/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include "msm-pcm-routing-v2.h" #include "sdm660-common.h" #include "sdm660-internal.h" #include "sdm660-external.h" #include "codecs/msm-cdc-pinctrl.h" #include "codecs/sdm660_cdc/msm-analog-cdc.h" #include "codecs/wsa881x.h" #define __CHIPSET__ "SDM660 " #define MSM_DAILINK_NAME(name) (__CHIPSET__#name) #define DRV_NAME "sdm660-asoc-snd" #define MSM_INT_DIGITAL_CODEC "msm-dig-codec" #define PMIC_INT_ANALOG_CODEC "analog-codec" #define DEV_NAME_STR_LEN 32 #define DEFAULT_MCLK_RATE 9600000 #define MSM_LL_QOS_VALUE 300 /* time in us to ensure LPM doesn't go in C3/C4 */ struct dev_config { u32 sample_rate; u32 bit_format; u32 channels; }; enum { DP_RX_IDX, EXT_DISP_RX_IDX_MAX, }; bool codec_reg_done; /* TDM default config */ static struct dev_config tdm_rx_cfg[TDM_INTERFACE_MAX][TDM_PORT_MAX] = { { /* PRI TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */ }, { /* SEC TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */ }, { /* TERT TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */ }, { /* QUAT TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */ }, { /* QUIN TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */ } }; /* TDM default config */ static struct dev_config tdm_tx_cfg[TDM_INTERFACE_MAX][TDM_PORT_MAX] = { { /* PRI TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */ }, { /* SEC TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */ }, { /* TERT TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */ }, { /* QUAT TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */ }, { /* QUIN TDM */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */ {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */ } }; /* Default configuration of external display BE */ static struct dev_config ext_disp_rx_cfg[] = { [DP_RX_IDX] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, }; static struct dev_config usb_rx_cfg = { .sample_rate = SAMPLING_RATE_48KHZ, .bit_format = SNDRV_PCM_FORMAT_S16_LE, .channels = 2, }; static struct dev_config usb_tx_cfg = { .sample_rate = SAMPLING_RATE_48KHZ, .bit_format = SNDRV_PCM_FORMAT_S16_LE, .channels = 1, }; enum { PRIM_AUX_PCM = 0, SEC_AUX_PCM, TERT_AUX_PCM, QUAT_AUX_PCM, QUIN_AUX_PCM, AUX_PCM_MAX, }; enum { PCM_I2S_SEL_PRIM = 0, PCM_I2S_SEL_SEC, PCM_I2S_SEL_TERT, PCM_I2S_SEL_QUAT, PCM_I2S_SEL_QUIN, PCM_I2S_SEL_MAX, }; struct mi2s_conf { struct mutex lock; u32 ref_cnt; u32 msm_is_mi2s_master; u32 msm_is_ext_mclk; }; static u32 mi2s_ebit_clk[MI2S_MAX] = { Q6AFE_LPASS_CLK_ID_PRI_MI2S_EBIT, Q6AFE_LPASS_CLK_ID_SEC_MI2S_EBIT, Q6AFE_LPASS_CLK_ID_TER_MI2S_EBIT, Q6AFE_LPASS_CLK_ID_QUAD_MI2S_EBIT, Q6AFE_LPASS_CLK_ID_QUI_MI2S_EBIT }; struct msm_wsa881x_dev_info { struct device_node *of_node; u32 index; }; static struct snd_soc_aux_dev *msm_aux_dev; static struct snd_soc_codec_conf *msm_codec_conf; static bool msm_swap_gnd_mic(struct snd_soc_codec *codec, bool active); static struct wcd_mbhc_config mbhc_cfg = { .read_fw_bin = false, .calibration = NULL, .detect_extn_cable = true, .mono_stero_detection = false, .swap_gnd_mic = NULL, .hs_ext_micbias = true, .key_code[0] = KEY_MEDIA, .key_code[1] = KEY_VOICECOMMAND, .key_code[2] = KEY_VOLUMEUP, .key_code[3] = KEY_VOLUMEDOWN, .key_code[4] = 0, .key_code[5] = 0, .key_code[6] = 0, .key_code[7] = 0, .linein_th = 5000, .moisture_en = false, .mbhc_micbias = 0, .anc_micbias = 0, .enable_anc_mic_detect = false, }; static struct dev_config proxy_rx_cfg = { .sample_rate = SAMPLING_RATE_48KHZ, .bit_format = SNDRV_PCM_FORMAT_S16_LE, .channels = 2, }; /* Default configuration of MI2S channels */ static struct dev_config mi2s_rx_cfg[] = { [PRIM_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, [SEC_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, [TERT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, [QUAT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, [QUIN_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2}, }; static struct dev_config mi2s_tx_cfg[] = { [PRIM_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [SEC_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [TERT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUAT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUIN_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, }; static struct dev_config aux_pcm_rx_cfg[] = { [PRIM_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [SEC_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [TERT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUAT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUIN_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, }; static struct dev_config aux_pcm_tx_cfg[] = { [PRIM_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [SEC_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [TERT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUAT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, [QUIN_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, }; static char const *ch_text[] = {"Two", "Three", "Four", "Five", "Six", "Seven", "Eight"}; static const char *const auxpcm_rate_text[] = {"KHZ_8", "KHZ_16"}; static char const *mi2s_rate_text[] = {"KHZ_8", "KHZ_16", "KHZ_32", "KHZ_44P1", "KHZ_48", "KHZ_96", "KHZ_192"}; static const char *const mi2s_ch_text[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight"}; static char const *bit_format_text[] = {"S16_LE", "S24_LE", "S24_3LE", "S32_LE"}; static char const *mi2s_format_text[] = {"S16_LE", "S24_LE", "S24_3LE", "S32_LE"}; static char const *tdm_ch_text[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight"}; static char const *tdm_bit_format_text[] = {"S16_LE", "S24_LE", "S32_LE"}; static char const *tdm_sample_rate_text[] = {"KHZ_8", "KHZ_16", "KHZ_32", "KHZ_44P1", "KHZ_48", "KHZ_96", "KHZ_192", "KHZ_352P8", "KHZ_384"}; static const char *const usb_ch_text[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight"}; static char const *usb_sample_rate_text[] = {"KHZ_8", "KHZ_11P025", "KHZ_16", "KHZ_22P05", "KHZ_32", "KHZ_44P1", "KHZ_48", "KHZ_96", "KHZ_192", "KHZ_384"}; static char const *ext_disp_bit_format_text[] = {"S16_LE", "S24_LE"}; static char const *ext_disp_sample_rate_text[] = {"KHZ_48", "KHZ_96", "KHZ_192"}; static const char *const qos_text[] = {"Disable", "Enable"}; static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_chs, ch_text); static SOC_ENUM_SINGLE_EXT_DECL(proxy_rx_chs, ch_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_aux_pcm_rx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_aux_pcm_rx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_aux_pcm_rx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_aux_pcm_rx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_aux_pcm_rx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_aux_pcm_tx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_aux_pcm_tx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_aux_pcm_tx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_aux_pcm_tx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_aux_pcm_tx_sample_rate, auxpcm_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_rx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_tx_sample_rate, mi2s_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_rx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_tx_format, mi2s_format_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_rx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(quin_mi2s_tx_chs, mi2s_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_chs, usb_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_chs, usb_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_format, bit_format_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_format, bit_format_text); static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_format, ext_disp_bit_format_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_sample_rate, usb_sample_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_sample_rate, usb_sample_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_sample_rate, ext_disp_sample_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_chs, tdm_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_format, tdm_bit_format_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_sample_rate, tdm_sample_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_chs, tdm_ch_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_format, tdm_bit_format_text); static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_sample_rate, tdm_sample_rate_text); static SOC_ENUM_SINGLE_EXT_DECL(qos_vote, qos_text); static int qos_vote_status; static struct afe_clk_set mi2s_clk[MI2S_MAX] = { { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_PRI_MI2S_IBIT, Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_SEC_MI2S_IBIT, Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_TER_MI2S_IBIT, Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_QUAD_MI2S_IBIT, Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_QUI_MI2S_IBIT, Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, } }; static struct afe_clk_set mi2s_mclk[MI2S_MAX] = { { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_MCLK_3, Q6AFE_LPASS_OSR_CLK_9_P600_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_MCLK_2, Q6AFE_LPASS_OSR_CLK_9_P600_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_MCLK_1, Q6AFE_LPASS_OSR_CLK_9_P600_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_MCLK_1, Q6AFE_LPASS_OSR_CLK_9_P600_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, }, { AFE_API_VERSION_I2S_CONFIG, Q6AFE_LPASS_CLK_ID_QUI_MI2S_OSR, Q6AFE_LPASS_OSR_CLK_9_P600_MHZ, Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO, Q6AFE_LPASS_CLK_ROOT_DEFAULT, 0, } }; static struct mi2s_conf mi2s_intf_conf[MI2S_MAX]; static int proxy_rx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s: proxy_rx