// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2019, The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "[sde-hdcp-2x] %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sde_hdcp_2x.h" /* all message IDs */ #define INVALID_MESSAGE 0 #define AKE_INIT 2 #define AKE_SEND_CERT 3 #define AKE_NO_STORED_KM 4 #define AKE_STORED_KM 5 #define AKE_SEND_H_PRIME 7 #define AKE_SEND_PAIRING_INFO 8 #define LC_INIT 9 #define LC_SEND_L_PRIME 10 #define SKE_SEND_EKS 11 #define REP_SEND_RECV_ID_LIST 12 #define REP_SEND_ACK 15 #define REP_STREAM_MANAGE 16 #define REP_STREAM_READY 17 #define SKE_SEND_TYPE_ID 18 #define HDCP2P2_MAX_MESSAGES 19 #define REAUTH_REQ BIT(3) #define LINK_INTEGRITY_FAILURE BIT(4) /* Temporary define to override wrong TZ value */ #define AKE_SEND_CERT_MSG_DELAY 100 struct sde_hdcp_2x_ctrl { DECLARE_KFIFO(cmd_q, enum sde_hdcp_2x_wakeup_cmd, 8); wait_queue_head_t wait_q; struct hdcp2_app_data app_data; u32 timeout_left; u32 wait_timeout_ms; u32 total_message_length; atomic_t enable_pending; bool no_stored_km; bool feature_supported; bool force_encryption; bool authenticated; bool resend_lc_init; bool resend_stream_manage; void *client_data; void *hdcp2_ctx; struct hdcp_transport_ops *client_ops; bool repeater_flag; bool update_stream; int last_msg; atomic_t hdcp_off; enum sde_hdcp_2x_device_type device_type; u8 min_enc_level; struct list_head stream_handles; u8 stream_count; struct task_struct *thread; struct completion response_completion; }; static void sde_hdcp_2x_clean(struct sde_hdcp_2x_ctrl *hdcp); static const char *sde_hdcp_2x_message_name(int msg_id) { switch (msg_id) { case INVALID_MESSAGE: return TO_STR(INVALID_MESSAGE); case AKE_INIT: return TO_STR(AKE_INIT); case AKE_SEND_CERT: return TO_STR(AKE_SEND_CERT); case AKE_NO_STORED_KM: return TO_STR(AKE_NO_STORED_KM); case AKE_STORED_KM: return TO_STR(AKE_STORED_KM); case AKE_SEND_H_PRIME: return TO_STR(AKE_SEND_H_PRIME); case AKE_SEND_PAIRING_INFO: return TO_STR(AKE_SEND_PAIRING_INFO); case LC_INIT: return TO_STR(LC_INIT); case LC_SEND_L_PRIME: return TO_STR(LC_SEND_L_PRIME); case SKE_SEND_EKS: return TO_STR(SKE_SEND_EKS); case REP_SEND_RECV_ID_LIST: return TO_STR(REP_SEND_RECV_ID_LIST); case REP_STREAM_MANAGE: return TO_STR(REP_STREAM_MANAGE); case REP_STREAM_READY: return TO_STR(REP_STREAM_READY); case SKE_SEND_TYPE_ID: return TO_STR(SKE_SEND_TYPE_ID); default: return "UNKNOWN"; } } static const struct sde_hdcp_2x_msg_data hdcp_msg_lookup[HDCP2P2_MAX_MESSAGES] = { [AKE_INIT] = { 2, { {"rtx", 0x69000, 8}, {"TxCaps", 0x69008, 3} }, 0, 0 }, [AKE_SEND_CERT] = { 3, { {"cert-rx", 0x6900B, 522}, {"rrx", 0x69215, 8}, {"RxCaps", 0x6921D, 3} }, 0, 110 }, [AKE_NO_STORED_KM] = { 1, { {"Ekpub_km", 0x69220, 128} }, 0, 0 }, [AKE_STORED_KM] = { 2, { {"Ekh_km", 0x692A0, 16}, {"m", 0x692B0, 16} }, 0, 0 }, [AKE_SEND_H_PRIME] = { 1, { {"H'", 0x692C0, 32} }, (1 << 1), 7 }, [AKE_SEND_PAIRING_INFO] = { 1, { {"Ekh_km", 0x692E0, 16} }, (1 << 2), 5 }, [LC_INIT] = { 1, { {"rn", 0x692F0, 8} }, 0, 0 }, [LC_SEND_L_PRIME] = { 1, { {"L'", 0x692F8, 32} }, 0, 0 }, [SKE_SEND_EKS] = { 2, { {"Edkey_ks", 