV core */ #ifdef BCMSDIOLITE if (!(bus->regs = si_setcore(bus->sih, CC_CORE_ID, 0))) { DHD_ERROR(("%s: failed to find Chip Common core!\n", __FUNCTION__)); goto fail; } #else if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0)) && !(bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0))) { DHD_ERROR(("%s: failed to find SDIODEV core!\n", __FUNCTION__)); goto fail; } #endif bus->sdpcmrev = si_corerev(bus->sih); /* Set core control so an SDIO reset does a backplane reset */ OR_REG(osh, &bus->regs->corecontrol, CC_BPRESEN); #ifndef BCMSPI bus->rxint_mode = SDIO_DEVICE_HMB_RXINT; if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) && (bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1)) { uint32 val; val = R_REG(osh, &bus->regs->corecontrol); val &= ~CC_XMTDATAAVAIL_MODE; val |= CC_XMTDATAAVAIL_CTRL; W_REG(osh, &bus->regs->corecontrol, val); } #endif /* BCMSPI */ /* XXX Tx needs priority queue, where to determine levels? */ /* XXX Should it try to do WLC mapping, or just pass through? */ pktq_init(&bus->txq, (PRIOMASK + 1), QLEN); /* Locate an appropriately-aligned portion of hdrbuf */ bus->rxhdr = (uint8 *)ROUNDUP((uintptr)&bus->hdrbuf[0], DHD_SDALIGN); /* Set the poll and/or interrupt flags */ bus->intr = (bool)dhd_intr; if ((bus->poll = (bool)dhd_poll)) bus->pollrate = 1; /* Setting default Glom size */ bus->txglomsize = SDPCM_DEFGLOM_SIZE; return TRUE; fail: if (bus->sih != NULL) { si_detach(bus->sih); bus->sih = NULL; } return FALSE; } static bool dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->maxctl) { bus->rxblen = ROUNDUP((bus->dhd->maxctl+SDPCM_HDRLEN), ALIGNMENT) + DHD_SDALIGN; if (!(bus->rxbuf = DHD_OS_PREALLOC(bus->dhd, DHD_PREALLOC_RXBUF, bus->rxblen))) { DHD_ERROR(("%s: MALLOC of %d-byte rxbuf failed\n", __FUNCTION__, bus->rxblen)); goto fail; } } /* Allocate buffer to receive glomed packet */ if (!(bus->databuf = DHD_OS_PREALLOC(bus->dhd, DHD_PREALLOC_DATABUF, MAX_DATA_BUF))) { DHD_ERROR(("%s: MALLOC of %d-byte databuf failed\n", __FUNCTION__, MAX_DATA_BUF)); /* release rxbuf which was already located as above */ if (!bus->rxblen) DHD_OS_PREFREE(bus->dhd, bus->rxbuf, bus->rxblen); goto fail; } /* Align the buffer */ if ((uintptr)bus->databuf % DHD_SDALIGN) bus->dataptr = bus->databuf + (DHD_SDALIGN - ((uintptr)bus->databuf % DHD_SDALIGN)); else bus->dataptr = bus->databuf; return TRUE; fail: return FALSE; } static bool dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh) { int32 fnum; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bus->_srenab = FALSE; #ifdef SDTEST dhdsdio_pktgen_init(bus); #endif /* SDTEST */ #ifndef BCMSPI /* Disable F2 to clear any intermediate frame state on the dongle */ /* XXX New API: change to bcmsdh_fn_set(sdh, SDIO_FUNC_2, FALSE); */ /* XXX Might write SRES instead, or reset ARM (download prep)? */ bcmsdh_cfg_write(sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL); #endif /* !BCMSPI */ DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; bus->sleeping = FALSE; bus->rxflow = FALSE; bus->prev_rxlim_hit = 0; #ifndef BCMSPI /* Done with backplane-dependent accesses, can drop clock... */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); #endif /* !BCMSPI */ /* ...and initialize clock/power states */ bus->clkstate = CLK_SDONLY; bus->idletime = (int32)dhd_idletime; bus->idleclock = DHD_IDLE_ACTIVE; /* Query the SD clock speed */ if (bcmsdh_iovar_op(sdh, "sd_divisor", NULL, 0, &bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) { DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_divisor")); bus->sd_divisor = -1; } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_divisor", bus->sd_divisor)); } /* Query the SD bus mode */ if (bcmsdh_iovar_op(sdh, "sd_mode", NULL, 0, &bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) { DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_mode")); bus->sd_mode = -1; } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_mode", bus->sd_mode)); } /* Query the F2 block size, set roundup accordingly */ fnum = 2; if (bcmsdh_iovar_op(sdh, "sd_blocksize", &fnum, sizeof(int32), &bus->blocksize, sizeof(int32), FALSE) != BCME_OK) { bus->blocksize = 0; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize")); } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_blocksize", bus->blocksize)); dhdsdio_tune_fifoparam(bus); } bus->roundup = MIN(max_roundup, bus->blocksize); #ifdef DHDENABLE_TAILPAD if (bus->pad_pkt) PKTFREE(osh, bus->pad_pkt, FALSE); bus->pad_pkt = PKTGET(osh, SDIO_MAX_BLOCK_SIZE, FALSE); if (bus->pad_pkt == NULL) DHD_ERROR(("failed to allocate padding packet\n")); else { int alignment_offset = 0; uintptr pktprt = (uintptr)PKTDATA(osh, bus->pad_pkt); if (!(pktprt&1) && (pktprt = (pktprt % DHD_SDALIGN))) PKTPUSH(osh, bus->pad_pkt, alignment_offset); PKTSETNEXT(osh, bus->pad_pkt, NULL); } #endif /* DHDENABLE_TAILPAD */ /* Query if bus module supports packet chaining, default to use if supported */ if (bcmsdh_iovar_op(sdh, "sd_rxchain", NULL, 0, &bus->sd_rxchain, sizeof(int32), FALSE) != BCME_OK) { bus->sd_rxchain = FALSE; } else { DHD_INFO(("%s: bus module (through bcmsdh API) %s chaining\n", __FUNCTION__, (bus->sd_rxchain ? "supports" : "does not support"))); } bus->use_rxchain = (bool)bus->sd_rxchain; bus->txinrx_thres = CUSTOM_TXINRX_THRES; /* TX first in dhdsdio_readframes() */ bus->dotxinrx = TRUE; return TRUE; } int dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh, char *pfw_path, char *pnv_path) { int ret; bus->fw_path = pfw_path; bus->nv_path = pnv_path; ret = dhdsdio_download_firmware(bus, osh, bus->sdh); return ret; } static int dhdsdio_download_firmware(struct dhd_bus *bus, osl_t *osh, void *sdh) { int ret; #if defined(SUPPORT_MULTIPLE_REVISION) if (concate_revision(bus, bus->fw_path, bus->nv_path) != 0) { DHD_ERROR(("%s: fail to concatnate revison \n", __FUNCTION__)); return BCME_BADARG; } #endif /* SUPPORT_MULTIPLE_REVISION */ #if defined(DHD_BLOB_EXISTENCE_CHECK) dhd_set_blob_support(bus->dhd, bus->fw_path); #endif /* DHD_BLOB_EXISTENCE_CHECK */ DHD_TRACE_HW4(("%s: firmware path=%s, nvram