channels = %d\n", __func__, proxy_rx_cfg.channels); ucontrol->value.integer.value[0] = proxy_rx_cfg.channels - 2; return 0; } static int proxy_rx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { proxy_rx_cfg.channels = ucontrol->value.integer.value[0] + 2; pr_debug("%s: proxy_rx channels = %d\n", __func__, proxy_rx_cfg.channels); return 1; } static int tdm_get_sample_rate(int value) { int sample_rate = 0; switch (value) { case 0: sample_rate = SAMPLING_RATE_8KHZ; break; case 1: sample_rate = SAMPLING_RATE_16KHZ; break; case 2: sample_rate = SAMPLING_RATE_32KHZ; break; case 3: sample_rate = SAMPLING_RATE_44P1KHZ; break; case 4: sample_rate = SAMPLING_RATE_48KHZ; break; case 5: sample_rate = SAMPLING_RATE_96KHZ; break; case 6: sample_rate = SAMPLING_RATE_192KHZ; break; case 7: sample_rate = SAMPLING_RATE_352P8KHZ; break; case 8: sample_rate = SAMPLING_RATE_384KHZ; break; default: sample_rate = SAMPLING_RATE_48KHZ; break; } return sample_rate; } static int tdm_get_sample_rate_val(int sample_rate) { int sample_rate_val = 0; switch (sample_rate) { case SAMPLING_RATE_8KHZ: sample_rate_val = 0; break; case SAMPLING_RATE_16KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_32KHZ: sample_rate_val = 2; break; case SAMPLING_RATE_44P1KHZ: sample_rate_val = 3; break; case SAMPLING_RATE_48KHZ: sample_rate_val = 4; break; case SAMPLING_RATE_96KHZ: sample_rate_val = 5; break; case SAMPLING_RATE_192KHZ: sample_rate_val = 6; break; case SAMPLING_RATE_352P8KHZ: sample_rate_val = 7; break; case SAMPLING_RATE_384KHZ: sample_rate_val = 8; break; default: sample_rate_val = 4; break; } return sample_rate_val; } static int tdm_get_port_idx(struct snd_kcontrol *kcontrol, struct tdm_port *port) { if (port) { if (strnstr(kcontrol->id.name, "PRI", sizeof(kcontrol->id.name))) { port->mode = TDM_PRI; } else if (strnstr(kcontrol->id.name, "SEC", sizeof(kcontrol->id.name))) { port->mode = TDM_SEC; } else if (strnstr(kcontrol->id.name, "TERT", sizeof(kcontrol->id.name))) { port->mode = TDM_TERT; } else if (strnstr(kcontrol->id.name, "QUAT", sizeof(kcontrol->id.name))) { port->mode = TDM_QUAT; } else if (strnstr(kcontrol->id.name, "QUIN", sizeof(kcontrol->id.name))) { port->mode = TDM_QUIN; } else { pr_err("%s: unsupported mode in: %s", __func__, kcontrol->id.name); return -EINVAL; } if (strnstr(kcontrol->id.name, "RX_0", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_0", sizeof(kcontrol->id.name))) { port->channel = TDM_0; } else if (strnstr(kcontrol->id.name, "RX_1", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_1", sizeof(kcontrol->id.name))) { port->channel = TDM_1; } else if (strnstr(kcontrol->id.name, "RX_2", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_2", sizeof(kcontrol->id.name))) { port->channel = TDM_2; } else if (strnstr(kcontrol->id.name, "RX_3", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_3", sizeof(kcontrol->id.name))) { port->channel = TDM_3; } else if (strnstr(kcontrol->id.name, "RX_4", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_4", sizeof(kcontrol->id.name))) { port->channel = TDM_4; } else if (strnstr(kcontrol->id.name, "RX_5", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_5", sizeof(kcontrol->id.name))) { port->channel = TDM_5; } else if (strnstr(kcontrol->id.name, "RX_6", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_6", sizeof(kcontrol->id.name))) { port->channel = TDM_6; } else if (strnstr(kcontrol->id.name, "RX_7", sizeof(kcontrol->id.name)) || strnstr(kcontrol->id.name, "TX_7", sizeof(kcontrol->id.name))) { port->channel = TDM_7; } else { pr_err("%s: unsupported channel in: %s", __func__, kcontrol->id.name); return -EINVAL; } } else return -EINVAL; return 0; } static int tdm_rx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_get_sample_rate_val( tdm_rx_cfg[port.mode][port.channel].sample_rate); pr_debug("%s: tdm_rx_sample_rate = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].sample_rate, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_rx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_rx_cfg[port.mode][port.channel].sample_rate = tdm_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: tdm_rx_sample_rate = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].sample_rate, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_tx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_get_sample_rate_val( tdm_tx_cfg[port.mode][port.channel].sample_rate); pr_debug("%s: tdm_tx_sample_rate = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].sample_rate, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_tx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_tx_cfg[port.mode][port.channel].sample_rate = tdm_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: tdm_tx_sample_rate = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].sample_rate, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_get_format(int value) { int format = 0; switch (value) { case 0: format = SNDRV_PCM_FORMAT_S16_LE; break; case 1: format = SNDRV_PCM_FORMAT_S24_LE; break; case 2: format = SNDRV_PCM_FORMAT_S32_LE; break; default: format = SNDRV_PCM_FORMAT_S16_LE; break; } return format; } static int tdm_get_format_val(int format) { int value = 0; switch (format) { case SNDRV_PCM_FORMAT_S16_LE: value = 0; break; case SNDRV_PCM_FORMAT_S24_LE: value = 1; break; case SNDRV_PCM_FORMAT_S32_LE: value = 2; break; default: value = 0; break; } return value; } static int mi2s_get_format(int value) { int format = 0; switch (value) { case 0: format = SNDRV_PCM_FORMAT_S16_LE; break; case 1: format = SNDRV_PCM_FORMAT_S24_LE; break; case 2: format = SNDRV_PCM_FORMAT_S24_3LE; break; case 3: format = SNDRV_PCM_FORMAT_S32_LE; break; default: format = SNDRV_PCM_FORMAT_S16_LE; break; } return format; } static int mi2s_get_format_value(int format) { int value = 0; switch (format) { case SNDRV_PCM_FORMAT_S16_LE: value = 0; break; case SNDRV_PCM_FORMAT_S24_LE: value = 1; break; case SNDRV_PCM_FORMAT_S24_3LE: value = 2; break; case SNDRV_PCM_FORMAT_S32_LE: value = 3; break; default: value = 0; break; } return value; } static int tdm_rx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_get_format_val( tdm_rx_cfg[port.mode][port.channel].bit_format); pr_debug("%s: tdm_rx_bit_format = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].bit_format, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_rx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_rx_cfg[port.mode][port.channel].bit_format = tdm_get_format(ucontrol->value.enumerated.item[0]); pr_debug("%s: tdm_rx_bit_format = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].bit_format, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_tx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_get_format_val( tdm_tx_cfg[port.mode][port.channel].bit_format); pr_debug("%s: tdm_tx_bit_format = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].bit_format, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_tx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_tx_cfg[port.mode][port.channel].bit_format = tdm_get_format(ucontrol->value.enumerated.item[0]); pr_debug("%s: tdm_tx_bit_format = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].bit_format, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_rx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_rx_cfg[port.mode][port.channel].channels - 1; pr_debug("%s: tdm_rx_ch = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].channels - 1, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_rx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_rx_cfg[port.mode][port.channel].channels = ucontrol->value.enumerated.item[0] + 1; pr_debug("%s: tdm_rx_ch = %d, item = %d\n", __func__, tdm_rx_cfg[port.mode][port.channel].channels, ucontrol->value.enumerated.item[0] + 1); } return ret; } static int tdm_tx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { ucontrol->value.enumerated.item[0] = tdm_tx_cfg[port.mode][port.channel].channels - 1; pr_debug("%s: tdm_tx_ch = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].channels - 1, ucontrol->value.enumerated.item[0]); } return ret; } static int tdm_tx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tdm_port port; int ret = tdm_get_port_idx(kcontrol, &port); if (ret) { pr_err("%s: unsupported control: %s", __func__, kcontrol->id.name); } else { tdm_tx_cfg[port.mode][port.channel].channels = ucontrol->value.enumerated.item[0] + 1; pr_debug("%s: tdm_tx_ch = %d, item = %d\n", __func__, tdm_tx_cfg[port.mode][port.channel].channels, ucontrol->value.enumerated.item[0] + 1); } return ret; } static int aux_pcm_get_sample_rate(int value) { int sample_rate; switch (value) { case 1: sample_rate = SAMPLING_RATE_16KHZ; break; case 0: default: sample_rate = SAMPLING_RATE_8KHZ; break; } return sample_rate; } static int aux_pcm_get_sample_rate_val(int sample_rate) { int sample_rate_val; switch (sample_rate) { case SAMPLING_RATE_16KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_8KHZ: default: sample_rate_val = 0; break; } return sample_rate_val; } static int aux_pcm_get_port_idx(struct snd_kcontrol *kcontrol) { int idx; if (strnstr(kcontrol->id.name, "PRIM_AUX_PCM", sizeof("PRIM_AUX_PCM"))) idx = PRIM_AUX_PCM; else if (strnstr(kcontrol->id.name, "SEC_AUX_PCM", sizeof("SEC_AUX_PCM"))) idx = SEC_AUX_PCM; else if (strnstr(kcontrol->id.name, "TERT_AUX_PCM", sizeof("TERT_AUX_PCM"))) idx = TERT_AUX_PCM; else if (strnstr(kcontrol->id.name, "QUAT_AUX_PCM", sizeof("QUAT_AUX_PCM"))) idx = QUAT_AUX_PCM; else if (strnstr(kcontrol->id.name, "QUIN_AUX_PCM", sizeof("QUIN_AUX_PCM"))) idx = QUIN_AUX_PCM; else { pr_err("%s: unsupported port: %s", __func__, kcontrol->id.name); idx = -EINVAL; } return idx; } static int aux_pcm_rx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = aux_pcm_get_port_idx(kcontrol); if (idx < 0) return idx; aux_pcm_rx_cfg[idx].sample_rate = aux_pcm_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__, idx, aux_pcm_rx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int aux_pcm_rx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = aux_pcm_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = aux_pcm_get_sample_rate_val(aux_pcm_rx_cfg[idx].sample_rate); pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__, idx, aux_pcm_rx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int aux_pcm_tx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = aux_pcm_get_port_idx(kcontrol); if (idx < 0) return idx; aux_pcm_tx_cfg[idx].sample_rate = aux_pcm_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__, idx, aux_pcm_tx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int aux_pcm_tx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = aux_pcm_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = aux_pcm_get_sample_rate_val(aux_pcm_tx_cfg[idx].sample_rate); pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__, idx, aux_pcm_tx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_get_port_idx(struct snd_kcontrol *kcontrol) { int idx; if (strnstr(kcontrol->id.name, "PRIM_MI2S_RX", sizeof("PRIM_MI2S_RX"))) idx = PRIM_MI2S; else if (strnstr(kcontrol->id.name, "SEC_MI2S_RX", sizeof("SEC_MI2S_RX"))) idx = SEC_MI2S; else if (strnstr(kcontrol->id.name, "TERT_MI2S_RX", sizeof("TERT_MI2S_RX"))) idx = TERT_MI2S; else if (strnstr(kcontrol->id.name, "QUAT_MI2S_RX", sizeof("QUAT_MI2S_RX"))) idx = QUAT_MI2S; else if (strnstr(kcontrol->id.name, "QUIN_MI2S_RX", sizeof("QUIN_MI2S_RX"))) idx = QUIN_MI2S; else if (strnstr(kcontrol->id.name, "PRIM_MI2S_TX", sizeof("PRIM_MI2S_TX"))) idx = PRIM_MI2S; else if (strnstr(kcontrol->id.name, "SEC_MI2S_TX", sizeof("SEC_MI2S_TX"))) idx = SEC_MI2S; else if (strnstr(kcontrol->id.name, "TERT_MI2S_TX", sizeof("TERT_MI2S_TX"))) idx = TERT_MI2S; else if (strnstr(kcontrol->id.name, "QUAT_MI2S_TX", sizeof("QUAT_MI2S_TX"))) idx = QUAT_MI2S; else if (strnstr(kcontrol->id.name, "QUIN_MI2S_TX", sizeof("QUIN_MI2S_TX"))) idx = QUIN_MI2S; else { pr_err("%s: unsupported channel: %s", __func__, kcontrol->id.name); idx = -EINVAL; } return idx; } static int mi2s_get_sample_rate_val(int sample_rate) { int sample_rate_val; switch (sample_rate) { case SAMPLING_RATE_8KHZ: sample_rate_val = 0; break; case SAMPLING_RATE_16KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_32KHZ: sample_rate_val = 2; break; case SAMPLING_RATE_44P1KHZ: sample_rate_val = 3; break; case SAMPLING_RATE_48KHZ: sample_rate_val = 4; break; case SAMPLING_RATE_96KHZ: sample_rate_val = 5; break; case SAMPLING_RATE_192KHZ: sample_rate_val = 6; break; default: sample_rate_val = 4; break; } return sample_rate_val; } static int mi2s_get_sample_rate(int value) { int sample_rate; switch (value) { case 0: sample_rate = SAMPLING_RATE_8KHZ; break; case 1: sample_rate = SAMPLING_RATE_16KHZ; break; case 2: sample_rate = SAMPLING_RATE_32KHZ; break; case 3: sample_rate = SAMPLING_RATE_44P1KHZ; break; case 4: sample_rate = SAMPLING_RATE_48KHZ; break; case 5: sample_rate = SAMPLING_RATE_96KHZ; break; case 6: sample_rate = SAMPLING_RATE_192KHZ; break; default: sample_rate = SAMPLING_RATE_48KHZ; break; } return sample_rate; } static int mi2s_rx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_rx_cfg[idx].sample_rate = mi2s_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__, idx, mi2s_rx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_rx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = mi2s_get_sample_rate_val(mi2s_rx_cfg[idx].sample_rate); pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__, idx, mi2s_rx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_tx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_tx_cfg[idx].sample_rate = mi2s_get_sample_rate(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__, idx, mi2s_tx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_tx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = mi2s_get_sample_rate_val(mi2s_tx_cfg[idx].sample_rate); pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__, idx, mi2s_tx_cfg[idx].sample_rate, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_tx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_tx_cfg[idx].bit_format = mi2s_get_format(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d] _tx_format = %d, item = %d\n", __func__, idx, mi2s_tx_cfg[idx].bit_format, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_tx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = mi2s_get_format_value(mi2s_tx_cfg[idx].bit_format); pr_debug("%s: idx[%d]_tx_format = %d, item = %d\n", __func__, idx, mi2s_tx_cfg[idx].bit_format, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_rx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_rx_cfg[idx].bit_format = mi2s_get_format(ucontrol->value.enumerated.item[0]); pr_debug("%s: idx[%d] _rx_format = %d, item = %d\n", __func__, idx, mi2s_rx_cfg[idx].bit_format, ucontrol->value.enumerated.item[0]); return 0; } static int mi2s_rx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.enumerated.item[0] = mi2s_get_format_value(mi2s_rx_cfg[idx].bit_format); pr_debug("%s: idx[%d]_rx_format = %d, item = %d\n", __func__, idx, mi2s_rx_cfg[idx].bit_format, ucontrol->value.enumerated.item[0]); return 0; } static int msm_mi2s_rx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; pr_debug("%s: msm_mi2s_[%d]_rx_ch = %d\n", __func__, idx, mi2s_rx_cfg[idx].channels); ucontrol->value.enumerated.item[0] = mi2s_rx_cfg[idx].channels - 1; return 0; } static int msm_mi2s_rx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_rx_cfg[idx].channels = ucontrol->value.enumerated.item[0] + 1; pr_debug("%s: msm_mi2s_[%d]_rx_ch = %d\n", __func__, idx, mi2s_rx_cfg[idx].channels); return 1; } static int msm_mi2s_tx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; pr_debug("%s: msm_mi2s_[%d]_tx_ch = %d\n", __func__, idx, mi2s_tx_cfg[idx].channels); ucontrol->value.enumerated.item[0] = mi2s_tx_cfg[idx].channels - 1; return 0; } static int msm_mi2s_tx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = mi2s_get_port_idx(kcontrol); if (idx < 0) return idx; mi2s_tx_cfg[idx].channels = ucontrol->value.enumerated.item[0] + 1; pr_debug("%s: msm_mi2s_[%d]_tx_ch = %d\n", __func__, idx, mi2s_tx_cfg[idx].channels); return 1; } static int usb_audio_rx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s: usb_audio_rx_ch = %d\n", __func__, usb_rx_cfg.channels); ucontrol->value.integer.value[0] = usb_rx_cfg.channels - 1; return 0; } static int usb_audio_rx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { usb_rx_cfg.channels = ucontrol->value.integer.value[0] + 1; pr_debug("%s: usb_audio_rx_ch = %d\n", __func__, usb_rx_cfg.channels); return 1; } static int usb_audio_rx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int sample_rate_val; switch (usb_rx_cfg.sample_rate) { case SAMPLING_RATE_384KHZ: sample_rate_val = 9; break; case SAMPLING_RATE_192KHZ: sample_rate_val = 8; break; case SAMPLING_RATE_96KHZ: sample_rate_val = 7; break; case SAMPLING_RATE_48KHZ: sample_rate_val = 6; break; case SAMPLING_RATE_44P1KHZ: sample_rate_val = 5; break; case SAMPLING_RATE_32KHZ: sample_rate_val = 4; break; case SAMPLING_RATE_22P05KHZ: sample_rate_val = 3; break; case SAMPLING_RATE_16KHZ: sample_rate_val = 2; break; case SAMPLING_RATE_11P025KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_8KHZ: default: sample_rate_val = 0; break; } ucontrol->value.integer.value[0] = sample_rate_val; pr_debug("%s: usb_audio_rx_sample_rate = %d\n", __func__, usb_rx_cfg.sample_rate); return 0; } static int usb_audio_rx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { switch (ucontrol->value.integer.value[0]) { case 9: usb_rx_cfg.sample_rate = SAMPLING_RATE_384KHZ; break; case 8: usb_rx_cfg.sample_rate = SAMPLING_RATE_192KHZ; break; case 7: usb_rx_cfg.sample_rate = SAMPLING_RATE_96KHZ; break; case 6: usb_rx_cfg.sample_rate = SAMPLING_RATE_48KHZ; break; case 5: usb_rx_cfg.sample_rate = SAMPLING_RATE_44P1KHZ; break; case 4: usb_rx_cfg.sample_rate = SAMPLING_RATE_32KHZ; break; case 3: usb_rx_cfg.sample_rate = SAMPLING_RATE_22P05KHZ; break; case 2: usb_rx_cfg.sample_rate = SAMPLING_RATE_16KHZ; break; case 1: usb_rx_cfg.sample_rate = SAMPLING_RATE_11P025KHZ; break; case 0: usb_rx_cfg.sample_rate = SAMPLING_RATE_8KHZ; break; default: usb_rx_cfg.sample_rate = SAMPLING_RATE_48KHZ; break; } pr_debug("%s: control value = %ld, usb_audio_rx_sample_rate = %d\n", __func__, ucontrol->value.integer.value[0], usb_rx_cfg.sample_rate); return 0; } static int usb_audio_rx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { switch (usb_rx_cfg.bit_format) { case SNDRV_PCM_FORMAT_S32_LE: ucontrol->value.integer.value[0] = 3; break; case SNDRV_PCM_FORMAT_S24_3LE: ucontrol->value.integer.value[0] = 2; break; case SNDRV_PCM_FORMAT_S24_LE: ucontrol->value.integer.value[0] = 1; break; case SNDRV_PCM_FORMAT_S16_LE: default: ucontrol->value.integer.value[0] = 0; break; } pr_debug("%s: usb_audio_rx_format = %d, ucontrol value = %ld\n", __func__, usb_rx_cfg.bit_format, ucontrol->value.integer.value[0]); return 0; } static int usb_audio_rx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int rc = 0; switch (ucontrol->value.integer.value[0]) { case 3: usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S32_LE; break; case 2: usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_3LE; break; case 1: usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_LE; break; case 0: default: usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S16_LE; break; } pr_debug("%s: usb_audio_rx_format = %d, ucontrol value = %ld\n", __func__, usb_rx_cfg.bit_format, ucontrol->value.integer.value[0]); return rc; } static int usb_audio_tx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s: usb_audio_tx_ch = %d\n", __func__, usb_tx_cfg.channels); ucontrol->value.integer.value[0] = usb_tx_cfg.channels - 1; return 0; } static int usb_audio_tx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { usb_tx_cfg.channels = ucontrol->value.integer.value[0] + 1; pr_debug("%s: usb_audio_tx_ch = %d\n", __func__, usb_tx_cfg.channels); return 1; } static int usb_audio_tx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int sample_rate_val; switch (usb_tx_cfg.sample_rate) { case SAMPLING_RATE_384KHZ: sample_rate_val = 9; break; case SAMPLING_RATE_192KHZ: sample_rate_val = 8; break; case SAMPLING_RATE_96KHZ: sample_rate_val = 7; break; case SAMPLING_RATE_48KHZ: sample_rate_val = 6; break; case SAMPLING_RATE_44P1KHZ: sample_rate_val = 5; break; case SAMPLING_RATE_32KHZ: sample_rate_val = 4; break; case SAMPLING_RATE_22P05KHZ: sample_rate_val = 3; break; case SAMPLING_RATE_16KHZ: sample_rate_val = 2; break; case SAMPLING_RATE_11P025KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_8KHZ: sample_rate_val = 0; break; default: sample_rate_val = 6; break; } ucontrol->value.integer.value[0] = sample_rate_val; pr_debug("%s: usb_audio_tx_sample_rate = %d\n", __func__, usb_tx_cfg.sample_rate); return 0; } static int usb_audio_tx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { switch (ucontrol->value.integer.value[0]) { case 9: usb_tx_cfg.sample_rate = SAMPLING_RATE_384KHZ; break; case 8: usb_tx_cfg.sample_rate = SAMPLING_RATE_192KHZ; break; case 7: usb_tx_cfg.sample_rate = SAMPLING_RATE_96KHZ; break; case 6: usb_tx_cfg.sample_rate = SAMPLING_RATE_48KHZ; break; case 5: usb_tx_cfg.sample_rate = SAMPLING_RATE_44P1KHZ; break; case 4: usb_tx_cfg.sample_rate = SAMPLING_RATE_32KHZ; break; case 3: usb_tx_cfg.sample_rate = SAMPLING_RATE_22P05KHZ; break; case 2: usb_tx_cfg.sample_rate = SAMPLING_RATE_16KHZ; break; case 1: usb_tx_cfg.sample_rate = SAMPLING_RATE_11P025KHZ; break; case 0: usb_tx_cfg.sample_rate = SAMPLING_RATE_8KHZ; break; default: usb_tx_cfg.sample_rate = SAMPLING_RATE_48KHZ; break; } pr_debug("%s: control value = %ld, usb_audio_tx_sample_rate = %d\n", __func__, ucontrol->value.integer.value[0], usb_tx_cfg.sample_rate); return 0; } static int usb_audio_tx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { switch (usb_tx_cfg.bit_format) { case SNDRV_PCM_FORMAT_S32_LE: ucontrol->value.integer.value[0] = 3; break; case SNDRV_PCM_FORMAT_S24_3LE: ucontrol->value.integer.value[0] = 2; break; case SNDRV_PCM_FORMAT_S24_LE: ucontrol->value.integer.value[0] = 1; break; case SNDRV_PCM_FORMAT_S16_LE: default: ucontrol->value.integer.value[0] = 0; break; } pr_debug("%s: usb_audio_tx_format = %d, ucontrol value = %ld\n", __func__, usb_tx_cfg.bit_format, ucontrol->value.integer.value[0]); return 0; } static int usb_audio_tx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int rc = 0; switch (ucontrol->value.integer.value[0]) { case 3: usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S32_LE; break; case 2: usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_3LE; break; case 1: usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_LE; break; case 0: default: usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S16_LE; break; } pr_debug("%s: usb_audio_tx_format = %d, ucontrol value = %ld\n", __func__, usb_tx_cfg.bit_format, ucontrol->value.integer.value[0]); return rc; } static int ext_disp_get_port_idx(struct snd_kcontrol *kcontrol) { int idx; if (strnstr(kcontrol->id.name, "Display Port RX", sizeof("Display Port RX"))) idx = DP_RX_IDX; else { pr_err("%s: unsupported BE: %s", __func__, kcontrol->id.name); idx = -EINVAL; } return idx; } static int ext_disp_rx_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; switch (ext_disp_rx_cfg[idx].bit_format) { case SNDRV_PCM_FORMAT_S24_LE: ucontrol->value.integer.value[0] = 1; break; case SNDRV_PCM_FORMAT_S16_LE: default: ucontrol->value.integer.value[0] = 0; break; } pr_debug("%s: ext_disp_rx[%d].format = %d, ucontrol value = %ld\n", __func__, idx, ext_disp_rx_cfg[idx].bit_format, ucontrol->value.integer.value[0]); return 0; } static int ext_disp_rx_format_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; switch (ucontrol->value.integer.value[0]) { case 1: ext_disp_rx_cfg[idx].bit_format = SNDRV_PCM_FORMAT_S24_LE; break; case 0: default: ext_disp_rx_cfg[idx].bit_format = SNDRV_PCM_FORMAT_S16_LE; break; } pr_debug("%s: ext_disp_rx[%d].format = %d, ucontrol value = %ld\n", __func__, idx, ext_disp_rx_cfg[idx].bit_format, ucontrol->value.integer.value[0]); return 0; } static int ext_disp_rx_ch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; ucontrol->value.integer.value[0] = ext_disp_rx_cfg[idx].channels - 2; pr_debug("%s: ext_disp_rx[%d].ch = %d\n", __func__, idx, ext_disp_rx_cfg[idx].channels); return 0; } static int ext_disp_rx_ch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; ext_disp_rx_cfg[idx].channels = ucontrol->value.integer.value[0] + 2; pr_debug("%s: ext_disp_rx[%d].ch = %d\n", __func__, idx, ext_disp_rx_cfg[idx].channels); return 1; } static int ext_disp_rx_sample_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int sample_rate_val; int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; switch (ext_disp_rx_cfg[idx].sample_rate) { case SAMPLING_RATE_192KHZ: sample_rate_val = 2; break; case SAMPLING_RATE_96KHZ: sample_rate_val = 1; break; case SAMPLING_RATE_48KHZ: default: sample_rate_val = 0; break; } ucontrol->value.integer.value[0] = sample_rate_val; pr_debug("%s: ext_disp_rx[%d].sample_rate = %d\n", __func__, idx, ext_disp_rx_cfg[idx].sample_rate); return 0; } static int ext_disp_rx_sample_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = ext_disp_get_port_idx(kcontrol); if (idx < 0) return idx; switch (ucontrol->value.integer.value[0]) { case 2: ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_192KHZ; break; case 1: ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_96KHZ; break; case 0: default: ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_48KHZ; break; } pr_debug("%s: control value = %ld, ext_disp_rx[%d].sample_rate = %d\n", __func__, ucontrol->value.integer.value[0], idx, ext_disp_rx_cfg[idx].sample_rate); return 0; } static int msm_qos_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.enumerated.item[0] = qos_vote_status; return 0; } static int msm_qos_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); struct snd_soc_card *card = codec->component.card; const char *fe_name = MSM_DAILINK_NAME(LowLatency); struct snd_soc_pcm_runtime *rtd; struct snd_pcm_substream *substream; s32 usecs; rtd = snd_soc_get_pcm_runtime(card, fe_name); if (!rtd) { pr_err("%s: fail to get pcm runtime for %s\n", __func__, fe_name); return -EINVAL; } substream = rtd->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; if (!substream) { pr_err("%s: substream is null\n", __func__); return -EINVAL; } qos_vote_status = ucontrol->value.enumerated.item[0]; if (qos_vote_status) { if (pm_qos_request_active(&substream->latency_pm_qos_req)) pm_qos_remove_request(&substream->latency_pm_qos_req); if (!substream->runtime) { pr_err("%s: runtime is null\n", __func__); return -EINVAL; } usecs = MSM_LL_QOS_VALUE; if (usecs >= 0) pm_qos_add_request(&substream->latency_pm_qos_req, PM_QOS_CPU_DMA_LATENCY, usecs); } else { if (pm_qos_request_active(&substream->latency_pm_qos_req)) pm_qos_remove_request(&substream->latency_pm_qos_req); } return 0; } const struct snd_kcontrol_new msm_common_snd_controls[] = { SOC_ENUM_EXT("PROXY_RX Channels", proxy_rx_chs, proxy_rx_ch_get, proxy_rx_ch_put), SOC_ENUM_EXT("PRIM_AUX_PCM_RX SampleRate", prim_aux_pcm_rx_sample_rate, aux_pcm_rx_sample_rate_get, aux_pcm_rx_sample_rate_put), SOC_ENUM_EXT("SEC_AUX_PCM_RX SampleRate", sec_aux_pcm_rx_sample_rate, aux_pcm_rx_sample_rate_get, aux_pcm_rx_sample_rate_put), SOC_ENUM_EXT("TERT_AUX_PCM_RX SampleRate", tert_aux_pcm_rx_sample_rate, aux_pcm_rx_sample_rate_get, aux_pcm_rx_sample_rate_put), SOC_ENUM_EXT("QUAT_AUX_PCM_RX SampleRate", quat_aux_pcm_rx_sample_rate, aux_pcm_rx_sample_rate_get, aux_pcm_rx_sample_rate_put), SOC_ENUM_EXT("QUIN_AUX_PCM_RX SampleRate", quin_aux_pcm_rx_sample_rate, aux_pcm_rx_sample_rate_get, aux_pcm_rx_sample_rate_put), SOC_ENUM_EXT("PRIM_AUX_PCM_TX SampleRate", prim_aux_pcm_tx_sample_rate, aux_pcm_tx_sample_rate_get, aux_pcm_tx_sample_rate_put), SOC_ENUM_EXT("SEC_AUX_PCM_TX SampleRate", sec_aux_pcm_tx_sample_rate, aux_pcm_tx_sample_rate_get, aux_pcm_tx_sample_rate_put), SOC_ENUM_EXT("TERT_AUX_PCM_TX SampleRate", tert_aux_pcm_tx_sample_rate, aux_pcm_tx_sample_rate_get, aux_pcm_tx_sample_rate_put), SOC_ENUM_EXT("QUAT_AUX_PCM_TX SampleRate", quat_aux_pcm_tx_sample_rate, aux_pcm_tx_sample_rate_get, aux_pcm_tx_sample_rate_put), SOC_ENUM_EXT("QUIN_AUX_PCM_TX SampleRate", quin_aux_pcm_tx_sample_rate, aux_pcm_tx_sample_rate_get, aux_pcm_tx_sample_rate_put), SOC_ENUM_EXT("PRIM_MI2S_RX SampleRate", prim_mi2s_rx_sample_rate, mi2s_rx_sample_rate_get, mi2s_rx_sample_rate_put), SOC_ENUM_EXT("SEC_MI2S_RX SampleRate", sec_mi2s_rx_sample_rate, mi2s_rx_sample_rate_get, mi2s_rx_sample_rate_put), SOC_ENUM_EXT("TERT_MI2S_RX SampleRate", tert_mi2s_rx_sample_rate, mi2s_rx_sample_rate_get, mi2s_rx_sample_rate_put), SOC_ENUM_EXT("QUAT_MI2S_RX SampleRate", quat_mi2s_rx_sample_rate, mi2s_rx_sample_rate_get, mi2s_rx_sample_rate_put), SOC_ENUM_EXT("QUIN_MI2S_RX SampleRate", quin_mi2s_rx_sample_rate, mi2s_rx_sample_rate_get, mi2s_rx_sample_rate_put), SOC_ENUM_EXT("PRIM_MI2S_TX SampleRate", prim_mi2s_tx_sample_rate, mi2s_tx_sample_rate_get, mi2s_tx_sample_rate_put), SOC_ENUM_EXT("SEC_MI2S_TX SampleRate", sec_mi2s_tx_sample_rate, mi2s_tx_sample_rate_get, mi2s_tx_sample_rate_put), SOC_ENUM_EXT("TERT_MI2S_TX SampleRate", tert_mi2s_tx_sample_rate, mi2s_tx_sample_rate_get, mi2s_tx_sample_rate_put), SOC_ENUM_EXT("QUAT_MI2S_TX SampleRate", quat_mi2s_tx_sample_rate, mi2s_tx_sample_rate_get, mi2s_tx_sample_rate_put), SOC_ENUM_EXT("QUIN_MI2S_TX