0x69318, 16}, {"riv", 0x69328, 8} }, 0, 0 }, [SKE_SEND_TYPE_ID] = { 1, { {"type", 0x69494, 1} }, 0, 0 }, [REP_SEND_RECV_ID_LIST] = { 4, { {"RxInfo", 0x69330, 2}, {"seq_num_V", 0x69332, 3}, {"V'", 0x69335, 16}, {"ridlist", 0x69345, 155} }, (1 << 0), 0 }, [REP_SEND_ACK] = { 1, { {"V", 0x693E0, 16} }, 0, 0 }, [REP_STREAM_MANAGE] = { 3, { {"seq_num_M", 0x693F0, 3}, {"k", 0x693F3, 2}, {"streamID_Type", 0x693F5, 126} }, 0, 0 }, [REP_STREAM_READY] = { 1, { {"M'", 0x69473, 32} }, 0, 7 }, }; static int sde_hdcp_2x_get_next_message(struct sde_hdcp_2x_ctrl *hdcp, struct hdcp_transport_wakeup_data *data) { switch (hdcp->last_msg) { case INVALID_MESSAGE: return AKE_INIT; case AKE_INIT: return AKE_SEND_CERT; case AKE_SEND_CERT: if (hdcp->no_stored_km) return AKE_NO_STORED_KM; else return AKE_STORED_KM; case AKE_STORED_KM: case AKE_NO_STORED_KM: return AKE_SEND_H_PRIME; case AKE_SEND_H_PRIME: if (hdcp->no_stored_km) return AKE_SEND_PAIRING_INFO; else return LC_INIT; case AKE_SEND_PAIRING_INFO: return LC_INIT; case LC_INIT: return LC_SEND_L_PRIME; case LC_SEND_L_PRIME: if (hdcp->resend_lc_init) return LC_INIT; else return SKE_SEND_EKS; case SKE_SEND_EKS: if (!hdcp->repeater_flag) return SKE_SEND_TYPE_ID; case SKE_SEND_TYPE_ID: if (!hdcp->repeater_flag) return SKE_SEND_TYPE_ID; case REP_STREAM_READY: case REP_SEND_ACK: if (!hdcp->repeater_flag) return INVALID_MESSAGE; if (data->cmd == HDCP_TRANSPORT_CMD_SEND_MESSAGE) return REP_STREAM_MANAGE; else return REP_SEND_RECV_ID_LIST; case REP_SEND_RECV_ID_LIST: return REP_SEND_ACK; case REP_STREAM_MANAGE: hdcp->resend_stream_manage = false; return REP_STREAM_READY; default: pr_err("Unknown message ID (%d)\n", hdcp->last_msg); return -EINVAL; } } static void sde_hdcp_2x_wait_for_response(struct sde_hdcp_2x_ctrl *hdcp) { u32 timeout; switch (hdcp->last_msg) { case AKE_SEND_H_PRIME: if (hdcp->no_stored_km) hdcp->wait_timeout_ms = HZ; else hdcp->wait_timeout_ms = HZ / 4; break; case AKE_SEND_PAIRING_INFO: hdcp->wait_timeout_ms = HZ / 4; break; case REP_SEND_RECV_ID_LIST: if (!hdcp->authenticated) hdcp->wait_timeout_ms = HZ * 3; else hdcp->wait_timeout_ms = 0; break; default: hdcp->wait_timeout_ms = 0; } if (!hdcp->wait_timeout_ms) return; if (atomic_read(&hdcp->hdcp_off)) { pr_debug("invalid state: hdcp off\n"); return; } reinit_completion(&hdcp->response_completion); timeout = wait_for_completion_timeout(&hdcp->response_completion, hdcp->wait_timeout_ms); if (!timeout) { pr_err("completion expired, last message = %s\n", sde_hdcp_2x_message_name(hdcp->last_msg)); if (!atomic_read(&hdcp->hdcp_off)) sde_hdcp_2x_clean(hdcp); } hdcp->wait_timeout_ms = 0; } static void sde_hdcp_2x_adjust_transaction_params( struct sde_hdcp_2x_ctrl *hdcp, struct hdcp_transport_wakeup_data *data) { switch (hdcp->last_msg) { case AKE_SEND_CERT: data->transaction_delay = AKE_SEND_CERT_MSG_DELAY; case REP_STREAM_READY: break; default: data->transaction_delay = 0; break; } data->transaction_timeout = hdcp_msg_lookup[hdcp->last_msg].transaction_timeout; pr_debug("%s: transaction delay: %ums, transaction timeout: %ums\n", sde_hdcp_2x_message_name(hdcp->last_msg), data->transaction_delay, data->transaction_timeout); } static void sde_hdcp_2x_wakeup_client(struct sde_hdcp_2x_ctrl *hdcp, struct hdcp_transport_wakeup_data *data) { int rc = 0; if (!hdcp || !hdcp->client_ops || !hdcp->client_ops->wakeup || !data || (data->cmd == HDCP_TRANSPORT_CMD_INVALID)) return; data->abort_mask = REAUTH_REQ | LINK_INTEGRITY_FAILURE; if (data->cmd == HDCP_TRANSPORT_CMD_SEND_MESSAGE || data->cmd == HDCP_TRANSPORT_CMD_RECV_MESSAGE || data->cmd == HDCP_TRANSPORT_CMD_LINK_POLL) { hdcp->last_msg = sde_hdcp_2x_get_next_message(hdcp, data); if (hdcp->last_msg <= INVALID_MESSAGE) { hdcp->last_msg = INVALID_MESSAGE; return; } data->message_data = &hdcp_msg_lookup[hdcp->last_msg]; } sde_hdcp_2x_adjust_transaction_params(hdcp, data); rc = hdcp->client_ops->wakeup(data); if (rc) pr_err("error sending %s to client\n", hdcp_transport_cmd_to_str(data->cmd)); sde_hdcp_2x_wait_for_response(hdcp); } static inline void sde_hdcp_2x_send_message(struct sde_hdcp_2x_ctrl *hdcp) { struct hdcp_transport_wakeup_data cdata = { HDCP_TRANSPORT_CMD_SEND_MESSAGE }; cdata.context = hdcp->client_data; cdata.transaction_delay = hdcp->app_data.timeout; cdata.buf_len = hdcp->app_data.response.length; /* ignore the first byte as it contains the message id */ cdata.buf = hdcp->app_data.response.data + 1; sde_hdcp_2x_wakeup_client(hdcp, &cdata); } static bool sde_hdcp_2x_client_feature_supported(void *data) { struct sde_hdcp_2x_ctrl *hdcp = data; while (atomic_read(&hdcp->enable_pending)) usleep_range(1000, 1500); return hdcp2_feature_supported(hdcp->hdcp2_ctx); } static void sde_hdcp_2x_force_encryption(void *data, bool enable) { struct sde_hdcp_2x_ctrl *hdcp = data; if (!hdcp) { pr_err("invalid input\n"); return; } hdcp->force_encryption = enable; pr_info("force_encryption=%d\n", hdcp->force_encryption); } static void sde_hdcp_2x_clean(struct sde_hdcp_2x_ctrl *hdcp) { struct list_head *element; struct sde_hdcp_stream *stream_entry; struct hdcp_transport_wakeup_data cdata = {HDCP_TRANSPORT_CMD_INVALID}; hdcp->authenticated = false; cdata.context = hdcp->client_data; cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_FAILED; while (!list_empty(&hdcp->stream_handles)) { element = hdcp->stream_handles.next; list_del(element); stream_entry = list_entry(element, struct sde_hdcp_stream, list); hdcp2_close_stream(hdcp->hdcp2_ctx, stream_entry->stream_handle); kzfree(stream_entry); hdcp->stream_count--; } if (!atomic_xchg(&hdcp->hdcp_off, 1)) sde_hdcp_2x_wakeup_client(hdcp, &cdata); hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_STOP, &hdcp->app_data); } static u8 sde_hdcp_2x_stream_type(u8 min_enc_level) { u8 stream_type = 0; switch (min_enc_level) { case 0: case 1: stream_type = 0; break; case 2: stream_type = 1; break; default: stream_type = 0; break; } pr_debug("min_enc_level = %u, type = %u\n", min_enc_level, stream_type); return stream_type; } static void sde_hdcp_2x_send_type(struct sde_hdcp_2x_ctrl *hdcp) { if (atomic_read(&hdcp->hdcp_off)) { pr_debug("invalid state, hdcp off\n"); return; } if (hdcp->repeater_flag) { pr_debug("invalid