path=%s\n", __FUNCTION__, bus->fw_path, bus->nv_path)); DHD_OS_WAKE_LOCK(bus->dhd); /* Download the firmware */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); ret = _dhdsdio_download_firmware(bus); dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); DHD_OS_WAKE_UNLOCK(bus->dhd); return ret; } /* Detach and free everything */ static void dhdsdio_release(dhd_bus_t *bus, osl_t *osh) { bool dongle_isolation = FALSE; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus) { ASSERT(osh); if (bus->dhd) { #if defined(DEBUGGER) || defined(DHD_DSCOPE) debugger_close(); #endif /* DEBUGGER || DHD_DSCOPE */ dongle_isolation = bus->dhd->dongle_isolation; dhd_detach(bus->dhd); } /* De-register interrupt handler */ bcmsdh_intr_disable(bus->sdh); bcmsdh_intr_dereg(bus->sdh); if (bus->dhd) { dhdsdio_release_dongle(bus, osh, dongle_isolation, TRUE); dhd_free(bus->dhd); bus->dhd = NULL; } dhdsdio_release_malloc(bus, osh); #ifdef DHD_DEBUG if (bus->console.buf != NULL) MFREE(osh, bus->console.buf, bus->console.bufsize); #endif #ifdef DHDENABLE_TAILPAD if (bus->pad_pkt) PKTFREE(osh, bus->pad_pkt, FALSE); #endif /* DHDENABLE_TAILPAD */ MFREE(osh, bus, sizeof(dhd_bus_t)); } DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } static void dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd && bus->dhd->dongle_reset) return; if (bus->rxbuf) { #ifndef CONFIG_DHD_USE_STATIC_BUF MFREE(osh, bus->rxbuf, bus->rxblen); #endif bus->rxctl = NULL; bus->rxlen = 0; } if (bus->databuf) { #ifndef CONFIG_DHD_USE_STATIC_BUF MFREE(osh, bus->databuf, MAX_DATA_BUF); #endif } if (bus->vars && bus->varsz) { MFREE(osh, bus->vars, bus->varsz); } } static void dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag) { DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__, bus->dhd, bus->dhd->dongle_reset)); if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag) return; if (bus->sih) { /* In Win10, system will be BSOD if using "sysprep" to do OS image */ /* Skip this will not cause the BSOD. */ #if !defined(BCMLXSDMMC) && !defined(NDIS) /* XXX - Using the watchdog to reset the chip does not allow * further SDIO communication. For the SDMMC Driver, this * causes interrupt to not be de-registered properly. */ /* XXX: dongle isolation mode is on don't reset the chip */ if (bus->dhd) { dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); } if (KSO_ENAB(bus) && (dongle_isolation == FALSE)) si_watchdog(bus->sih, 4); #endif /* !defined(BCMLXSDMMC) */ if (bus->dhd) { dhdsdio_clkctl(bus, CLK_NONE, FALSE); } si_detach(bus->sih); bus->sih = NULL; if (bus->vars && bus->varsz) MFREE(osh, bus->vars, bus->varsz); bus->vars = NULL; } DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } static void dhdsdio_disconnect(void *ptr) { dhd_bus_t *bus = (dhd_bus_t *)ptr; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (mutex_is_locked(&_dhd_sdio_mutex_lock_) == 0) { DHD_ERROR(("%s : no mutex held. set lock\n", __FUNCTION__)); } else { DHD_ERROR(("%s : mutex is locked!. wait for unlocking\n", __FUNCTION__)); } mutex_lock(&_dhd_sdio_mutex_lock_); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) */ #endif /* defined(LINUX) && defined(MULTIPLE_SUPPLICANT) */ if (bus) { ASSERT(bus->dhd); /* Advertise bus cleanup during rmmod */ dhdsdio_advertise_bus_cleanup(bus->dhd); dhdsdio_release(bus, bus->dhd->osh); } #if defined(LINUX) && defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&_dhd_sdio_mutex_lock_); DHD_ERROR(("%s : the lock is released.\n", __FUNCTION__)); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) */ #endif /* LINUX */ DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } static int dhdsdio_suspend(void *context) { int ret = 0; #ifdef SUPPORT_P2P_GO_PS int wait_time = 0; #endif /* SUPPORT_P2P_GO_PS */ #if defined(LINUX) dhd_bus_t *bus = (dhd_bus_t*)context; unsigned long flags; DHD_ERROR(("%s Enter\n", __FUNCTION__)); if (bus->dhd == NULL) { DHD_ERROR(("bus not inited\n")); return BCME_ERROR; } if (bus->dhd->prot == NULL) { DHD_ERROR(("prot is not inited\n")); return BCME_ERROR; } if (bus->dhd->up == FALSE) { return BCME_OK; } DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); if (bus->dhd->busstate != DHD_BUS_DATA && bus->dhd->busstate != DHD_BUS_SUSPEND) { DHD_ERROR(("not in a readystate to LPBK is not inited\n")); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); return BCME_ERROR; } DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); if (bus->dhd->dongle_reset) { DHD_ERROR(("Dongle is in reset state.\n")); return -EIO; } DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); /* stop all interface network queue. */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON); bus->dhd->busstate = DHD_BUS_SUSPEND; #if defined(LINUX) || defined(linux) if (DHD_BUS_BUSY_CHECK_IN_TX(bus->dhd)) { DHD_ERROR(("Tx Request is not ended\n")); bus->dhd->busstate = DHD_BUS_DATA; /* resume all interface network queue. */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); return -EBUSY; } #endif /* LINUX || linux */ DHD_BUS_BUSY_SET_SUSPEND_IN_PROGRESS(bus->dhd); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); #ifdef SUPPORT_P2P_GO_PS if (bus->idletime > 0) { wait_time = msecs_to_jiffies(bus->idletime * dhd_watchdog_ms); } #endif /* SUPPORT_P2P_GO_PS */ ret = dhd_os_check_wakelock(bus->dhd); #ifdef SUPPORT_P2P_GO_PS if ((!ret) && (bus->dhd->up) && (bus->dhd->op_mode != DHD_FLAG_HOSTAP_MODE)) { if (wait_event_timeout(bus->bus_sleep, bus->sleeping, wait_time) == 0) { if (!bus->sleeping) { ret = 1; } } } #endif /* SUPPORT_P2P_GO_PS */ DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); if (ret) { bus->dhd->busstate = DHD_BUS_DATA; /* resume all interface network queue. */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF); } DHD_BUS_BUSY_CLEAR_SUSPEND_IN_PROGRESS(bus->dhd); dhd_os_busbusy_wake(bus->dhd); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); #endif /* LINUX */ return ret; } static int dhdsdio_resume(void *context) { dhd_bus_t *bus = (dhd_bus_t*)context; ulong flags; DHD_ERROR(("%s Enter\n", __FUNCTION__)); if (bus->dhd->up == FALSE) { return