summaryrefslogtreecommitdiff
path: root/net/test/xfrm_test.py
blob: 64be08485e6a7c57566c896060e8a93c720c8ffa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
#!/usr/bin/python
#
# Copyright 2017 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=g-bad-todo,g-bad-file-header,wildcard-import
from errno import *  # pylint: disable=wildcard-import
from scapy import all as scapy
from socket import *  # pylint: disable=wildcard-import
import struct
import subprocess
import threading
import unittest

import csocket
import cstruct
import multinetwork_base
import net_test
import packets
import xfrm
import xfrm_base

ENCRYPTED_PAYLOAD = ("b1c74998efd6326faebe2061f00f2c750e90e76001664a80c287b150"
                     "59e74bf949769cc6af71e51b539e7de3a2a14cb05a231b969e035174"
                     "d98c5aa0cef1937db98889ec0d08fa408fecf616")

TEST_ADDR1 = "2001:4860:4860::8888"
TEST_ADDR2 = "2001:4860:4860::8844"

XFRM_STATS_PROCFILE = "/proc/net/xfrm_stat"
XFRM_STATS_OUT_NO_STATES = "XfrmOutNoStates"

# IP addresses to use for tunnel endpoints. For generality, these should be
# different from the addresses we send packets to.
TUNNEL_ENDPOINTS = {4: "8.8.4.4", 6: TEST_ADDR2}

TEST_SPI = 0x1234
TEST_SPI2 = 0x1235



class XfrmFunctionalTest(xfrm_base.XfrmLazyTest):

  def assertIsUdpEncapEsp(self, packet, spi, seq, length):
    self.assertEquals(IPPROTO_UDP, packet.proto)
    udp_hdr = packet[scapy.UDP]
    self.assertEquals(4500, udp_hdr.dport)
    self.assertEquals(length, len(udp_hdr))
    esp_hdr, _ = cstruct.Read(str(udp_hdr.payload), xfrm.EspHdr)
    # FIXME: this file currently swaps SPI byte order manually, so SPI needs to
    # be double-swapped here.
    self.assertEquals(xfrm.EspHdr((spi, seq)), esp_hdr)

  def CreateNewSa(self, localAddr, remoteAddr, spi, reqId, encap_tmpl,
                  null_auth=False):
    auth_algo = (
        xfrm_base._ALGO_AUTH_NULL if null_auth else xfrm_base._ALGO_HMAC_SHA1)
    self.xfrm.AddSaInfo(localAddr, remoteAddr, spi, xfrm.XFRM_MODE_TRANSPORT,
                    reqId, xfrm_base._ALGO_CBC_AES_256, auth_algo, None,
                    encap_tmpl, None, None)

  def testAddSa(self):
    self.CreateNewSa("::", TEST_ADDR1, TEST_SPI, 3320, None)
    expected = (
        "src :: dst 2001:4860:4860::8888\n"
        "\tproto esp spi 0x00001234 reqid 3320 mode transport\n"
        "\treplay-window 4 \n"
        "\tauth-trunc hmac(sha1) 0x%s 96\n"
        "\tenc cbc(aes) 0x%s\n"
        "\tsel src ::/0 dst ::/0 \n" % (
            xfrm_base._AUTHENTICATION_KEY_128.encode("hex"),
            xfrm_base._ENCRYPTION_KEY_256.encode("hex")))

    actual = subprocess.check_output("ip xfrm state".split())
    # Newer versions of IP also show anti-replay context. Don't choke if it's
    # missing.
    actual = actual.replace(
        "\tanti-replay context: seq 0x0, oseq 0x0, bitmap 0x00000000\n", "")
    try:
      self.assertMultiLineEqual(expected, actual)
    finally:
      self.xfrm.DeleteSaInfo(TEST_ADDR1, TEST_SPI, IPPROTO_ESP)

  def testFlush(self):
    self.assertEquals(0, len(self.xfrm.DumpSaInfo()))
    self.CreateNewSa("::", "2000::", TEST_SPI, 1234, None)
    self.CreateNewSa("0.0.0.0", "192.0.2.1", TEST_SPI, 4321, None)
    self.assertEquals(2, len(self.xfrm.DumpSaInfo()))
    self.xfrm.FlushSaInfo()
    self.assertEquals(0, len(self.xfrm.DumpSaInfo()))