state, not receiver\n"); return; } hdcp->app_data.response.data[0] = SKE_SEND_TYPE_ID; hdcp->app_data.response.data[1] = sde_hdcp_2x_stream_type(hdcp->min_enc_level); hdcp->app_data.response.length = 1; hdcp->app_data.timeout = 100; if (!atomic_read(&hdcp->hdcp_off)) sde_hdcp_2x_send_message(hdcp); } static void sde_hdcp_2x_query_stream(struct sde_hdcp_2x_ctrl *hdcp) { int rc = 0; if (atomic_read(&hdcp->hdcp_off)) { pr_debug("invalid state, hdcp off\n"); return; } if (!hdcp->repeater_flag) { pr_debug("invalid state, not a repeater\n"); return; } if (!hdcp->authenticated && hdcp->app_data.response.data[0] != REP_SEND_ACK) { pr_debug("invalid state. HDCP repeater not authenticated\n"); return; } rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_QUERY_STREAM, &hdcp->app_data); if (rc) goto exit; if (!hdcp->app_data.response.data || !hdcp->app_data.request.data) { pr_err("invalid response/request buffers\n"); rc = -EINVAL; goto exit; } pr_debug("[tz]: %s\n", sde_hdcp_2x_message_name( hdcp->app_data.response.data[0])); exit: if (!rc && !atomic_read(&hdcp->hdcp_off)) { /* Modify last message to ensure the proper message is sent */ hdcp->last_msg = REP_SEND_ACK; sde_hdcp_2x_send_message(hdcp); } } static void sde_hdcp_2x_initialize_command(struct sde_hdcp_2x_ctrl *hdcp, enum hdcp_transport_wakeup_cmd cmd, struct hdcp_transport_wakeup_data *cdata) { cdata->cmd = cmd; cdata->transaction_delay = hdcp->timeout_left; cdata->buf = hdcp->app_data.request.data + 1; } static void sde_hdcp_2x_msg_sent(struct sde_hdcp_2x_ctrl *hdcp) { struct hdcp_transport_wakeup_data cdata = { HDCP_TRANSPORT_CMD_INVALID, hdcp->client_data}; switch (hdcp->app_data.response.data[0]) { case SKE_SEND_TYPE_ID: if (!hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_EN_ENCRYPTION, &hdcp->app_data)) { hdcp->authenticated = true; if (hdcp->force_encryption) hdcp2_force_encryption(hdcp->hdcp2_ctx, 1); cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_SUCCESS; sde_hdcp_2x_wakeup_client(hdcp, &cdata); } /* poll for link check */ sde_hdcp_2x_initialize_command(hdcp, HDCP_TRANSPORT_CMD_LINK_POLL, &cdata); break; case SKE_SEND_EKS: if (hdcp->repeater_flag && !atomic_read(&hdcp->hdcp_off)) { /* poll for link check */ sde_hdcp_2x_initialize_command(hdcp, HDCP_TRANSPORT_CMD_LINK_POLL, &cdata); } else { hdcp->app_data.response.data[0] = SKE_SEND_TYPE_ID; hdcp->app_data.response.data[1] = sde_hdcp_2x_stream_type(hdcp->min_enc_level); hdcp->app_data.response.length = 1; hdcp->app_data.timeout = 100; sde_hdcp_2x_send_message(hdcp); } break; case REP_SEND_ACK: pr_debug("Repeater authentication successful. update_stream=%d\n", hdcp->update_stream); if (hdcp->update_stream) { sde_hdcp_2x_query_stream(hdcp); hdcp->update_stream = false; } else { sde_hdcp_2x_initialize_command(hdcp, HDCP_TRANSPORT_CMD_LINK_POLL, &cdata); } break; default: cdata.cmd = HDCP_TRANSPORT_CMD_RECV_MESSAGE; cdata.transaction_delay = hdcp->app_data.timeout; cdata.buf = hdcp->app_data.request.data + 1; } sde_hdcp_2x_wakeup_client(hdcp, &cdata); } static void sde_hdcp_2x_init(struct sde_hdcp_2x_ctrl *hdcp) { int