BCME_OK; } DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_BUS_BUSY_SET_RESUME_IN_PROGRESS(bus->dhd); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); if (dhd_os_check_if_up(bus->dhd)) bcmsdh_oob_intr_set(bus->sdh, TRUE); DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_BUS_BUSY_CLEAR_RESUME_IN_PROGRESS(bus->dhd); bus->dhd->busstate = DHD_BUS_DATA; dhd_os_busbusy_wake(bus->dhd); /* resume all interface network queue. */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF); DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); return 0; } /* Register/Unregister functions are called by the main DHD entry * point (e.g. module insertion) to link with the bus driver, in * order to look for or await the device. */ static bcmsdh_driver_t dhd_sdio = { dhdsdio_probe, dhdsdio_disconnect, dhdsdio_suspend, dhdsdio_resume }; int dhd_bus_register(void) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); return bcmsdh_register(&dhd_sdio); } void dhd_bus_unregister(void) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_unregister(); } #if defined(BCMLXSDMMC) /* Register a dummy SDIO client driver in order to be notified of new SDIO device */ int dhd_bus_reg_sdio_notify(void* semaphore) { return bcmsdh_reg_sdio_notify(semaphore); } void dhd_bus_unreg_sdio_notify(void) { bcmsdh_unreg_sdio_notify(); } #endif /* defined(BCMLXSDMMC) */ #ifdef BCMEMBEDIMAGE static int dhdsdio_download_code_array(struct dhd_bus *bus) { int bcmerror = -1; int offset = 0; unsigned char *ularray = NULL; DHD_INFO(("%s: download embedded firmware...\n", __FUNCTION__)); /* Download image */ while ((offset + MEMBLOCK) < sizeof(dlarray)) { /* check if CR4 */ if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) { /* if address is 0, store the reset instruction to be written in 0 */ if (offset == 0) { bus->resetinstr = *(((uint32*)dlarray)); /* Add start of RAM address to the address given by user */ offset += bus->dongle_ram_base; } } bcmerror = dhdsdio_membytes(bus, TRUE, offset, (uint8 *) (dlarray + offset), MEMBLOCK); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, MEMBLOCK, offset)); goto err; } offset += MEMBLOCK; } if (offset < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, TRUE, offset, (uint8 *) (dlarray + offset), sizeof(dlarray) - offset); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset)); goto err; } } #ifdef DHD_DEBUG /* Upload and compare the downloaded code */ { ularray = MALLOC(bus->dhd->osh, bus->ramsize); /* Upload image to verify downloaded contents. */ offset = 0; memset(ularray, 0xaa, bus->ramsize); while ((offset + MEMBLOCK) < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, FALSE, offset, ularray + offset, MEMBLOCK); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, MEMBLOCK, offset)); goto err; } offset += MEMBLOCK; } if (offset < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, FALSE, offset, ularray + offset, sizeof(dlarray) - offset); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset)); goto err; } } if (memcmp(dlarray, ularray, sizeof(dlarray))) { DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n", __FUNCTION__, dlimagename, dlimagever, dlimagedate)); goto err; } else DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n", __FUNCTION__, dlimagename, dlimagever, dlimagedate)); } #endif /* DHD_DEBUG */ err: if (ularray) MFREE(bus->dhd->osh, ularray, bus->ramsize); return bcmerror; } #endif /* BCMEMBEDIMAGE */ static int dhdsdio_download_code_file(struct dhd_bus *bus, char *pfw_path) { int bcmerror = -1; int offset = 0; int len; void *image = NULL; uint8 *memblock = NULL, *memptr; uint memblock_size = MEMBLOCK; #ifdef DHD_DEBUG_DOWNLOADTIME unsigned long initial_jiffies = 0; uint firmware_sz = 0; #endif DHD_INFO(("%s: download firmware %s\n", __FUNCTION__, pfw_path)); /* XXX: Should succeed in opening image if it is actually given through registry * entry or in module param. */ image = dhd_os_open_image1(bus->dhd, pfw_path); if (image == NULL) { DHD_ERROR(("%s: Failed to open fw file !\n", __FUNCTION__)); goto err; } /* Update the dongle image download block size depending on the F1 block size */ #ifndef NDIS if (sd_f1_blocksize == 512) memblock_size = MAX_MEMBLOCK; #endif /* !NDIS */ memptr = memblock = MALLOC(bus->dhd->osh, memblock_size + DHD_SDALIGN); if (memblock == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, memblock_size)); goto err; } if ((uint32)(uintptr)memblock % DHD_SDALIGN) memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN)); #ifdef DHD_DEBUG_DOWNLOADTIME initial_jiffies = jiffies; #endif /* Download image */ while ((len = dhd_os_get_image_block((char*)memptr, memblock_size, image))) { if (len < 0) { DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len)); bcmerror = BCME_ERROR; goto err; } /* check if CR4 */ if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) { /* if address is 0, store the reset instruction to be written in 0 */ if (offset == 0) { bus->resetinstr = *(((uint32*)memptr)); /* Add start of RAM address to the address given by user */ offset += bus->dongle_ram_base; } } bcmerror = dhdsdio_membytes(bus, TRUE, offset, memptr, len); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, memblock_size, offset)); goto err; } offset += memblock_size; #ifdef DHD_DEBUG_DOWNLOADTIME firmware_sz += len; #endif } #ifdef DHD_DEBUG_DOWNLOADTIME DHD_ERROR(("Firmware download time for %u bytes: %u ms\n", firmware_sz, jiffies_to_msecs(jiffies - initial_jiffies))); #endif err: if (memblock) MFREE(bus->dhd->osh, memblock, memblock_size + DHD_SDALIGN); if (image) dhd_os_close_image1(bus->dhd, image); return bcmerror; } #ifdef DHD_UCODE_DOWNLOAD /* Currently supported only for the chips in which ucode RAM is AXI addressable */ static uint32 dhdsdio_ucode_base(struct dhd_bus *bus) { uint32 ucode_base = 0; switch ((uint16)bus->sih->chip) { case BCM43012_CHIP_ID: case BCM43013_CHIP_ID: case BCM43014_CHIP_ID: ucode_base = 0xE8020000; break; default: DHD_ERROR(("%s: Unsupported!