SampleRate", quin_mi2s_tx_sample_rate, mi2s_tx_sample_rate_get, mi2s_tx_sample_rate_put), SOC_ENUM_EXT("PRIM_MI2S_RX Format", prim_mi2s_rx_format, mi2s_rx_format_get, mi2s_rx_format_put), SOC_ENUM_EXT("SEC_MI2S_RX Format", sec_mi2s_rx_format, mi2s_rx_format_get, mi2s_rx_format_put), SOC_ENUM_EXT("TERT_MI2S_RX Format", tert_mi2s_rx_format, mi2s_rx_format_get, mi2s_rx_format_put), SOC_ENUM_EXT("QUAT_MI2S_RX Format", quat_mi2s_rx_format, mi2s_rx_format_get, mi2s_rx_format_put), SOC_ENUM_EXT("QUIN_MI2S_RX Format", quin_mi2s_rx_format, mi2s_rx_format_get, mi2s_rx_format_put), SOC_ENUM_EXT("PRIM_MI2S_TX Format", prim_mi2s_tx_format, mi2s_tx_format_get, mi2s_tx_format_put), SOC_ENUM_EXT("SEC_MI2S_TX Format", sec_mi2s_tx_format, mi2s_tx_format_get, mi2s_tx_format_put), SOC_ENUM_EXT("TERT_MI2S_TX Format", tert_mi2s_tx_format, mi2s_tx_format_get, mi2s_tx_format_put), SOC_ENUM_EXT("QUAT_MI2S_TX Format", quat_mi2s_tx_format, mi2s_tx_format_get, mi2s_tx_format_put), SOC_ENUM_EXT("QUIN_MI2S_TX Format", quin_mi2s_tx_format, mi2s_tx_format_get, mi2s_tx_format_put), SOC_ENUM_EXT("PRIM_MI2S_RX Channels", prim_mi2s_rx_chs, msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put), SOC_ENUM_EXT("PRIM_MI2S_TX Channels", prim_mi2s_tx_chs, msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put), SOC_ENUM_EXT("SEC_MI2S_RX Channels", sec_mi2s_rx_chs, msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put), SOC_ENUM_EXT("SEC_MI2S_TX Channels", sec_mi2s_tx_chs, msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put), SOC_ENUM_EXT("TERT_MI2S_RX Channels", tert_mi2s_rx_chs, msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put), SOC_ENUM_EXT("TERT_MI2S_TX Channels", tert_mi2s_tx_chs, msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put), SOC_ENUM_EXT("QUAT_MI2S_RX Channels", quat_mi2s_rx_chs, msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put), SOC_ENUM_EXT("QUAT_MI2S_TX Channels", quat_mi2s_tx_chs, msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put), SOC_ENUM_EXT("QUIN_MI2S_RX Channels", quin_mi2s_rx_chs, msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put), SOC_ENUM_EXT("QUIN_MI2S_TX Channels", quin_mi2s_tx_chs, msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put), SOC_ENUM_EXT("USB_AUDIO_RX Channels", usb_rx_chs, usb_audio_rx_ch_get, usb_audio_rx_ch_put), SOC_ENUM_EXT("USB_AUDIO_TX Channels", usb_tx_chs, usb_audio_tx_ch_get, usb_audio_tx_ch_put), SOC_ENUM_EXT("Display Port RX Channels", ext_disp_rx_chs, ext_disp_rx_ch_get, ext_disp_rx_ch_put), SOC_ENUM_EXT("USB_AUDIO_RX Format", usb_rx_format, usb_audio_rx_format_get, usb_audio_rx_format_put), SOC_ENUM_EXT("USB_AUDIO_TX Format", usb_tx_format, usb_audio_tx_format_get, usb_audio_tx_format_put), SOC_ENUM_EXT("Display Port RX Bit Format", ext_disp_rx_format, ext_disp_rx_format_get, ext_disp_rx_format_put), SOC_ENUM_EXT("USB_AUDIO_RX SampleRate", usb_rx_sample_rate, usb_audio_rx_sample_rate_get, usb_audio_rx_sample_rate_put), SOC_ENUM_EXT("USB_AUDIO_TX SampleRate", usb_tx_sample_rate, usb_audio_tx_sample_rate_get, usb_audio_tx_sample_rate_put), SOC_ENUM_EXT("Display Port RX SampleRate", ext_disp_rx_sample_rate, ext_disp_rx_sample_rate_get, ext_disp_rx_sample_rate_put), SOC_ENUM_EXT("PRI_TDM_RX_0 SampleRate", tdm_rx_sample_rate, tdm_rx_sample_rate_get, tdm_rx_sample_rate_put), SOC_ENUM_EXT("PRI_TDM_TX_0 SampleRate", tdm_tx_sample_rate, tdm_tx_sample_rate_get, tdm_tx_sample_rate_put), SOC_ENUM_EXT("PRI_TDM_RX_0 Format", tdm_rx_format, tdm_rx_format_get, tdm_rx_format_put), SOC_ENUM_EXT("PRI_TDM_TX_0 Format", tdm_tx_format, tdm_tx_format_get, tdm_tx_format_put), SOC_ENUM_EXT("PRI_TDM_RX_0 Channels", tdm_rx_chs, tdm_rx_ch_get, tdm_rx_ch_put), SOC_ENUM_EXT("PRI_TDM_TX_0 Channels", tdm_tx_chs, tdm_tx_ch_get, tdm_tx_ch_put), SOC_ENUM_EXT("SEC_TDM_RX_0 SampleRate", tdm_rx_sample_rate, tdm_rx_sample_rate_get, tdm_rx_sample_rate_put), SOC_ENUM_EXT("SEC_TDM_TX_0 SampleRate", tdm_tx_sample_rate, tdm_tx_sample_rate_get, tdm_tx_sample_rate_put), SOC_ENUM_EXT("SEC_TDM_RX_0 Format", tdm_rx_format, tdm_rx_format_get, tdm_rx_format_put), SOC_ENUM_EXT("SEC_TDM_TX_0 Format", tdm_tx_format, tdm_tx_format_get, tdm_tx_format_put), SOC_ENUM_EXT("SEC_TDM_RX_0 Channels", tdm_rx_chs, tdm_rx_ch_get, tdm_rx_ch_put), SOC_ENUM_EXT("SEC_TDM_TX_0 Channels", tdm_tx_chs, tdm_tx_ch_get, tdm_tx_ch_put), SOC_ENUM_EXT("TERT_TDM_RX_0 SampleRate", tdm_rx_sample_rate, tdm_rx_sample_rate_get, tdm_rx_sample_rate_put), SOC_ENUM_EXT("TERT_TDM_TX_0 SampleRate", tdm_tx_sample_rate, tdm_tx_sample_rate_get, tdm_tx_sample_rate_put), SOC_ENUM_EXT("TERT_TDM_RX_0 Format", tdm_rx_format, tdm_rx_format_get, tdm_rx_format_put), SOC_ENUM_EXT("TERT_TDM_TX_0 Format", tdm_tx_format, tdm_tx_format_get, tdm_tx_format_put), SOC_ENUM_EXT("TERT_TDM_RX_0 Channels", tdm_rx_chs, tdm_rx_ch_get, tdm_rx_ch_put), SOC_ENUM_EXT("TERT_TDM_TX_0 Channels", tdm_tx_chs, tdm_tx_ch_get, tdm_tx_ch_put), SOC_ENUM_EXT("QUAT_TDM_RX_0 SampleRate", tdm_rx_sample_rate, tdm_rx_sample_rate_get, tdm_rx_sample_rate_put), SOC_ENUM_EXT("QUAT_TDM_TX_0 SampleRate", tdm_tx_sample_rate, tdm_tx_sample_rate_get, tdm_tx_sample_rate_put), SOC_ENUM_EXT("QUAT_TDM_RX_0 Format", tdm_rx_format, tdm_rx_format_get, tdm_rx_format_put), SOC_ENUM_EXT("QUAT_TDM_TX_0 Format", tdm_tx_format, tdm_tx_format_get, tdm_tx_format_put), SOC_ENUM_EXT("QUAT_TDM_RX_0 Channels", tdm_rx_chs, tdm_rx_ch_get, tdm_rx_ch_put), SOC_ENUM_EXT("QUAT_TDM_TX_0 Channels", tdm_tx_chs, tdm_tx_ch_get, tdm_tx_ch_put), SOC_ENUM_EXT("QUIN_TDM_RX_0 SampleRate", tdm_rx_sample_rate, tdm_rx_sample_rate_get, tdm_rx_sample_rate_put), SOC_ENUM_EXT("QUIN_TDM_TX_0 SampleRate", tdm_tx_sample_rate, tdm_tx_sample_rate_get, tdm_tx_sample_rate_put), SOC_ENUM_EXT("QUIN_TDM_RX_0 Format", tdm_rx_format, tdm_rx_format_get, tdm_rx_format_put), SOC_ENUM_EXT("QUIN_TDM_TX_0 Format", tdm_tx_format, tdm_tx_format_get, tdm_tx_format_put), SOC_ENUM_EXT("QUIN_TDM_RX_0 Channels", tdm_rx_chs, tdm_rx_ch_get, tdm_rx_ch_put), SOC_ENUM_EXT("QUIN_TDM_TX_0 Channels", tdm_tx_chs, tdm_tx_ch_get, tdm_tx_ch_put), SOC_ENUM_EXT("MultiMedia5_RX QOS Vote", qos_vote, msm_qos_ctl_get, msm_qos_ctl_put), }; /** * msm_common_snd_controls_size - to return controls size * * Return: returns size of common controls array */ int msm_common_snd_controls_size(void) { return ARRAY_SIZE(msm_common_snd_controls); } EXPORT_SYMBOL(msm_common_snd_controls_size); void msm_set_codec_reg_done(bool done) { codec_reg_done = done; } EXPORT_SYMBOL(msm_set_codec_reg_done); static inline int param_is_mask(int p) { return (p >= SNDRV_PCM_HW_PARAM_FIRST_MASK) && (p <= SNDRV_PCM_HW_PARAM_LAST_MASK); } static inline struct snd_mask *param_to_mask(struct snd_pcm_hw_params *p, int n) { return &(p->masks[n - SNDRV_PCM_HW_PARAM_FIRST_MASK]); } static void param_set_mask(struct snd_pcm_hw_params *p, int n, unsigned int bit) { if (bit >= SNDRV_MASK_MAX) return; if (param_is_mask(n)) { struct snd_mask *m = param_to_mask(p, n); m->bits[0] = 0; m->bits[1] = 0; m->bits[bit >> 5] |= (1 << (bit & 31)); } } static int msm_ext_disp_get_idx_from_beid(int32_t id) { int idx; switch (id) { case MSM_BACKEND_DAI_DISPLAY_PORT_RX: idx = DP_RX_IDX; break; default: pr_err("%s: Incorrect ext_disp id %d\n", __func__, id); idx = -EINVAL; break; } return idx; } /** * msm_common_be_hw_params_fixup - updates settings of ALSA BE hw params. * * @rtd: runtime dailink instance * @params: HW params of associated backend dailink. * * Returns 0. */ int msm_common_be_hw_params_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_soc_dai_link *dai_link = rtd->dai_link; struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int rc = 0; int idx; pr_debug("%s: format = %d, rate = %d\n", __func__, params_format(params), params_rate(params)); switch (dai_link->id) { case MSM_BACKEND_DAI_USB_RX: param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, usb_rx_cfg.bit_format); rate->min = rate->max = usb_rx_cfg.sample_rate; channels->min = channels->max = usb_rx_cfg.channels; break; case MSM_BACKEND_DAI_USB_TX: param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, usb_tx_cfg.bit_format); rate->min = rate->max = usb_tx_cfg.sample_rate; channels->min = channels->max = usb_tx_cfg.channels; break; case MSM_BACKEND_DAI_DISPLAY_PORT_RX: idx = msm_ext_disp_get_idx_from_beid(dai_link->id); if (idx < 0) { pr_err("%s: Incorrect ext disp idx %d\n", __func__, idx); rc = idx; break; } param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, ext_disp_rx_cfg[idx].bit_format); rate->min = rate->max = ext_disp_rx_cfg[idx].sample_rate; channels->min = channels->max = ext_disp_rx_cfg[idx].channels; break; case MSM_BACKEND_DAI_AFE_PCM_RX: channels->min = channels->max = proxy_rx_cfg.channels; rate->min = rate->max = SAMPLING_RATE_48KHZ; break; case MSM_BACKEND_DAI_PRI_TDM_RX_0: channels->min = channels->max = tdm_rx_cfg[TDM_PRI][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_rx_cfg[TDM_PRI][TDM_0].bit_format); rate->min = rate->max = tdm_rx_cfg[TDM_PRI][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_PRI_TDM_TX_0: channels->min = channels->max = tdm_tx_cfg[TDM_PRI][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_tx_cfg[TDM_PRI][TDM_0].bit_format); rate->min = rate->max = tdm_tx_cfg[TDM_PRI][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_SEC_TDM_RX_0: channels->min = channels->max = tdm_rx_cfg[TDM_SEC][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_rx_cfg[TDM_SEC][TDM_0].bit_format); rate->min = rate->max = tdm_rx_cfg[TDM_SEC][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_SEC_TDM_TX_0: channels->min = channels->max = tdm_tx_cfg[TDM_SEC][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_tx_cfg[TDM_SEC][TDM_0].bit_format); rate->min = rate->max = tdm_tx_cfg[TDM_SEC][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_TERT_TDM_RX_0: channels->min = channels->max = tdm_rx_cfg[TDM_TERT][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_rx_cfg[TDM_TERT][TDM_0].bit_format); rate->min = rate->max = tdm_rx_cfg[TDM_TERT][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_TERT_TDM_TX_0: channels->min = channels->max = tdm_tx_cfg[TDM_TERT][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_tx_cfg[TDM_TERT][TDM_0].bit_format); rate->min = rate->max = tdm_tx_cfg[TDM_TERT][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_QUAT_TDM_RX_0: channels->min = channels->max = tdm_rx_cfg[TDM_QUAT][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_rx_cfg[TDM_QUAT][TDM_0].bit_format); rate->min = rate->max = tdm_rx_cfg[TDM_QUAT][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_QUAT_TDM_TX_0: channels->min = channels->max = tdm_tx_cfg[TDM_QUAT][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_tx_cfg[TDM_QUAT][TDM_0].bit_format); rate->min = rate->max = tdm_tx_cfg[TDM_QUAT][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_QUIN_TDM_RX_0: channels->min = channels->max = tdm_rx_cfg[TDM_QUIN][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_rx_cfg[TDM_QUIN][TDM_0].bit_format); rate->min = rate->max = tdm_rx_cfg[TDM_QUIN][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_QUIN_TDM_TX_0: channels->min = channels->max = tdm_tx_cfg[TDM_QUIN][TDM_0].