rc; rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_START, &hdcp->app_data); if (rc) sde_hdcp_2x_clean(hdcp); } static void sde_hdcp_2x_start_auth(struct sde_hdcp_2x_ctrl *hdcp) { int rc; rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_START_AUTH, &hdcp->app_data); if (rc) { sde_hdcp_2x_clean(hdcp); return; } pr_debug("message received from TZ: %s\n", sde_hdcp_2x_message_name(hdcp->app_data.response.data[0])); sde_hdcp_2x_send_message(hdcp); } static void sde_hdcp_2x_timeout(struct sde_hdcp_2x_ctrl *hdcp) { int rc = 0; int message_id; if (atomic_read(&hdcp->hdcp_off)) { pr_debug("invalid state, hdcp off\n"); return; } rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_TIMEOUT, &hdcp->app_data); if (rc) goto error; message_id = (int)hdcp->app_data.response.data[0]; if (message_id == LC_INIT && !atomic_read(&hdcp->hdcp_off)) sde_hdcp_2x_send_message(hdcp); return; error: if (!atomic_read(&hdcp->hdcp_off)) sde_hdcp_2x_clean(hdcp); } static void sde_hdcp_2x_msg_recvd(struct sde_hdcp_2x_ctrl *hdcp) { int rc = 0; char *msg = NULL; u32 message_id_bytes = 0; u32 request_length, out_msg; struct hdcp_transport_wakeup_data cdata = {HDCP_TRANSPORT_CMD_INVALID}; if (atomic_read(&hdcp->hdcp_off)) { pr_debug("invalid state, hdcp off\n"); return; } cdata.context = hdcp->client_data; request_length = hdcp->total_message_length; msg = hdcp->app_data.request.data; if (request_length == 0) { pr_err("invalid message length\n"); goto exit; } if (hdcp->device_type == HDCP_TXMTR_DP || hdcp->device_type == HDCP_TXMTR_DP_MST) { msg[0] = hdcp->last_msg; message_id_bytes = 1; } request_length += message_id_bytes; pr_debug("[sink]: %s\n", sde_hdcp_2x_message_name(msg[0])); hdcp->app_data.request.length = request_length; rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_PROCESS_MSG, &hdcp->app_data); if (rc) { pr_err("failed to process sink's response to %s (%d)\n", sde_hdcp_2x_message_name(msg[0]), rc); rc = -EINVAL; goto exit; } if (msg[0] == AKE_SEND_H_PRIME && hdcp->no_stored_km) { cdata.cmd = HDCP_TRANSPORT_CMD_RECV_MESSAGE; cdata.transaction_delay = hdcp->app_data.timeout; cdata.buf = hdcp->app_data.request.data + 1; goto exit; } if (hdcp->app_data.response.length == 0) out_msg = INVALID_MESSAGE; else out_msg = (u32)hdcp->app_data.response.data[0]; pr_debug("[tz]: %s\n", sde_hdcp_2x_message_name(out_msg)); if (msg[0] == REP_STREAM_READY && out_msg != REP_STREAM_MANAGE) { if (hdcp->resend_stream_manage) { pr_debug("resend stream management\n"); } else if (!hdcp->authenticated) { rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_EN_ENCRYPTION, &hdcp->app_data); if (!rc) { hdcp->authenticated = true; if (hdcp->force_encryption) hdcp2_force_encryption( hdcp->hdcp2_ctx, 1); cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_SUCCESS; sde_hdcp_2x_wakeup_client(hdcp, &cdata); } else { pr_err("failed to enable encryption (%d)\n", rc); } } sde_hdcp_2x_initialize_command(hdcp, HDCP_TRANSPORT_CMD_LINK_POLL, &cdata); goto exit; } hdcp->resend_lc_init = false; if (msg[0] == LC_SEND_L_PRIME && out_msg == LC_INIT) hdcp->resend_lc_init = true; if (msg[0] == REP_STREAM_READY && out_msg == REP_STREAM_MANAGE) pr_debug("resend %s\n", sde_hdcp_2x_message_name(out_msg)); if (out_msg == AKE_NO_STORED_KM) hdcp->no_stored_km = true; else hdcp->no_stored_km = false; if (out_msg == SKE_SEND_EKS) { hdcp->repeater_flag = hdcp->app_data.repeater_flag; hdcp->update_stream = true; } if (!atomic_read(&hdcp->hdcp_off)) { cdata.cmd = HDCP_TRANSPORT_CMD_SEND_MESSAGE; cdata.buf = hdcp->app_data.response.data + 1; cdata.buf_len = hdcp->app_data.response.length; cdata.transaction_delay = hdcp->app_data.timeout; } exit: sde_hdcp_2x_wakeup_client(hdcp, &cdata); if (rc && !atomic_read(&hdcp->hdcp_off)) sde_hdcp_2x_clean(hdcp); } static struct list_head *sde_hdcp_2x_stream_present( struct sde_hdcp_2x_ctrl *hdcp, u8 stream_id, u8 virtual_channel) { struct sde_hdcp_stream *stream_entry; struct list_head *entry; bool present = false; list_for_each(entry, &hdcp->stream_handles) { stream_entry = list_entry(entry, struct sde_hdcp_stream, list); if (stream_entry->virtual_channel == virtual_channel && stream_entry->stream_id == stream_id) { present = true; break; } } if (!present) entry = NULL; return entry; } static void sde_hdcp_2x_manage_stream(struct sde_hdcp_2x_ctrl *hdcp) { struct list_head *entry; struct list_head *element; struct sde_hdcp_stream *stream_entry; bool query_streams = false; entry = hdcp->stream_handles.next; while (entry != &hdcp->stream_handles) { stream_entry = list_entry(entry, struct sde_hdcp_stream, list); element = entry; entry = entry->next; if (!stream_entry->active) { hdcp2_close_stream(hdcp->hdcp2_ctx, stream_entry->stream_handle); hdcp->stream_count--; list_del(element); kzfree(stream_entry); query_streams = true; } else if (!stream_entry->stream_handle) { if (hdcp2_open_stream(hdcp->hdcp2_ctx, stream_entry->virtual_channel, stream_entry->stream_id, &stream_entry->stream_handle)) pr_err("Unable to open stream %d, virtual channel %d\n", stream_entry->stream_id, stream_entry->virtual_channel); else query_streams = true; } } if (query_streams) { if (hdcp->authenticated) { sde_hdcp_2x_query_stream(hdcp); } else if (hdcp->last_msg == REP_STREAM_MANAGE || hdcp->last_msg == REP_STREAM_READY) { hdcp->resend_stream_manage = true; } } } static bool sde_hdcp_2x_remove_streams(struct sde_hdcp_2x_ctrl *hdcp, struct stream_info *streams, u8 num_streams) { u8 i; u8 stream_id; u8 virtual_channel; struct list_head *entry; struct sde_hdcp_stream *stream_entry; bool changed = false; for (i = 0 ; i < num_streams; i++) { stream_id = streams[i].stream_id; virtual_channel = streams[i].virtual_channel; entry = sde_hdcp_2x_stream_present(hdcp, stream_id, virtual_channel); if (!entry) continue; stream_entry = list_entry(entry, struct sde_hdcp_stream, list); if (!stream_entry->stream_handle) { /* Stream wasn't fully initialized so remove it */ hdcp->stream_count--; list_del(entry); kzfree(stream_entry); } else { stream_entry->active = false; } changed = true; } return changed; } static bool sde_hdcp_2x_add_streams(struct sde_hdcp_2x_ctrl *hdcp, struct stream_info *streams, u8 num_streams) { u8 i; u8 stream_id; u8 