\n", __func__)); break; } return ucode_base; } static int dhdsdio_download_ucode_file(struct dhd_bus *bus, char *ucode_path) { int bcmerror = -1; int offset = 0; int len; uint32 ucode_base; void *image = NULL; uint8 *memblock = NULL, *memptr; uint memblock_size = MEMBLOCK; #ifdef DHD_DEBUG_DOWNLOADTIME unsigned long initial_jiffies = 0; uint firmware_sz = 0; #endif DHD_INFO(("%s: download firmware %s\n", __FUNCTION__, ucode_path)); ucode_base = dhdsdio_ucode_base(bus); /* XXX: Should succeed in opening image if it is actually given through registry * entry or in module param. */ image = dhd_os_open_image1(bus->dhd, ucode_path); if (image == NULL) goto err; /* Update the dongle image download block size depending on the F1 block size */ if (sd_f1_blocksize == 512) memblock_size = MAX_MEMBLOCK; memptr = memblock = MALLOC(bus->dhd->osh, memblock_size + DHD_SDALIGN); if (memblock == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, memblock_size)); goto err; } if ((uint32)(uintptr)memblock % DHD_SDALIGN) memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN)); #ifdef DHD_DEBUG_DOWNLOADTIME initial_jiffies = jiffies; #endif /* Download image */ while ((len = dhd_os_get_image_block((char*)memptr, memblock_size, image))) { if (len < 0) { DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len)); bcmerror = BCME_ERROR; goto err; } bcmerror = dhdsdio_membytes(bus, TRUE, (ucode_base + offset), memptr, len); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, memblock_size, offset)); goto err; } offset += memblock_size; #ifdef DHD_DEBUG_DOWNLOADTIME firmware_sz += len; #endif } #ifdef DHD_DEBUG_DOWNLOADTIME DHD_ERROR(("ucode download time for %u bytes: %u ms\n", firmware_sz, jiffies_to_msecs(jiffies - initial_jiffies))); #endif err: if (memblock) MFREE(bus->dhd->osh, memblock, memblock_size + DHD_SDALIGN); if (image) dhd_os_close_image1(bus->dhd, image); return bcmerror; } /* dhdsdio_download_ucode_file */ void dhd_bus_ucode_download(struct dhd_bus *bus) { uint32 shaddr = 0, shdata = 0; shaddr = bus->dongle_ram_base + bus->ramsize - 4; dhdsdio_membytes(bus, FALSE, shaddr, (uint8 *)&shdata, 4); DHD_TRACE(("%s: shdata:[0x%08x :0x%08x]\n", __func__, shaddr, shdata)); if (shdata == UCODE_DOWNLOAD_REQUEST) { DHD_ERROR(("%s: Received ucode download request!\n", __func__)); /* Download the ucode */ if (!dhd_get_ucode_path(bus->dhd)) { DHD_ERROR(("%s: bus->uc_path not set!\n", __func__)); return; } dhdsdio_download_ucode_file(bus, dhd_get_ucode_path(bus->dhd)); DHD_ERROR(("%s: Ucode downloaded successfully!\n", __func__)); shdata = UCODE_DOWNLOAD_COMPLETE; dhdsdio_membytes(bus, TRUE, shaddr, (uint8 *)&shdata, 4); } } #endif /* DHD_UCODE_DOWNLOAD */ static int dhdsdio_download_nvram(struct dhd_bus *bus) { int bcmerror = -1; uint len; void * image = NULL; char * memblock = NULL; char *bufp; char *pnv_path; bool nvram_file_exists; pnv_path = bus->nv_path; nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0')); /* For Get nvram from UEFI */ if (nvram_file_exists) image = dhd_os_open_image1(bus->dhd, pnv_path); memblock = MALLOC(bus->dhd->osh, MAX_NVRAMBUF_SIZE); if (memblock == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MAX_NVRAMBUF_SIZE)); goto err; } /* For Get nvram from image or UEFI (when image == NULL ) */ len = dhd_os_get_image_block(memblock, MAX_NVRAMBUF_SIZE, image); if (len > 0 && len < MAX_NVRAMBUF_SIZE) { bufp = (char *)memblock; bufp[len] = 0; len = process_nvram_vars(bufp, len); if (len % 4) { len += 4 - (len % 4); } bufp += len; *bufp++ = 0; if (len) bcmerror = dhdsdio_downloadvars(bus, memblock, len + 1); if (bcmerror) { DHD_ERROR(("%s: error downloading vars: %d\n", __FUNCTION__, bcmerror)); } } else { DHD_ERROR(("%s: error reading nvram file: %d\n", __FUNCTION__, len)); bcmerror = BCME_SDIO_ERROR; } err: if (memblock) MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE); if (image) dhd_os_close_image1(bus->dhd, image); return bcmerror; } static int _dhdsdio_download_firmware(struct dhd_bus *bus) { int bcmerror = -1; bool embed = FALSE; /* download embedded firmware */ bool dlok = FALSE; /* download firmware succeeded */ /* Out immediately if no image to download */ if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) { #ifdef BCMEMBEDIMAGE embed = TRUE; #else return bcmerror; #endif } /* Keep arm in reset */ if (dhdsdio_download_state(bus, TRUE)) { DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__)); goto err; } /* External image takes precedence if specified */ if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) { if (dhdsdio_download_code_file(bus, bus->fw_path)) { DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__)); #ifdef BCMEMBEDIMAGE embed = TRUE; #else goto err; #endif } else { embed = FALSE; dlok = TRUE; } } #ifdef BCMEMBEDIMAGE if (embed) { if (dhdsdio_download_code_array(bus)) { DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__)); goto err; } else { dlok = TRUE; } } #else BCM_REFERENCE(embed); #endif if (!dlok) { DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__)); goto err; } /* External nvram takes precedence if specified */ if (dhdsdio_download_nvram(bus)) { DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__)); goto err; } /* Take arm out of reset */ if (dhdsdio_download_state(bus, FALSE)) { DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__)); goto err; } bcmerror = 0; err: return bcmerror; } static int dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete_fn, void *handle) { int status; if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } status = bcmsdh_recv_buf(bus->sdh, addr, fn, flags, buf, nbytes, pkt, complete_fn, handle); return status; } static int dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete_fn, void *handle, int max_retry) { int ret; int i = 0; int retries = 0; bcmsdh_info_t *sdh; if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } sdh = bus->sdh; do { ret = bcmsdh_send_buf(bus->sdh, addr, fn, flags, buf, nbytes, pkt, complete_fn, handle); bus->f2txdata++; ASSERT(ret != BCME_PENDING); if (ret == BCME_NODEVICE) { DHD_ERROR(("%s: Device asleep already\n", __FUNCTION__)); } else if (ret < 0) { /* On failure, abort the command and terminate the frame */ DHD_ERROR(("%s: sdio error %d, abort command and terminate frame.