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, tdm_tx_cfg[TDM_QUIN][TDM_0].bit_format); rate->min = rate->max = tdm_tx_cfg[TDM_QUIN][TDM_0].sample_rate; break; case MSM_BACKEND_DAI_AUXPCM_RX: rate->min = rate->max = aux_pcm_rx_cfg[PRIM_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_rx_cfg[PRIM_AUX_PCM].channels; break; case MSM_BACKEND_DAI_AUXPCM_TX: rate->min = rate->max = aux_pcm_tx_cfg[PRIM_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_tx_cfg[PRIM_AUX_PCM].channels; break; case MSM_BACKEND_DAI_SEC_AUXPCM_RX: rate->min = rate->max = aux_pcm_rx_cfg[SEC_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_rx_cfg[SEC_AUX_PCM].channels; break; case MSM_BACKEND_DAI_SEC_AUXPCM_TX: rate->min = rate->max = aux_pcm_tx_cfg[SEC_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_tx_cfg[SEC_AUX_PCM].channels; break; case MSM_BACKEND_DAI_TERT_AUXPCM_RX: rate->min = rate->max = aux_pcm_rx_cfg[TERT_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_rx_cfg[TERT_AUX_PCM].channels; break; case MSM_BACKEND_DAI_TERT_AUXPCM_TX: rate->min = rate->max = aux_pcm_tx_cfg[TERT_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_tx_cfg[TERT_AUX_PCM].channels; break; case MSM_BACKEND_DAI_QUAT_AUXPCM_RX: rate->min = rate->max = aux_pcm_rx_cfg[QUAT_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_rx_cfg[QUAT_AUX_PCM].channels; break; case MSM_BACKEND_DAI_QUAT_AUXPCM_TX: rate->min = rate->max = aux_pcm_tx_cfg[QUAT_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_tx_cfg[QUAT_AUX_PCM].channels; break; case MSM_BACKEND_DAI_QUIN_AUXPCM_RX: rate->min = rate->max = aux_pcm_rx_cfg[QUIN_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_rx_cfg[QUIN_AUX_PCM].channels; break; case MSM_BACKEND_DAI_QUIN_AUXPCM_TX: rate->min = rate->max = aux_pcm_tx_cfg[QUIN_AUX_PCM].sample_rate; channels->min = channels->max = aux_pcm_tx_cfg[QUIN_AUX_PCM].channels; break; case MSM_BACKEND_DAI_PRI_MI2S_RX: rate->min = rate->max = mi2s_rx_cfg[PRIM_MI2S].sample_rate; channels->min = channels->max = mi2s_rx_cfg[PRIM_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_rx_cfg[PRIM_MI2S].bit_format); break; case MSM_BACKEND_DAI_PRI_MI2S_TX: rate->min = rate->max = mi2s_tx_cfg[PRIM_MI2S].sample_rate; channels->min = channels->max = mi2s_tx_cfg[PRIM_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_tx_cfg[PRIM_MI2S].bit_format); break; case MSM_BACKEND_DAI_SECONDARY_MI2S_RX: rate->min = rate->max = mi2s_rx_cfg[SEC_MI2S].sample_rate; channels->min = channels->max = mi2s_rx_cfg[SEC_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_rx_cfg[SEC_MI2S].bit_format); break; case MSM_BACKEND_DAI_SECONDARY_MI2S_TX: rate->min = rate->max = mi2s_tx_cfg[SEC_MI2S].sample_rate; channels->min = channels->max = mi2s_tx_cfg[SEC_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_tx_cfg[SEC_MI2S].bit_format); break; case MSM_BACKEND_DAI_TERTIARY_MI2S_RX: rate->min = rate->max = mi2s_rx_cfg[TERT_MI2S].sample_rate; channels->min = channels->max = mi2s_rx_cfg[TERT_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_rx_cfg[TERT_MI2S].bit_format); break; case MSM_BACKEND_DAI_TERTIARY_MI2S_TX: rate->min = rate->max = mi2s_tx_cfg[TERT_MI2S].sample_rate; channels->min = channels->max = mi2s_tx_cfg[TERT_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_tx_cfg[TERT_MI2S].bit_format); break; case MSM_BACKEND_DAI_QUATERNARY_MI2S_RX: rate->min = rate->max = mi2s_rx_cfg[QUAT_MI2S].sample_rate; channels->min = channels->max = mi2s_rx_cfg[QUAT_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_rx_cfg[QUAT_MI2S].bit_format); break; case MSM_BACKEND_DAI_QUATERNARY_MI2S_TX: rate->min = rate->max = mi2s_tx_cfg[QUAT_MI2S].sample_rate; channels->min = channels->max = mi2s_tx_cfg[QUAT_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_tx_cfg[QUAT_MI2S].bit_format); break; case MSM_BACKEND_DAI_QUINARY_MI2S_RX: rate->min = rate->max = mi2s_rx_cfg[QUIN_MI2S].sample_rate; channels->min = channels->max = mi2s_rx_cfg[QUIN_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_rx_cfg[QUIN_MI2S].bit_format); break; case MSM_BACKEND_DAI_QUINARY_MI2S_TX: rate->min = rate->max = mi2s_tx_cfg[QUIN_MI2S].sample_rate; channels->min = channels->max = mi2s_tx_cfg[QUIN_MI2S].channels; param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT, mi2s_tx_cfg[QUIN_MI2S].bit_format); break; default: rate->min = rate->max = SAMPLING_RATE_48KHZ; break; } return rc; } EXPORT_SYMBOL(msm_common_be_hw_params_fixup); /** * msm_aux_pcm_snd_startup - startup ops of auxpcm. * * @substream: PCM stream pointer of associated backend dailink * * Returns 0 on success or -EINVAL on error. */ int msm_aux_pcm_snd_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; dev_dbg(rtd->card->dev, "%s: substream = %s stream = %d, dai name %s, dai ID %d\n", __func__, substream->name, substream->stream, rtd->cpu_dai->name, rtd->cpu_dai->id); return 0; } EXPORT_SYMBOL(msm_aux_pcm_snd_startup); /** * msm_aux_pcm_snd_shutdown - shutdown ops of auxpcm. * * @substream: PCM stream pointer of associated backend dailink */ void msm_aux_pcm_snd_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; dev_dbg(rtd->card->dev, "%s: substream = %s stream = %d, dai name %s, dai ID %d\n", __func__, substream->name, substream->stream, rtd->cpu_dai->name, rtd->cpu_dai->id); } EXPORT_SYMBOL(msm_aux_pcm_snd_shutdown); static int msm_get_port_id(int id) { int afe_port_id; switch (id) { case MSM_BACKEND_DAI_PRI_MI2S_RX: afe_port_id = AFE_PORT_ID_PRIMARY_MI2S_RX; break; case MSM_BACKEND_DAI_PRI_MI2S_TX: afe_port_id = AFE_PORT_ID_PRIMARY_MI2S_TX; break; case MSM_BACKEND_DAI_SECONDARY_MI2S_RX: afe_port_id = AFE_PORT_ID_SECONDARY_MI2S_RX; break; case MSM_BACKEND_DAI_SECONDARY_MI2S_TX: afe_port_id = AFE_PORT_ID_SECONDARY_MI2S_TX; break; case MSM_BACKEND_DAI_TERTIARY_MI2S_RX: afe_port_id = AFE_PORT_ID_TERTIARY_MI2S_RX; break; case MSM_BACKEND_DAI_TERTIARY_MI2S_TX: afe_port_id = AFE_PORT_ID_TERTIARY_MI2S_TX; break; case MSM_BACKEND_DAI_QUATERNARY_MI2S_RX: afe_port_id = AFE_PORT_ID_QUATERNARY_MI2S_RX; break; case MSM_BACKEND_DAI_QUATERNARY_MI2S_TX: afe_port_id = AFE_PORT_ID_QUATERNARY_MI2S_TX; break; case MSM_BACKEND_DAI_QUINARY_MI2S_RX: afe_port_id = AFE_PORT_ID_QUINARY_MI2S_RX; break; case MSM_BACKEND_DAI_QUINARY_MI2S_TX: afe_port_id = AFE_PORT_ID_QUINARY_MI2S_TX; break; default: pr_err("%s: Invalid id: %d\n", __func__, id); afe_port_id = -EINVAL; } return afe_port_id; } static u32 get_mi2s_bits_per_sample(u32 bit_format) { u32 bit_per_sample; switch (bit_format) { case SNDRV_PCM_FORMAT_S32_LE: case SNDRV_PCM_FORMAT_S24_3LE: case SNDRV_PCM_FORMAT_S24_LE: bit_per_sample = 32; break; case SNDRV_PCM_FORMAT_S16_LE: default: bit_per_sample = 16; break; } return bit_per_sample; } static void update_mi2s_clk_val(int dai_id, int stream) { u32 bit_per_sample; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { bit_per_sample = get_mi2s_bits_per_sample(mi2s_rx_cfg[dai_id].bit_format); mi2s_clk[dai_id].clk_freq_in_hz = mi2s_rx_cfg[dai_id].sample_rate * 2 * bit_per_sample; } else { bit_per_sample = get_mi2s_bits_per_sample(mi2s_tx_cfg[dai_id].bit_format); mi2s_clk[dai_id].clk_freq_in_hz = mi2s_tx_cfg[dai_id].sample_rate * 2 * bit_per_sample; } } static int msm_mi2s_set_sclk(struct snd_pcm_substream *substream, bool enable) { int ret = 0; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int port_id = 0; int index = cpu_dai->id; port_id = msm_get_port_id(rtd->dai_link->id); if (port_id < 0) { dev_err(rtd->card->dev, "%s: Invalid port_id\n", __func__); ret = port_id; goto done; } if (enable) { update_mi2s_clk_val(index, substream->stream); dev_dbg(rtd->card->dev, "%s: clock rate %ul\n", __func__, mi2s_clk[index].clk_freq_in_hz); } mi2s_clk[index].enable = enable; ret = afe_set_lpass_clock_v2(port_id, &mi2s_clk[index]); if (ret < 0) { dev_err(rtd->card->dev, "%s: afe lpass clock failed for port 0x%x , err:%d\n", __func__, port_id, ret); goto done; } done: return ret; } /** * msm_mi2s_snd_startup - startup ops of mi2s. * * @substream: PCM stream pointer of associated backend dailink * * Returns 0 on success or -EINVAL on error. */ int msm_mi2s_snd_startup(struct snd_pcm_substream *substream) { int ret = 0; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int port_id = msm_get_port_id(rtd->dai_link->id); int index = cpu_dai->id; unsigned int fmt = SND_SOC_DAIFMT_CBS_CFS; struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(rtd->card); dev_dbg(rtd->card->dev, "%s: substream = %s stream = %d, dai name %s, dai ID %d\n", __func__, substream->name, substream->stream, cpu_dai->name, cpu_dai->id); if (index < PRIM_MI2S || index >= MI2S_MAX) { ret = -EINVAL; dev_err(rtd->card->dev, "%s: CPU DAI id (%d) out of range\n", __func__, cpu_dai->id); goto done; } /* * Muxtex protection in case the same MI2S * interface using for both TX and RX so * that the same clock won't be enable twice. */ mutex_lock(&mi2s_intf_conf[index].lock); if (++mi2s_intf_conf[index].ref_cnt == 1) { /* Check if msm needs to provide the clock to the interface */ if (!mi2s_intf_conf[index].msm_is_mi2s_master) { mi2s_clk[index].clk_id = mi2s_ebit_clk[index]; fmt = SND_SOC_DAIFMT_CBM_CFM; } ret = msm_mi2s_set_sclk(substream, true); if (ret < 0) { dev_err(rtd->card->dev, "%s: afe lpass clock failed to enable MI2S clock, err:%d\n", __func__, ret); goto clean_up; } ret = snd_soc_dai_set_fmt(cpu_dai, fmt); if (ret < 0) { dev_err(rtd->card->dev, "%s: set fmt cpu dai failed for MI2S (%d), err:%d\n", __func__, index, ret); goto clk_off; } if (mi2s_intf_conf[index].msm_is_ext_mclk) { mi2s_mclk[index].enable = 1; pr_debug("%s: Enabling mclk, clk_freq_in_hz = %u\n", __func__, mi2s_mclk[index].clk_freq_in_hz); ret = afe_set_lpass_clock_v2(port_id, &mi2s_mclk[index]); if (ret < 0) { pr_err("%s: afe lpass mclk failed, err:%d\n", __func__, ret); goto clk_off; } } if (pdata->mi2s_gpio_p[index]) msm_cdc_pinctrl_select_active_state( pdata->mi2s_gpio_p[index]); } mutex_unlock(&mi2s_intf_conf[index].lock); return 0; clk_off: if (ret < 0) msm_mi2s_set_sclk(substream, false); clean_up: if (ret < 0) mi2s_intf_conf[index].ref_cnt--; mutex_unlock(&mi2s_intf_conf[index].lock); done: return ret; } EXPORT_SYMBOL(msm_mi2s_snd_startup); /** * msm_mi2s_snd_shutdown - shutdown ops of mi2s. * * @substream: PCM stream pointer of associated backend dailink */ void msm_mi2s_snd_shutdown(struct snd_pcm_substream *substream) { int ret; struct snd_soc_pcm_runtime *rtd = substream->private_data; int port_id = msm_get_port_id(rtd->dai_link->id); int index = rtd->cpu_dai->id; struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(rtd->card); pr_debug("%s(): substream = %s stream = %d\n", __func__, substream->name, substream->stream); if (index < PRIM_MI2S || index >= MI2S_MAX) { pr_err("%s:invalid MI2S DAI(%d)\n", __func__, index); return; } mutex_lock(&mi2s_intf_conf[index].lock); if (--mi2s_intf_conf[index].ref_cnt == 0) { if (pdata->mi2s_gpio_p[index]) msm_cdc_pinctrl_select_sleep_state( pdata->mi2s_gpio_p[index]); ret = msm_mi2s_set_sclk(substream, false); if (ret < 0) pr_err("%s:clock disable failed for MI2S (%d); ret=%d\n", __func__, index, ret); if (mi2s_intf_conf[index].msm_is_ext_mclk) { mi2s_mclk[index].enable = 0; pr_debug("%s: Disabling mclk, clk_freq_in_hz = %u\n", __func__, mi2s_mclk[index].clk_freq_in_hz); ret = afe_set_lpass_clock_v2(port_id, &mi2s_mclk[index]); if (ret < 0) { pr_err("%s: mclk disable failed for MCLK (%d); ret=%d\n", __func__, index, ret); } } } mutex_unlock(&mi2s_intf_conf[index].lock); } EXPORT_SYMBOL(msm_mi2s_snd_shutdown); /* Validate whether US EU switch is present or not */ static int msm_prepare_us_euro(struct snd_soc_card *card) { struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(card); int ret = 0; if (pdata->us_euro_gpio >= 0) { dev_dbg(card->dev, "%s: us_euro gpio request %d", __func__, pdata->us_euro_gpio); ret = gpio_request(pdata->us_euro_gpio, "TASHA_CODEC_US_EURO"); if (ret) { dev_err(card->dev, "%s: Failed to request codec US/EURO gpio %d error %d\n", __func__, pdata->us_euro_gpio, ret); } } return ret; } static bool msm_swap_gnd_mic(struct snd_soc_codec *codec, bool active) { struct snd_soc_card *card = codec->component.card; struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(card); int value = 0; if (pdata->us_euro_gpio_p) { value = msm_cdc_pinctrl_get_state(pdata->us_euro_gpio_p); if (value) msm_cdc_pinctrl_select_sleep_state( pdata->us_euro_gpio_p); else msm_cdc_pinctrl_select_active_state( pdata->us_euro_gpio_p); } else if (pdata->us_euro_gpio >= 0) { value = gpio_get_value_cansleep(pdata->us_euro_gpio); gpio_set_value_cansleep(pdata->us_euro_gpio, !value); } pr_debug("%s: swap select switch %d to %d\n", __func__, value, !value); return true; } static int msm_populate_dai_link_component_of_node( struct msm_asoc_mach_data *pdata, struct snd_soc_card *card) { int i, index, ret = 0; struct device *cdev = card->dev; struct snd_soc_dai_link *dai_link = card->dai_link; struct device_node *phandle; if (!cdev) { pr_err("%s: Sound card device memory NULL\n", __func__); return -ENODEV; } for (i = 0; i < card->num_links; i++) { if (dai_link[i].platform_of_node && dai_link[i].cpu_of_node) continue; /* populate platform_of_node for snd card dai links */ if (dai_link[i].platform_name && !dai_link[i].platform_of_node) { index = of_property_match_string(cdev->of_node, "asoc-platform-names", dai_link[i].platform_name); if (index < 0) { pr_err("%s: No match found for platform name: %s\n", __func__, dai_link[i].platform_name); ret = index; goto cpu_dai; } phandle = of_parse_phandle(cdev->of_node, "asoc-platform", index); if (!phandle) { pr_err("%s: retrieving phandle for platform %s, index %d failed\n", __func__, dai_link[i].platform_name, index); ret = -ENODEV; goto err; } dai_link[i].platform_of_node = phandle; dai_link[i].platform_name = NULL; } cpu_dai: /* populate cpu_of_node for snd card dai links */ if (dai_link[i].cpu_dai_name && !dai_link[i].cpu_of_node) { index = of_property_match_string(cdev->of_node, "asoc-cpu-names", dai_link[i].cpu_dai_name); if (index < 0) goto codec_dai; phandle = of_parse_phandle(cdev->of_node, "asoc-cpu", index); if (!phandle) { pr_err("%s: retrieving phandle for cpu dai %s failed\n", __func__, dai_link[i].cpu_dai_name); ret = -ENODEV; goto err; } dai_link[i].cpu_of_node = phandle; dai_link[i].cpu_dai_name = NULL; } codec_dai: /* populate codec_of_node for snd card dai links */ if (dai_link[i].codec_name && !dai_link[i].codec_of_node) { index = of_property_match_string(cdev->of_node, "asoc-codec-names", dai_link[i].codec_name); if (index < 0) continue; phandle = of_parse_phandle(cdev->of_node, "asoc-codec", index); if (!phandle) { pr_err("%s: retrieving phandle for codec dai %s failed\n", __func__, dai_link[i].codec_name); ret = -ENODEV; goto err; } dai_link[i].codec_of_node = phandle; dai_link[i].codec_name = NULL; } if (pdata->snd_card_val == INT_SND_CARD) { if ((dai_link[i].id == MSM_BACKEND_DAI_INT0_MI2S_RX) || (dai_link[i].id == MSM_BACKEND_DAI_INT1_MI2S_RX) || (dai_link[i].id == MSM_BACKEND_DAI_INT2_MI2S_TX) || (dai_link[i].id == MSM_BACKEND_DAI_INT3_MI2S_TX)) { index = of_property_match_string(cdev->of_node, "asoc-codec-names", MSM_INT_DIGITAL_CODEC); phandle = of_parse_phandle(cdev->of_node, "asoc-codec", index); dai_link[i].codecs[DIG_CDC].of_node = phandle; index = of_property_match_string(cdev->of_node, "asoc-codec-names", PMIC_INT_ANALOG_CODEC); phandle = of_parse_phandle(cdev->of_node, "asoc-codec", index); dai_link[i].codecs[ANA_CDC].of_node = phandle; } } } err: return ret; } static int msm_wsa881x_init(struct snd_soc_component *component) { u8 spkleft_ports[WSA881X_MAX_SWR_PORTS] = {100, 101, 102, 106}; u8 spkright_ports[WSA881X_MAX_SWR_PORTS] = {103, 104, 105, 107}; unsigned int ch_rate[WSA881X_MAX_SWR_PORTS] = {2400, 600, 300, 1200}; unsigned int ch_mask[WSA881X_MAX_SWR_PORTS] = {0x1, 0xF, 0x3, 0x3}; struct snd_soc_codec *codec = snd_soc_component_to_codec(component); struct msm_asoc_mach_data *pdata; struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec); if (!codec) { pr_err("%s codec is NULL\n", __func__); return -EINVAL; } if (!strcmp(component->name_prefix, "SpkrLeft")) { dev_dbg(codec->dev, "%s: setting left ch map to codec %s\n", __func__, codec->component.name); wsa881x_set_channel_map(codec, &spkleft_ports[0], WSA881X_MAX_SWR_PORTS, &ch_mask[0], &ch_rate[0]); if (dapm->component) { snd_soc_dapm_ignore_suspend(dapm, "SpkrLeft IN"); snd_soc_dapm_ignore_suspend(dapm, "SpkrLeft SPKR"); } } else if (!strcmp(component->name_prefix, "SpkrRight")) { dev_dbg(codec->dev, "%s: setting right ch map to codec %s\n", __func__, codec->component.name); wsa881x_set_channel_map(codec, &spkright_ports[0], WSA881X_MAX_SWR_PORTS, &ch_mask[0], &ch_rate[0]); if (dapm->component) { snd_soc_dapm_ignore_suspend(dapm, "SpkrRight IN"); snd_soc_dapm_ignore_suspend(dapm, "SpkrRight SPKR"); } } else { dev_err(codec->dev, "%s: wrong codec name %s\n", __func__, codec->component.name); return -EINVAL; } pdata = snd_soc_card_get_drvdata(component->card); if (pdata && pdata->codec_root) wsa881x_codec_info_create_codec_entry(pdata->codec_root, codec); return 0; } static int msm_init_wsa_dev(struct platform_device *pdev, struct snd_soc_card *card) { struct device_node *wsa_of_node; u32 wsa_max_devs; u32 wsa_dev_cnt; char *dev_name_str = NULL; struct msm_wsa881x_dev_info *wsa881x_dev_info; const char *wsa_auxdev_name_prefix[1]; int found = 0; int i; int ret; /* Get maximum WSA device count for this platform */ ret = of_property_read_u32(pdev->dev.of_node, "qcom,wsa-max-devs", &wsa_max_devs); if (ret) { dev_dbg(&pdev->dev, "%s: wsa-max-devs property missing in DT %s, ret = %d\n", __func__, pdev->dev.of_node->full_name, ret); goto err_dt; } if (wsa_max_devs == 0) { dev_warn(&pdev->dev, "%s: Max WSA devices is 0 for this target?\n", __func__); goto err_dt; } /* Get count of WSA device phandles for this platform */ wsa_dev_cnt = of_count_phandle_with_args(pdev->dev.of_node, "qcom,wsa-devs", NULL); if (wsa_dev_cnt == -ENOENT) { dev_warn(&pdev->dev, "%s: No wsa device defined in DT.