virtual_channel; struct sde_hdcp_stream *stream; bool changed = false; for (i = 0 ; i < num_streams; i++) { stream_id = streams[i].stream_id; virtual_channel = streams[i].virtual_channel; if (sde_hdcp_2x_stream_present(hdcp, stream_id, virtual_channel)) continue; stream = kzalloc(sizeof(struct sde_hdcp_stream), GFP_KERNEL); if (!stream) continue; INIT_LIST_HEAD(&stream->list); stream->stream_handle = 0; stream->stream_id = stream_id; stream->virtual_channel = virtual_channel; stream->active = true; list_add(&stream->list, &hdcp->stream_handles); hdcp->stream_count++; changed = true; } return changed; } /** sde_hdcp_2x_wakeup() - wakeup the module to execute a requested command * @data: data required for executing corresponding command. * * This function is executed on caller's thread. Update the local data * and wakeup the local thread to execute the command. Once the local * thread is activated, caller's thread is returned and this function * is ready to receive next command. */ static int sde_hdcp_2x_wakeup(struct sde_hdcp_2x_wakeup_data *data) { struct sde_hdcp_2x_ctrl *hdcp; int rc = 0; if (!data) return -EINVAL; hdcp = data->context; if (!hdcp) return -EINVAL; hdcp->timeout_left = data->timeout; hdcp->total_message_length = data->total_message_length; if (!completion_done(&hdcp->response_completion)) complete_all(&hdcp->response_completion); switch (data->cmd) { case HDCP_2X_CMD_ENABLE: if (!atomic_cmpxchg(&hdcp->enable_pending, 0, 1)) { hdcp->device_type = data->device_type; kfifo_put(&hdcp->cmd_q, data->cmd); kthread_unpark(hdcp->thread); wake_up(&hdcp->wait_q); } break; case HDCP_2X_CMD_DISABLE: if (!atomic_xchg(&hdcp->hdcp_off, 1)) kfifo_put(&hdcp->cmd_q, HDCP_2X_CMD_STOP); kfifo_put(&hdcp->cmd_q, data->cmd); kthread_park(hdcp->thread); break; case HDCP_2X_CMD_STOP: atomic_set(&hdcp->hdcp_off, 1); kfifo_put(&hdcp->cmd_q, data->cmd); kthread_park(hdcp->thread); break; case HDCP_2X_CMD_START: hdcp->no_stored_km = false; hdcp->repeater_flag = false; hdcp->update_stream = false; hdcp->authenticated = false; hdcp->last_msg = INVALID_MESSAGE; hdcp->timeout_left = 0; atomic_set(&hdcp->hdcp_off, 0); kfifo_put(&hdcp->cmd_q, data->cmd); kthread_unpark(hdcp->thread); wake_up(&hdcp->wait_q); break; case HDCP_2X_CMD_OPEN_STREAMS: if (sde_hdcp_2x_add_streams(hdcp, data->streams, data->num_streams)) { kfifo_put(&hdcp->cmd_q, data->cmd); wake_up(&hdcp->wait_q); } break; case HDCP_2X_CMD_CLOSE_STREAMS: if (sde_hdcp_2x_remove_streams(hdcp, data->streams, data->num_streams)) { kfifo_put(&hdcp->cmd_q, data->cmd); wake_up(&hdcp->wait_q); } break; case HDCP_2X_CMD_MIN_ENC_LEVEL: hdcp->min_enc_level = data->min_enc_level; if (hdcp->authenticated) { kfifo_put(&hdcp->cmd_q, data->cmd); wake_up(&hdcp->wait_q); } break; default: kfifo_put(&hdcp->cmd_q, data->cmd); wake_up(&hdcp->wait_q); break; } return rc; } static void sde_hdcp_2x_enable(struct sde_hdcp_2x_ctrl *hdcp) { if (!hdcp) return; if (hdcp->hdcp2_ctx) { pr_debug("HDCP library context already acquired\n"); return; } hdcp->hdcp2_ctx = hdcp2_init(hdcp->device_type); if (!hdcp->hdcp2_ctx) pr_err("Unable to acquire HDCP