\n", __FUNCTION__, ret)); bus->tx_sderrs++; bus->f1regdata++; bus->dhd->tx_errors++; bcmsdh_abort(sdh, SDIO_FUNC_2); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); for (i = 0; i < READ_FRM_CNT_RETRIES; i++) { uint8 hi, lo; hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } } while ((ret < 0) && retrydata && ++retries < max_retry); return ret; } uint8 dhd_bus_is_ioready(struct dhd_bus *bus) { uint8 enable; bcmsdh_info_t *sdh; ASSERT(bus); ASSERT(bus->sih != NULL); enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); sdh = bus->sdh; return (enable == bcmsdh_cfg_read(sdh, SDIO_FUNC_0, SDIOD_CCCR_IORDY, NULL)); } uint dhd_bus_chip(struct dhd_bus *bus) { ASSERT(bus->sih != NULL); return bus->sih->chip; } uint dhd_bus_chiprev(struct dhd_bus *bus) { ASSERT(bus); ASSERT(bus->sih != NULL); return bus->sih->chiprev; } void * dhd_bus_pub(struct dhd_bus *bus) { return bus->dhd; } void * dhd_bus_sih(struct dhd_bus *bus) { return (void *)bus->sih; } void * dhd_bus_txq(struct dhd_bus *bus) { return &bus->txq; } uint dhd_bus_hdrlen(struct dhd_bus *bus) { return (bus->txglom_enable) ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN; } void dhd_bus_set_dotxinrx(struct dhd_bus *bus, bool val) { bus->dotxinrx = val; } /* * dhdsdio_advertise_bus_cleanup advertises that clean up is under progress * to other bus user contexts like Tx, Rx, IOVAR, WD etc and it waits for other contexts * to gracefully exit. All the bus usage contexts before marking busstate as busy, will check for * whether the busstate is DHD_BUS_DOWN or DHD_BUS_DOWN_IN_PROGRESS, if so * they will exit from there itself without marking dhd_bus_busy_state as BUSY. */ static void dhdsdio_advertise_bus_cleanup(dhd_pub_t *dhdp) { unsigned long flags; int timeleft; DHD_LINUX_GENERAL_LOCK(dhdp, flags); dhdp->busstate = DHD_BUS_DOWN_IN_PROGRESS; DHD_LINUX_GENERAL_UNLOCK(dhdp, flags); timeleft = dhd_os_busbusy_wait_negation(dhdp, &dhdp->dhd_bus_busy_state); #ifdef LINUX if ((timeleft == 0) || (timeleft == 1)) { #else if (timeleft == 0) { #endif /* XXX This condition ideally should not occur, this means some * bus usage context is not clearing the respective usage bit, print * dhd_bus_busy_state and crash the host for further debugging. */ DHD_ERROR(("%s : Timeout due to dhd_bus_busy_state=0x%x\n", __FUNCTION__, dhdp->dhd_bus_busy_state)); ASSERT(0); } return; } int dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag) { int bcmerror = 0; dhd_bus_t *bus; unsigned long flags; bus = dhdp->bus; if (flag == TRUE) { if (!bus->dhd->dongle_reset) { DHD_ERROR(("%s: == Power OFF ==\n", __FUNCTION__)); dhdsdio_advertise_bus_cleanup(bus->dhd); dhd_os_sdlock(dhdp); dhd_os_wd_timer(dhdp, 0); #if !defined(IGNORE_ETH0_DOWN) /* Force flow control as protection when stop come before ifconfig_down */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON); #endif /* !defined(IGNORE_ETH0_DOWN) */ /* Expect app to have torn down any connection before calling */ /* Stop the bus, disable F2 */ dhd_bus_stop(bus, FALSE); /* Clean up any pending IRQ */ dhd_enable_oob_intr(bus, FALSE); bcmsdh_oob_intr_set(bus->sdh, FALSE); bcmsdh_oob_intr_unregister(bus->sdh); /* Clean tx/rx buffer pointers, detach from the dongle */ dhdsdio_release_dongle(bus, bus->dhd->osh, TRUE, TRUE); bus->dhd->dongle_reset = TRUE; DHD_ERROR(("%s: making dhdpub up FALSE\n", __FUNCTION__)); bus->dhd->up = FALSE; dhd_txglom_enable(dhdp, FALSE); dhd_os_sdunlock(dhdp); DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); DHD_TRACE(("%s: WLAN OFF DONE\n", __FUNCTION__)); /* App can now remove power from device */ } else bcmerror = BCME_SDIO_ERROR; } else { /* App must have restored power to device before calling */ DHD_ERROR(("\n\n%s: == Power ON ==\n", __FUNCTION__)); if (bus->dhd->dongle_reset) { /* Turn on WLAN */ dhd_os_sdlock(dhdp); /* Reset SD client */ bcmsdh_reset(bus->sdh); /* Attempt to re-attach & download */ if (dhdsdio_probe_attach(bus, bus->dhd->osh, bus->sdh, (uint32 *)(uintptr)si_enum_base(bus->cl_devid), bus->cl_devid)) { DHD_LINUX_GENERAL_LOCK(bus->dhd, flags); DHD_ERROR(("%s: making DHD_BUS_DOWN\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; DHD_LINUX_GENERAL_UNLOCK(bus->dhd, flags); /* Attempt to download binary to the dongle */ if (dhdsdio_probe_init(bus, bus->dhd->osh, bus->sdh) && dhdsdio_download_firmware(bus, bus->dhd->osh, bus->sdh) >= 0) { /* Re-init bus, enable F2 transfer */ bcmerror = dhd_bus_init((dhd_pub_t *) bus->dhd, FALSE); if (bcmerror == BCME_OK) { dhd_enable_oob_intr(bus, TRUE); bcmsdh_oob_intr_register(bus->sdh, dhdsdio_isr, bus); bcmsdh_oob_intr_set(bus->sdh, TRUE); bus->dhd->dongle_reset = FALSE; bus->dhd->up = TRUE; #if !defined(IGNORE_ETH0_DOWN) /* Restore flow control */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF); #endif dhd_os_wd_timer(dhdp, dhd_watchdog_ms); DHD_TRACE(("%s: WLAN ON DONE\n", __FUNCTION__)); } else { dhd_bus_stop(bus, FALSE); dhdsdio_release_dongle(bus, bus->dhd->osh, TRUE, FALSE); } } else { DHD_ERROR(("%s Failed to download binary to the dongle\n", __FUNCTION__)); if (bus->sih != NULL) { si_detach(bus->sih); bus->sih = NULL; } bcmerror = BCME_SDIO_ERROR; } } else bcmerror = BCME_SDIO_ERROR; dhd_os_sdunlock(dhdp); } else { DHD_INFO(("%s called when dongle is not in reset\n", __FUNCTION__)); DHD_INFO(("Will call dhd_bus_start instead\n")); dhd_bus_resume(dhdp, 1); if ((bcmerror = dhd_bus_start(dhdp)) != 0) DHD_ERROR(("%s: dhd_bus_start fail with %d\n", __FUNCTION__, bcmerror)); } } return bcmerror; } #if defined(LINUX) int dhd_bus_suspend(dhd_pub_t *dhdpub) { return bcmsdh_stop(dhdpub->bus->sdh); } int dhd_bus_resume(dhd_pub_t *dhdpub, int stage) { return bcmsdh_start(dhdpub->bus->sdh, stage); } #endif /* defined(LINUX) */ /* Get Chip ID version */ uint dhd_bus_chip_id(dhd_pub_t *dhdp) { dhd_bus_t *bus = dhdp->bus; return bus->sih->chip; } /* Get Chip Rev ID version */ uint dhd_bus_chiprev_id(dhd_pub_t *dhdp) { dhd_bus_t *bus = dhdp->bus; return bus->sih->chiprev; } /* Get Chip Pkg ID version */ uint dhd_bus_chippkg_id(dhd_pub_t *dhdp) { dhd_bus_t *bus = dhdp->bus; return bus->sih->chippkg; } int dhd_bus_get_ids(struct dhd_bus *bus, uint32 *bus_type, uint32 *bus_num, uint32 *slot_num) { *bus_type = bus->bus; *bus_num = bus->bus_num; *slot_num = bus->slot_num; return 0; } int dhd_bus_membytes(dhd_pub_t *dhdp, bool set, uint32 address, uint8 *data, uint size) { dhd_bus_t *bus; bus = dhdp->bus; return dhdsdio_membytes(bus, set, address, data, size); } #if defined(SUPPORT_MULTIPLE_REVISION) static int concate_revision_bcm4335(dhd_bus_t *bus, char *fw_path, char *nv_path) { uint chipver; #if defined(SUPPORT_MULTIPLE_CHIPS) char chipver_tag[10] = "_4335"; #else char chipver_tag[4] = {0, }; #endif /* defined(SUPPORT_MULTIPLE_CHIPS) */ DHD_TRACE(("%s: BCM4335 Multiple Revision Check\n", __FUNCTION__)); if (bus->sih->chip != BCM4335_CHIP_ID) { DHD_ERROR(("%s:Chip is not BCM4335\n", __FUNCTION__)); return -1; } chipver = bus->sih->chiprev; DHD_ERROR(("CHIP VER = [0x%x]\n", chipver)); if (chipver == 0x0) { DHD_ERROR(("----- CHIP bcm4335_A0 -----\n")); strcat(chipver_tag, "_a0"); } else if (chipver == 0x1) { DHD_ERROR(("----- CHIP bcm4335_B0 -----\n")); #if defined(SUPPORT_MULTIPLE_CHIPS) strcat(chipver_tag, "_b0"); #endif /* defined(SUPPORT_MULTIPLE_CHIPS) */ } strcat(fw_path, chipver_tag); strcat(nv_path, chipver_tag); return 0; } static int concate_revision_bcm4339(dhd_bus_t *bus, char *fw_path, char *nv_path) { uint chipver; #if defined(SUPPORT_MULTIPLE_CHIPS) char chipver_tag[10] = "_4339"; #else char chipver_tag[4] = {0, }; #endif /* defined(SUPPORT_MULTIPLE_CHIPS) */ DHD_TRACE(("%s: BCM4339 Multiple Revision Check\n", __FUNCTION__)); if (bus->sih->chip != BCM4339_CHIP_ID) { DHD_ERROR(("%s:Chip is not BCM4339\n", __FUNCTION__)); return -1; } chipver = bus->sih->chiprev; DHD_ERROR(("CHIP VER = [0x%x]\n", chipver)); if (chipver == 0x1) { DHD_ERROR(("----- CHIP bcm4339_A0 -----\n")); strcat(chipver_tag, "_a0"); } else { DHD_ERROR(("----- CHIP bcm4339 unknown revision %d -----\n", chipver)); } strcat(fw_path, chipver_tag); strcat(nv_path, chipver_tag); return 0; } static int concate_revision_bcm4350(dhd_bus_t *bus, char *fw_path, char *nv_path) { uint32 chip_ver; #if defined(SUPPORT_MULTIPLE_CHIPS) char chipver_tag[10] = {0, }; #else char chipver_tag[4] = {0, }; #endif /* defined(SUPPORT_MULTIPLE_CHIPS) */ chip_ver = bus->sih->chiprev; #if defined(SUPPORT_MULTIPLE_CHIPS) if (chip_ver == 3) strcat(chipver_tag, "_4354"); else strcat(chipver_tag, "_4350"); #endif if (chip_ver == 3) { DHD_ERROR(("----- CHIP 4354 A0 -----\n")); strcat(chipver_tag, "_a0"); } else { DHD_ERROR(("----- Unknown chip version, ver=%x -----\n", chip_ver)); } strcat(fw_path, chipver_tag); strcat(nv_path, chipver_tag); return 0; } static int concate_revision_bcm4354(dhd_bus_t *bus, char *fw_path, char *nv_path) { uint32 chip_ver; #if defined(SUPPORT_MULTIPLE_CHIPS) char chipver_tag[10] = "_4354"; #else char chipver_tag[4] = {0, }; #endif /* SUPPORT_MULTIPLE_CHIPS */ chip_ver = bus->sih->chiprev; if (chip_ver == 1) { DHD_ERROR(("----- CHIP 4354 A1 -----\n")); strcat(chipver_tag, "_a1"); } else { DHD_ERROR(("----- Unknown chip version, ver=%x -----\n", chip_ver)); } strcat(fw_path, chipver_tag); strcat(nv_path, chipver_tag); return 0; } static int concate_revision_bcm43454(dhd_bus_t *bus, char *fw_path, char *nv_path) { char chipver_tag[10] = {0, }; #ifdef SUPPORT_MULTIPLE_BOARD_REV_FROM_DT int base_system_rev_for_nv = 0; #endif /* SUPPORT_MULTIPLE_BOARD_REV_FROM_DT */ DHD_TRACE(("%s: BCM43454 Multiple Revision Check\n", __FUNCTION__)); if (bus->sih->chip != BCM43454_CHIP_ID) { DHD_ERROR(("%s:Chip is not BCM43454!\n", __FUNCTION__)); return -1; } #ifdef SUPPORT_MULTIPLE_BOARD_REV_FROM_DT base_system_rev_for_nv = dhd_get_system_rev(); if (base_system_rev_for_nv > 0) { DHD_ERROR(("----- Board Rev [%d] -----\n", base_system_rev_for_nv)); sprintf(chipver_tag, "_r%02d", base_system_rev_for_nv); } #endif /* SUPPORT_MULTIPLE_BOARD_REV_FROM_DT */ #ifdef SUPPORT_MULTIPLE_BOARD_REV_FROM_HW DHD_ERROR(("----- Rev [%d] Fot MULTIPLE Board. -----\n", system_hw_rev)); if ((system_hw_rev >= 8) && (system_hw_rev <= 11)) { DHD_ERROR(("This HW is Rev 08 ~ 11. this is For FD-HW\n")); strcat(chipver_tag, "_FD"); } #endif /* SUPPORT_MULTIPLE_BOARD_REV_FROM_HW */ strcat(nv_path, chipver_tag); return 0; } int concate_revision(dhd_bus_t *bus, char *fw_path, char *nv_path) { int res = 0; if (!bus || !bus->sih) { DHD_ERROR(("%s:Bus is Invalid\n", __FUNCTION__)); return -1; } switch (bus->sih->chip) { case BCM4335_CHIP_ID: res = concate_revision_bcm4335(bus, fw_path, nv_path); break; case BCM4339_CHIP_ID: res = concate_revision_bcm4339(bus, fw_path, nv_path); break; case BCM4350_CHIP_ID: res = concate_revision_bcm4350(bus, fw_path, nv_path); break; case BCM4354_CHIP_ID: res = concate_revision_bcm4354(bus, fw_path, nv_path); break; case BCM43454_CHIP_ID: res = concate_revision_bcm43454(bus, fw_path, nv_path); break; /* XXX: Add New Multiple CHIP ID */ default: DHD_ERROR(("REVISION SPECIFIC feature is not required\n")); /* XXX: if revision specific feature is not required then return true always */ return res; } if (res == 0) { #ifdef BCMDBG printf("dhd concatenated fw & nv:\n fw_path:%s\n" " nv_path:%s\n", fw_path, nv_path); printf("make sure they exist\n"); #endif } return res; } #endif /* SUPPORT_MULTIPLE_REVISION */ #if defined(NDIS) void dhd_bus_reject_ioreqs(dhd_pub_t *dhdp, bool reject) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_reject_ioreqs(dhdp->bus->sdh, reject); } void dhd_bus_waitfor_iodrain(dhd_pub_t *dhdp) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_waitfor_iodrain(dhdp->bus->sdh); } #endif /* (NDIS) */ void dhd_bus_update_fw_nv_path(struct dhd_bus *bus, char *pfw_path, char *pnv_path) { bus->fw_path = pfw_path; bus->nv_path = pnv_path; } int dhd_enableOOB(dhd_pub_t *dhd, bool sleep) { dhd_bus_t *bus = dhd->bus; sdpcmd_regs_t *regs = bus->regs; uint retries = 0; if (sleep) { dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Tell device to start using OOB wakeup */ W_SDREG(SMB_USE_OOB, ®s->tosbmailbox, retries); if (retries > retry_limit) { DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n")); return BCME_BUSY; } /* Turn off our contribution to the HT clock request */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } else { /* Make sure the controller has the bus up */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Send misc interrupt to indicate OOB not needed */ W_SDREG(0, ®s->tosbmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_DEV_INT, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP TO CLEAR OOB!!