\n", __func__); goto err_dt; } else if (wsa_dev_cnt <= 0) { dev_err(&pdev->dev, "%s: Error reading wsa device from DT. wsa_dev_cnt = %d\n", __func__, wsa_dev_cnt); ret = -EINVAL; goto err_dt; } /* * Expect total phandles count to be NOT less than maximum possible * WSA count. However, if it is less, then assign same value to * max count as well. */ if (wsa_dev_cnt < wsa_max_devs) { dev_dbg(&pdev->dev, "%s: wsa_max_devs = %d cannot exceed wsa_dev_cnt = %d\n", __func__, wsa_max_devs, wsa_dev_cnt); wsa_max_devs = wsa_dev_cnt; } /* Make sure prefix string passed for each WSA device */ ret = of_property_count_strings(pdev->dev.of_node, "qcom,wsa-aux-dev-prefix"); if (ret != wsa_dev_cnt) { dev_err(&pdev->dev, "%s: expecting %d wsa prefix. Defined only %d in DT\n", __func__, wsa_dev_cnt, ret); ret = -EINVAL; goto err_dt; } /* * Alloc mem to store phandle and index info of WSA device, if already * registered with ALSA core */ wsa881x_dev_info = devm_kcalloc(&pdev->dev, wsa_max_devs, sizeof(struct msm_wsa881x_dev_info), GFP_KERNEL); if (!wsa881x_dev_info) { ret = -ENOMEM; goto err_mem; } /* * search and check whether all WSA devices are already * registered with ALSA core or not. If found a node, store * the node and the index in a local array of struct for later * use. */ for (i = 0; i < wsa_dev_cnt; i++) { wsa_of_node = of_parse_phandle(pdev->dev.of_node, "qcom,wsa-devs", i); if (unlikely(!wsa_of_node)) { /* we should not be here */ dev_err(&pdev->dev, "%s: wsa dev node is not present\n", __func__); ret = -EINVAL; goto err_dev_node; } if (soc_find_component(wsa_of_node, NULL)) { /* WSA device registered with ALSA core */ wsa881x_dev_info[found].of_node = wsa_of_node; wsa881x_dev_info[found].index = i; found++; if (found == wsa_max_devs) break; } } if (found < wsa_max_devs) { dev_dbg(&pdev->dev, "%s: failed to find %d components. Found only %d\n", __func__, wsa_max_devs, found); return -EPROBE_DEFER; } dev_info(&pdev->dev, "%s: found %d wsa881x devices registered with ALSA core\n", __func__, found); card->num_aux_devs = wsa_max_devs; card->num_configs = wsa_max_devs; /* Alloc array of AUX devs struct */ msm_aux_dev = devm_kcalloc(&pdev->dev, card->num_aux_devs, sizeof(struct snd_soc_aux_dev), GFP_KERNEL); if (!msm_aux_dev) { ret = -ENOMEM; goto err_auxdev_mem; } /* Alloc array of codec conf struct */ msm_codec_conf = devm_kcalloc(&pdev->dev, card->num_aux_devs, sizeof(struct snd_soc_codec_conf), GFP_KERNEL); if (!msm_codec_conf) { ret = -ENOMEM; goto err_codec_conf; } for (i = 0; i < card->num_aux_devs; i++) { dev_name_str = devm_kzalloc(&pdev->dev, DEV_NAME_STR_LEN, GFP_KERNEL); if (!dev_name_str) { ret = -ENOMEM; goto err_dev_str; } ret = of_property_read_string_index(pdev->dev.of_node, "qcom,wsa-aux-dev-prefix", wsa881x_dev_info[i].index, wsa_auxdev_name_prefix); if (ret) { dev_err(&pdev->dev, "%s: failed to read wsa aux dev prefix, ret = %d\n", __func__, ret); ret = -EINVAL; goto err_dt_prop; } snprintf(dev_name_str, strlen("wsa881x.%d"), "wsa881x.%d", i); msm_aux_dev[i].name = dev_name_str; msm_aux_dev[i].codec_name = NULL; msm_aux_dev[i].codec_of_node = wsa881x_dev_info[i].of_node; msm_aux_dev[i].init = msm_wsa881x_init; msm_codec_conf[i].dev_name = NULL; msm_codec_conf[i].name_prefix = wsa_auxdev_name_prefix[0]; msm_codec_conf[i].of_node = wsa881x_dev_info[i].of_node; } card->codec_conf = msm_codec_conf; card->aux_dev = msm_aux_dev; return 0; err_dt_prop: devm_kfree(&pdev->dev, dev_name_str); err_dev_str: devm_kfree(&pdev->dev, msm_codec_conf); err_codec_conf: devm_kfree(&pdev->dev, msm_aux_dev); err_auxdev_mem: err_dev_node: devm_kfree(&pdev->dev, wsa881x_dev_info); err_mem: err_dt: return ret; } static void i2s_auxpcm_init(struct platform_device *pdev) { int count; u32 mi2s_master_slave[MI2S_MAX]; u32 mi2s_ext_mclk[MI2S_MAX]; int ret; for (count = 0; count < MI2S_MAX; count++) { mutex_init(&mi2s_intf_conf[count].lock); mi2s_intf_conf[count].ref_cnt = 0; } ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,msm-mi2s-master", mi2s_master_slave, MI2S_MAX); if (ret) { dev_dbg(&pdev->dev, "%s: no qcom,msm-mi2s-master in DT node\n", __func__); } else { for (count = 0; count < MI2S_MAX; count++) { mi2s_intf_conf[count].msm_is_mi2s_master = mi2s_master_slave[count]; } } ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,msm-mi2s-ext-mclk", mi2s_ext_mclk, MI2S_MAX); if (ret) { dev_dbg(&pdev->dev, "%s: no qcom,msm-mi2s-ext-mclk in DT node\n", __func__); } else { for (count = 0; count < MI2S_MAX; count++) mi2s_intf_conf[count].msm_is_ext_mclk = mi2s_ext_mclk[count]; } } static const struct of_device_id sdm660_asoc_machine_of_match[] = { { .compatible = "qcom,sdm660-asoc-snd", .data = "internal_codec"}, { .compatible = "qcom,sdm660-asoc-snd-tasha", .data = "tasha_codec"}, { .compatible = "qcom,sdm660-asoc-snd-tavil", .data = "tavil_codec"}, { .compatible = "qcom,sdm670-asoc-snd", .data = "internal_codec"}, { .compatible = "qcom,sdm670-asoc-snd-tasha", .data = "tasha_codec"}, { .compatible = "qcom,sdm670-asoc-snd-tavil", .data = "tavil_codec"}, {}, }; static int msm_asoc_machine_probe(struct platform_device *pdev) { struct snd_soc_card *card = NULL; struct msm_asoc_mach_data *pdata = NULL; const char *mclk = "qcom,msm-mclk-freq"; int ret = -EINVAL, id; const struct of_device_id *match; pdata = devm_kzalloc(&pdev->dev, sizeof(struct msm_asoc_mach_data), GFP_KERNEL); if (!pdata) return -ENOMEM; msm_set_codec_reg_done(false); match = of_match_node(sdm660_asoc_machine_of_match, pdev->dev.of_node); if (!match) goto err; ret = of_property_read_u32(pdev->dev.of_node, mclk, &id); if (ret) { dev_err(&pdev->dev, "%s: missing %s in dt node\n", __func__, mclk); id = DEFAULT_MCLK_RATE; } pdata->mclk_freq = id; if (!strcmp(match->data, "tasha_codec") || !strcmp(match->data, "tavil_codec")) { if (!strcmp(match->data, "tasha_codec")) pdata->snd_card_val = EXT_SND_CARD_TASHA; else pdata->snd_card_val = EXT_SND_CARD_TAVIL; ret = msm_ext_cdc_init(pdev, pdata, &card, &mbhc_cfg); if (ret) goto err; } else if (!strcmp(match->data, "internal_codec")) { pdata->snd_card_val = INT_SND_CARD; ret = msm_int_cdc_init(pdev, pdata, &card, &mbhc_cfg); if (ret) goto err; } else { dev_err(&pdev->dev, "%s: Not a matching DT sound node\n", __func__); goto err; } if (!card) goto err; if (pdata->snd_card_val == INT_SND_CARD) { /*reading the gpio configurations from dtsi file*/ pdata->pdm_gpio_p = of_parse_phandle(pdev->dev.of_node, "qcom,cdc-pdm-gpios", 0); pdata->comp_gpio_p = of_parse_phandle(pdev->dev.of_node, "qcom,cdc-comp-gpios", 0); pdata->dmic_gpio_p = of_parse_phandle(pdev->dev.of_node, "qcom,cdc-dmic-gpios", 0); pdata->ext_spk_gpio_p = of_parse_phandle(pdev->dev.of_node, "qcom,cdc-ext-spk-gpios", 0); } pdata->mi2s_gpio_p[PRIM_MI2S] = of_parse_phandle(pdev->dev.of_node, "qcom,pri-mi2s-gpios", 0); pdata->mi2s_gpio_p[SEC_MI2S] = of_parse_phandle(pdev->dev.of_node, "qcom,sec-mi2s-gpios", 0); pdata->mi2s_gpio_p[TERT_MI2S] = of_parse_phandle(pdev->dev.of_node, "qcom,tert-mi2s-gpios", 0); pdata->mi2s_gpio_p[QUAT_MI2S] = of_parse_phandle(pdev->dev.of_node, "qcom,quat-mi2s-gpios", 0); pdata->mi2s_gpio_p[QUIN_MI2S] = of_parse_phandle(pdev->dev.of_node, "qcom,quin-mi2s-gpios", 0); /* * Parse US-Euro gpio info from DT. Report no error if us-euro * entry is not found in DT file as some targets do not support * US-Euro detection */ pdata->us_euro_gpio = of_get_named_gpio(pdev->dev.of_node, "qcom,us-euro-gpios", 0); if (!gpio_is_valid(pdata->us_euro_gpio)) pdata->us_euro_gpio_p = of_parse_phandle(pdev->dev.of_node, "qcom,us-euro-gpios", 0); if (!gpio_is_valid(pdata->us_euro_gpio) && (!pdata->us_euro_gpio_p)) { dev_dbg(&pdev->dev, "property %s not detected in node %s", "qcom,us-euro-gpios", pdev->dev.of_node->full_name); } else { dev_dbg(&pdev->dev, "%s detected", "qcom,us-euro-gpios"); mbhc_cfg.swap_gnd_mic = msm_swap_gnd_mic; } ret = msm_prepare_us_euro(card); if (ret) dev_dbg(&pdev->dev, "msm_prepare_us_euro failed (%d)\n", ret); i2s_auxpcm_init(pdev); ret = snd_soc_of_parse_audio_routing(card, "qcom,audio-routing"); if (ret) goto err; ret = msm_populate_dai_link_component_of_node(pdata, card); if (ret) { ret = -EPROBE_DEFER; goto err; } if (!of_property_read_bool(pdev->dev.of_node, "qcom,wsa-disable")) { ret = msm_init_wsa_dev(pdev, card); if (ret) goto err; } ret = devm_snd_soc_register_card(&pdev->dev, card); if (ret == -EPROBE_DEFER) { if (codec_reg_done) { /* * return failure as EINVAL since other codec * registered sound card successfully. * This avoids any further probe calls. */ ret = -EINVAL; } goto err; } else if (ret) { dev_err(&pdev->dev, "snd_soc_register_card failed (%d)\n", ret); goto err; } if (pdata->snd_card_val != INT_SND_CARD) msm_ext_register_audio_notifier(pdev); return 0; err: if (pdata->us_euro_gpio > 0) { dev_dbg(&pdev->dev, "%s free us_euro gpio %d\n", __func__, pdata->us_euro_gpio); pdata->us_euro_gpio = 0; } if (pdata->hph_en1_gpio > 0) { dev_dbg(&pdev->dev, "%s free hph_en1_gpio %d\n", __func__, pdata->hph_en1_gpio); gpio_free(pdata->hph_en1_gpio); pdata->hph_en1_gpio = 0; } if (pdata->hph_en0_gpio > 0) { dev_dbg(&pdev->dev, "%s free hph_en0_gpio %d\n", __func__, pdata->hph_en0_gpio); gpio_free(pdata->hph_en0_gpio); pdata->hph_en0_gpio = 0; } devm_kfree(&pdev->dev, pdata); return ret; } static int msm_asoc_machine_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(card); if (pdata->snd_card_val == INT_SND_CARD) mutex_destroy(&pdata->cdc_int_mclk0_mutex); if (gpio_is_valid(pdata->us_euro_gpio)) { gpio_free(pdata->us_euro_gpio); pdata->us_euro_gpio = 0; } if (gpio_is_valid(pdata->hph_en1_gpio)) { gpio_free(pdata->hph_en1_gpio); pdata->hph_en1_gpio = 0; } if (gpio_is_valid(pdata->hph_en0_gpio)) { gpio_free(pdata->hph_en0_gpio); pdata->hph_en0_gpio = 0; } if (pdata->snd_card_val != INT_SND_CARD) audio_notifier_deregister("sdm660"); snd_soc_unregister_card(card); return 0; } static struct platform_driver sdm660_asoc_machine_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, .pm = &snd_soc_pm_ops, .of_match_table = sdm660_asoc_machine_of_match, }, .probe = msm_asoc_machine_probe, .remove = msm_asoc_machine_remove, }; module_platform_driver(sdm660_asoc_machine_driver); MODULE_DESCRIPTION("ALSA SoC msm"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRV_NAME); MODULE_DEVICE_TABLE(of, sdm660_asoc_machine_of_match);