library handle\n"); } static void sde_hdcp_2x_disable(struct sde_hdcp_2x_ctrl *hdcp) { if (!hdcp->hdcp2_ctx) return; hdcp2_deinit(hdcp->hdcp2_ctx); hdcp->hdcp2_ctx = NULL; } static int sde_hdcp_2x_main(void *data) { struct sde_hdcp_2x_ctrl *hdcp = data; enum sde_hdcp_2x_wakeup_cmd cmd; while (1) { wait_event(hdcp->wait_q, !kfifo_is_empty(&hdcp->cmd_q) || kthread_should_stop() || kthread_should_park()); if (kthread_should_stop()) break; if (kfifo_is_empty(&hdcp->cmd_q) && kthread_should_park()) { kthread_parkme(); continue; } if (!kfifo_get(&hdcp->cmd_q, &cmd)) continue; switch (cmd) { case HDCP_2X_CMD_ENABLE: sde_hdcp_2x_enable(hdcp); atomic_set(&hdcp->enable_pending, 0); break; case HDCP_2X_CMD_DISABLE: sde_hdcp_2x_disable(hdcp); break; case HDCP_2X_CMD_START: sde_hdcp_2x_init(hdcp); break; case HDCP_2X_CMD_STOP: sde_hdcp_2x_clean(hdcp); break; case HDCP_2X_CMD_START_AUTH: sde_hdcp_2x_start_auth(hdcp); break; case HDCP_2X_CMD_MSG_SEND_SUCCESS: sde_hdcp_2x_msg_sent(hdcp); break; case HDCP_2X_CMD_MSG_SEND_FAILED: case HDCP_2X_CMD_MSG_RECV_FAILED: case HDCP_2X_CMD_LINK_FAILED: sde_hdcp_2x_clean(hdcp); break; case HDCP_2X_CMD_MSG_RECV_SUCCESS: sde_hdcp_2x_msg_recvd(hdcp); break; case HDCP_2X_CMD_MSG_RECV_TIMEOUT: sde_hdcp_2x_timeout(hdcp); break; case HDCP_2X_CMD_QUERY_STREAM_TYPE: sde_hdcp_2x_query_stream(hdcp); break; case HDCP_2X_CMD_MIN_ENC_LEVEL: if (!hdcp->repeater_flag) { sde_hdcp_2x_send_type(hdcp); break; } sde_hdcp_2x_query_stream(hdcp); break; case HDCP_2X_CMD_OPEN_STREAMS: case HDCP_2X_CMD_CLOSE_STREAMS: sde_hdcp_2x_manage_stream(hdcp); break; default: break; } } return 0; } int sde_hdcp_2x_register(struct sde_hdcp_2x_register_data *data) { int rc = 0; struct sde_hdcp_2x_ctrl *hdcp = NULL; if (!data) { pr_err("invalid input\n"); return -EINVAL; } if (!data->ops) { pr_err("invalid input: txmtr context\n"); return -EINVAL; } if (!data->client_ops) { pr_err("invalid input: client_ops\n"); return -EINVAL; } if (!data->hdcp_data) { pr_err("invalid input: hdcp_data\n"); return -EINVAL; } /* populate ops to be called by client */ data->ops->feature_supported = sde_hdcp_2x_client_feature_supported; data->ops->wakeup = sde_hdcp_2x_wakeup; data->ops->force_encryption = sde_hdcp_2x_force_encryption; hdcp = kzalloc(sizeof(*hdcp), GFP_KERNEL); if (!hdcp) { rc = -ENOMEM; goto unlock; } INIT_LIST_HEAD(&hdcp->stream_handles); hdcp->client_data = data->client_data; hdcp->client_ops = data->client_ops; INIT_KFIFO(hdcp->cmd_q); init_waitqueue_head(&hdcp->wait_q); atomic_set(&hdcp->hdcp_off, 1); atomic_set(&hdcp->enable_pending, 0); init_completion(&hdcp->response_completion); *data->hdcp_data = hdcp; hdcp->thread = kthread_run(sde_hdcp_2x_main, hdcp, "hdcp_2x"); if (IS_ERR(hdcp->thread)) { pr_err("unable to start lib thread\n"); rc = PTR_ERR(hdcp->thread); hdcp->thread = NULL; goto error; } hdcp->force_encryption = false; return 0; error: kzfree(hdcp); hdcp = NULL; unlock: return rc; } void sde_hdcp_2x_deregister(void *data) { struct sde_hdcp_2x_ctrl *hdcp = data; if (!hdcp) return; kthread_stop(hdcp->thread); sde_hdcp_2x_disable(data); kzfree(hdcp); }