\n")); /* Make sure we have SD bus access */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } return BCME_OK; } void dhd_bus_pktq_flush(dhd_pub_t *dhdp) { dhd_bus_t *bus = dhdp->bus; bool wlfc_enabled = FALSE; #ifdef PROP_TXSTATUS wlfc_enabled = (dhd_wlfc_cleanup_txq(dhdp, NULL, 0) != WLFC_UNSUPPORTED); #endif if (!wlfc_enabled) { #ifdef DHDTCPACK_SUPPRESS /* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt, * when there is a newly coming packet from network stack. */ dhd_tcpack_info_tbl_clean(bus->dhd); #endif /* DHDTCPACK_SUPPRESS */ /* Clear the data packet queues */ pktq_flush(dhdp->osh, &bus->txq, TRUE); } } #ifdef BCMSDIO int dhd_sr_config(dhd_pub_t *dhd, bool on) { dhd_bus_t *bus = dhd->bus; if (!bus->_srenab) return -1; return dhdsdio_clk_devsleep_iovar(bus, on); } uint16 dhd_get_chipid(struct dhd_bus *bus) { if (bus && bus->sih) return (uint16)bus->sih->chip; else return 0; } #endif /* BCMSDIO */ #ifdef DEBUGGER static uint32 dhd_sdio_reg_read(struct dhd_bus *bus, ulong addr) { uint32 rval; dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); rval = bcmsdh_reg_read(bus->sdh, addr, 4); dhd_os_sdunlock(bus->dhd); return rval; } static void dhd_sdio_reg_write(struct dhd_bus *bus, ulong addr, uint32 val) { dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); bcmsdh_reg_write(bus->sdh, addr, 4, val); dhd_os_sdunlock(bus->dhd); } #endif /* DEBUGGER */ #if defined(SOFTAP_TPUT_ENHANCE) void dhd_bus_setidletime(dhd_pub_t *dhdp, int idle_time) { if (!dhdp || !dhdp->bus) { DHD_ERROR(("%s:Bus is Invalid\n", __FUNCTION__)); return; } dhdp->bus->idletime = idle_time; } void dhd_bus_getidletime(dhd_pub_t *dhdp, int* idle_time) { if (!dhdp || !dhdp->bus) { DHD_ERROR(("%s:Bus is Invalid\n", __FUNCTION__)); return; } if (!idle_time) { DHD_ERROR(("%s:Arg idle_time is NULL\n", __FUNCTION__)); return; } *idle_time = dhdp->bus->idletime; } #endif /* SOFTAP_TPUT_ENHANCE */ #if defined(BT_OVER_SDIO) uint8 dhd_bus_cfg_read(void *h, uint fun_num, uint32 addr, int *err) { uint8 intrd; dhd_pub_t *dhdp = (dhd_pub_t *)h; dhd_bus_t *bus = (dhd_bus_t *)dhdp->bus; dhd_os_sdlock(bus->dhd); intrd = bcmsdh_cfg_read(bus->sdh, fun_num, addr, err); dhd_os_sdunlock(bus->dhd); return intrd; } EXPORT_SYMBOL(dhd_bus_cfg_read); void dhd_bus_cfg_write(void *h, uint fun_num, uint32 addr, uint8 val, int *err) { dhd_pub_t *dhdp = (dhd_pub_t *)h; dhd_bus_t *bus = (dhd_bus_t *)dhdp->bus; dhd_os_sdlock(bus->dhd); bcmsdh_cfg_write(bus->sdh, fun_num, addr, val, err); dhd_os_sdunlock(bus->dhd); } EXPORT_SYMBOL(dhd_bus_cfg_write); static int extract_hex_field(char * line, uint16 start_pos, uint16 num_chars, uint16 * value) { char field [8]; strlcpy(field, line + start_pos, sizeof(field)); return (sscanf (field, "%hX", value) == 1); } static int read_more_btbytes(struct dhd_bus *bus, void * file, char *line, int * addr_mode, uint16 * hi_addr, uint32 * dest_addr, uint8 *data_bytes, uint32 * num_bytes) { int str_len; uint16 num_data_bytes, addr, data_pos, type, w, i; uint32 abs_base_addr32 = 0; *num_bytes = 0; while (!*num_bytes) { str_len = dhd_os_gets_image(bus->dhd, line, BTFW_MAX_STR_LEN, file); DHD_TRACE(("%s: Len :0x%x %s\n", __FUNCTION__, str_len, line)); if (str_len == 0) { break; } else if (str_len > 9) { extract_hex_field(line, 1, 2, &num_data_bytes); extract_hex_field(line, 3, 4, &addr); extract_hex_field(line, 7, 2, &type); data_pos = 9; for (i = 0; i < num_data_bytes; i++) { extract_hex_field(line, data_pos, 2, &w); data_bytes [i] = (uint8)(w & 0x00FF); data_pos += 2; } if (type == BTFW_HEX_LINE_TYPE_EXTENDED_ADDRESS) { *hi_addr = (data_bytes [0] << 8) | data_bytes [1]; *addr_mode = BTFW_ADDR_MODE_EXTENDED; } else if (type == BTFW_HEX_LINE_TYPE_EXTENDED_SEGMENT_ADDRESS) { *hi_addr = (data_bytes [0] << 8) | data_bytes [1]; *addr_mode = BTFW_ADDR_MODE_SEGMENT; } else if (type == BTFW_HEX_LINE_TYPE_ABSOLUTE_32BIT_ADDRESS) { abs_base_addr32 = (data_bytes [0] << 24) | (data_bytes [1] << 16) | (data_bytes [2] << 8) | data_bytes [3]; *addr_mode = BTFW_ADDR_MODE_LINEAR32; } else if (type == BTFW_HEX_LINE_TYPE_DATA) { *dest_addr = addr; if (*addr_mode == BTFW_ADDR_MODE_EXTENDED) *dest_addr += (*hi_addr << 16); else if (*addr_mode == BTFW_ADDR_MODE_SEGMENT) *dest_addr += (*hi_addr << 4); else if (*addr_mode == BTFW_ADDR_MODE_LINEAR32) *dest_addr += abs_base_addr32; *num_bytes = num_data_bytes; } } } return (*num_bytes > 0); } static int _dhdsdio_download_btfw(struct dhd_bus *bus) { int bcm_error = -1; void *image = NULL; uint8 *mem_blk = NULL, *mem_ptr = NULL, *data_ptr = NULL; uint32 offset_addr = 0, offset_len = 0, bytes_to_write = 0; char *line = NULL; uint32 dest_addr = 0, num_bytes; uint16 hiAddress = 0; uint32 start_addr, start_data, end_addr, end_data, i, index, pad, bt2wlan_pwrup_adr; int addr_mode = BTFW_ADDR_MODE_EXTENDED; /* Out immediately if no image to download */ if ((bus->btfw_path == NULL) || (bus->btfw_path[0] == '\0')) { return 0; } /* XXX: Should succeed in opening image if it is actually given through registry * entry or in module param. */ image = dhd_os_open_image1(bus->dhd, bus->btfw_path); if (image == NULL) goto err; mem_ptr = mem_blk = MALLOC(bus->dhd->osh, BTFW_DOWNLOAD_BLK_SIZE + DHD_SDALIGN); if (mem_blk == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, BTFW_DOWNLOAD_BLK_SIZE + DHD_SDALIGN)); goto err; } if ((uint32)(uintptr)mem_blk % DHD_SDALIGN) mem_ptr += (DHD_SDALIGN - ((uint32)(uintptr)mem_blk % DHD_SDALIGN)); data_ptr = MALLOC(bus->dhd->osh, BTFW_DOWNLOAD_BLK_SIZE - 8); if (data_ptr == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, BTFW_DOWNLOAD_BLK_SIZE - 8)); goto err; } /* Write to BT register to hold WLAN wake high during BT FW download */ bt2wlan_pwrup_adr = BTMEM_OFFSET + BT2WLAN_PWRUP_ADDR; bcmsdh_reg_write(bus->sdh, bt2wlan_pwrup_adr, 4, BT2WLAN_PWRUP_WAKE); /* * Wait for at least 2msec for the clock to be ready/Available. */ OSL_DELAY(2000); line = MALLOC(bus->dhd->osh, BTFW_MAX_STR_LEN); if (line == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, BTFW_MAX_STR_LEN)); goto err; } memset(line, 0, BTFW_MAX_STR_LEN); while (read_more_btbytes (bus, image, line, &addr_mode, &hiAddress, &dest_addr, data_ptr, &num_bytes)) { DHD_TRACE(("read %d bytes at address %08X\n", num_bytes, dest_addr)); start_addr = BTMEM_OFFSET + dest_addr; index = 0; /* Make sure the start address is 4 byte aligned to avoid alignment issues * with SD host controllers */ if (!ISALIGNED(start_addr, 4)) { pad = start_addr % 4; start_addr = ROUNDDN(start_addr, 4); start_data = bcmsdh_reg_read(bus->sdh, start_addr, 4); for (i = 0; i < pad; i++, index++) { mem_ptr[index] = (uint8)((uint8 *)&start_data)[i]; } } bcopy(data_ptr, &(mem_ptr[index]), num_bytes); index += num_bytes; /* Make sure the length is multiple of 4bytes to avoid alignment issues * with SD host controllers */ end_addr = start_addr + index; if (!ISALIGNED(end_addr, 4)) { end_addr = ROUNDDN(end_addr, 4); end_data = bcmsdh_reg_read(bus->sdh, end_addr, 4); for (i = (index % 4); i < 4; i++, index++) { mem_ptr[index] = (uint8)((uint8 *)&end_data)[i]; } } offset_addr = start_addr & 0xFFF; offset_len = offset_addr + index; if (offset_len <= 0x1000) { bcm_error = dhdsdio_membytes(bus, TRUE, start_addr, mem_ptr, index); if (bcm_error) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcm_error, num_bytes, start_addr)); goto err; } } else { bytes_to_write = 0x1000 - offset_addr; bcm_error = dhdsdio_membytes(bus, TRUE, start_addr, mem_ptr, bytes_to_write); if (bcm_error) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcm_error, num_bytes, start_addr)); goto err; } OSL_DELAY(10000); bcm_error = dhdsdio_membytes(bus, TRUE, (start_addr + bytes_to_write), (mem_ptr + bytes_to_write), (index - bytes_to_write)); if (bcm_error) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcm_error, num_bytes, start_addr)); goto err; } } memset(line, 0, BTFW_MAX_STR_LEN); } bcm_error = 0; err: if (mem_blk) MFREE(bus->dhd->osh, mem_blk, BTFW_DOWNLOAD_BLK_SIZE + DHD_SDALIGN); if (data_ptr) MFREE(bus->dhd->osh, data_ptr, BTFW_DOWNLOAD_BLK_SIZE - 8); if (line) MFREE(bus->dhd->osh, line, BTFW_MAX_STR_LEN); if (image) dhd_os_close_image1(bus->dhd, image); return bcm_error; } static int dhdsdio_download_btfw(struct dhd_bus *bus, osl_t *osh, void *sdh) { int ret; DHD_TRACE(("%s: btfw path=%s\n", __FUNCTION__, bus->btfw_path)); DHD_OS_WAKE_LOCK(bus->dhd); dhd_os_sdlock(bus->dhd); /* Download the firmware */ ret = _dhdsdio_download_btfw(bus); dhd_os_sdunlock(bus->dhd); DHD_OS_WAKE_UNLOCK(bus->dhd); return ret; } int dhd_bus_download_btfw(struct dhd_bus *bus, osl_t *osh, char *pbtfw_path) { int ret; bus->btfw_path = pbtfw_path; ret = dhdsdio_download_btfw(bus, osh, bus->sdh); return ret; } #endif /* defined (BT_OVER_SDIO) */ void dhd_bus_dump_trap_info(dhd_bus_t *bus, struct bcmstrbuf *strbuf) { trap_t *tr = &bus->dhd->last_trap_info; bcm_bprintf(strbuf, "Dongle trap type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x," "lp 0x%x, rpc 0x%x Trap offset 0x%x, " "r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, " "r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n", ltoh32(tr->type), ltoh32(tr->epc), ltoh32(tr->cpsr), ltoh32(tr->spsr), ltoh32(tr->r13), ltoh32(tr->r14), ltoh32(tr->pc), ltoh32(bus->dongle_trap_addr), ltoh32(tr->r0), ltoh32(tr->r1), ltoh32(tr->r2), ltoh32(tr->r3), ltoh32(tr->r4), ltoh32(tr->r5), ltoh32(tr->r6), ltoh32(tr->r7)); } static int dhd_bcmsdh_send_buffer(void *bus, uint8 *frame, uint16 len) { int ret = -1; ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(((dhd_bus_t*)bus)->sdh), SDIO_FUNC_2, F2SYNC, frame, len, NULL, NULL, NULL, TXRETRIES); if (ret == BCME_OK) ((dhd_bus_t*)bus)->tx_seq = (((dhd_bus_t*)bus)->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; return ret; } /* Function to set the min res mask depending on the chip ID used */ bool dhd_bus_set_default_min_res_mask(struct dhd_bus *bus) { if ((bus == NULL) || (bus->sih == NULL)) { DHD_ERROR(("%s(): Invalid Arguments \r\n", __FUNCTION__)); return FALSE; } switch (bus->sih->chip) { case BCM4339_CHIP_ID: bcmsdh_reg_write(bus->sdh, SI_ENUM_BASE(bus->sih) + 0x618, 4, 0x3fcaf377); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s:%d Setting min_res_mask failed\n", __FUNCTION__, __LINE__)); return FALSE; } break; case BCM43012_CHIP_ID: case BCM43013_CHIP_ID: case BCM43014_CHIP_ID: bcmsdh_reg_write(bus->sdh, si_get_pmu_reg_addr(bus->sih, OFFSETOF(pmuregs_t, min_res_mask)), 4, DEFAULT_43012_MIN_RES_MASK); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s:%d Setting min_res_mask failed\n", __FUNCTION__, __LINE__)); return FALSE; } break; default: DHD_ERROR(("%s: Unhandled chip id\n", __FUNCTION__)); return FALSE; } return TRUE; } /* Function to reset PMU registers */ void dhd_bus_pmu_reg_reset(dhd_pub_t *dhdp) { struct dhd_bus *bus = dhdp->bus; bcmsdh_reg_write(bus->sdh, si_get_pmu_reg_addr(bus->sih, OFFSETOF(pmuregs_t, swscratch)), 4, 0x0); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s:%d Setting min_res_mask failed\n", __FUNCTION__, __LINE__)); } } int dhd_bus_readwrite_bp_addr(dhd_pub_t *dhdp, uint addr, uint size, uint* data, bool read) { int bcmerror = 0; struct dhd_bus *bus = dhdp->bus; if (read) { *data = (int32)bcmsdh_reg_read(bus->sdh, addr, size); } else { bcmsdh_reg_write(bus->sdh, addr, size, *data); } if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; return bcmerror; } int dhd_get_idletime(dhd_pub_t *dhd) { return dhd->bus->idletime; } #ifdef DHD_WAKE_STATUS wake_counts_t* dhd_bus_get_wakecount(dhd_pub_t *dhd) { return &dhd->bus->wake_counts; } int dhd_bus_get_bus_wake(dhd_pub_t *dhd) { return bcmsdh_get_wake(dhd->bus->sdh); } int dhd_bus_set_get_bus_wake(dhd_pub_t *dhd, int set) { return bcmsdh_set_get_wake(dhd->bus, set); } #endif /* DHD_WAKE_STATUS */ void dhd_bus_set_signature_path(struct dhd_bus *bus, char *sig_path) { UNUSED_PARAMETER(bus); UNUSED_PARAMETER(sig_path); }