  def _TestSocketPolicy(self, version):
    # Open a UDP socket and connect it.
    family = net_test.GetAddressFamily(version)
    s = socket(family, SOCK_DGRAM, 0)
    netid = self.RandomNetid()
    self.SelectInterface(s, netid, "mark")

    remotesockaddr = self.GetRemoteSocketAddress(version)
    s.connect((remotesockaddr, 53))
    saddr, sport = s.getsockname()[:2]
    daddr, dport = s.getpeername()[:2]
    if version == 5:
      saddr = saddr.replace("::ffff:", "")
      daddr = daddr.replace("::ffff:", "")

    reqid = 0

    desc, pkt = packets.UDP(version, saddr, daddr, sport=sport)
    s.sendto(net_test.UDP_PAYLOAD, (remotesockaddr, 53))
    self.ExpectPacketOn(netid, "Send after socket, expected %s" % desc, pkt)

    # Using IPv4 XFRM on a dual-stack socket requires setting an AF_INET policy
    # that's written in terms of IPv4 addresses.
    xfrm_version = 4 if version == 5 else version
    xfrm_family = net_test.GetAddressFamily(xfrm_version)
    xfrm_base.ApplySocketPolicy(s, xfrm_family, xfrm.XFRM_POLICY_OUT,
                                TEST_SPI, reqid, None)

    # Because the policy has level set to "require" (the default), attempting
    # to send a packet results in an error, because there is no SA that
    # matches the socket policy we set.
    self.assertRaisesErrno(
        EAGAIN,
        s.sendto, net_test.UDP_PAYLOAD, (remotesockaddr, 53))

    # If there is a user space key manager, calling sendto() after applying the socket policy
    # creates an SA whose state is XFRM_STATE_ACQ. So this just deletes it.
    # If there is no user space key manager, deleting SA returns ESRCH as the error code.
    try:
        self.xfrm.DeleteSaInfo(self.GetRemoteAddress(xfrm_version), TEST_SPI, IPPROTO_ESP)
    except IOError as e:
        self.assertEquals(ESRCH, e.errno, "Unexpected error when deleting ACQ SA")

    # Adding a matching SA causes the packet to go out encrypted. The SA's
    # SPI must match the one in our template, and the destination address must
    # match the packet's destination address (in tunnel mode, it has to match
    # the tunnel destination).
    self.CreateNewSa(
        net_test.GetWildcardAddress(xfrm_version),
        self.GetRemoteAddress(xfrm_version), TEST_SPI, reqid, None)

    s.sendto(net_test.UDP_PAYLOAD, (remotesockaddr, 53))
    expected_length = xfrm_base.GetEspPacketLength(xfrm.XFRM_MODE_TRANSPORT,
                                                version, False,
                                                net_test.UDP_PAYLOAD,
                                                xfrm_base._ALGO_HMAC_SHA1,
                                                xfrm_base._ALGO_CBC_AES_256)
    self._ExpectEspPacketOn(netid, TEST_SPI, 1, expected_length, None, None)

    # Sending to another destination doesn't work: again, no matching SA.
    remoteaddr2 = self.GetOtherRemoteSocketAddress(version)
    self.assertRaisesErrno(
        EAGAIN,
        s.sendto, net_test.UDP_PAYLOAD, (remoteaddr2, 53))

    # Sending on another socket without the policy applied results in an
    # unencrypted packet going out.
    s2 = socket(family, SOCK_DGRAM, 0)
    self.SelectInterface(s2, netid, "mark")
    s2.sendto(net_test.UDP_PAYLOAD, (remotesockaddr, 53))
    pkts = self.ReadAllPacketsOn(netid)
    self.assertEquals(1, len(pkts))
    packet = pkts[0]

    protocol = packet.nh if version == 6 else packet.proto
    self.assertEquals(IPPROTO_UDP, protocol)

    # Deleting the SA causes the first socket to return errors again.
    self.xfrm.DeleteSaInfo(self.GetRemoteAddress(xfrm_version), TEST_SPI,
                           IPPROTO_ESP)
    self.assertRaisesErrno(
        EAGAIN,
        s.sendto, net_test.UDP_PAYLOAD, (remotesockaddr, 53))

    # Clear the socket policy and expect a cleartext packet.
    xfrm_base.SetPolicySockopt(s, family, None)
    s.sendto(net_test.UDP_PAYLOAD, (remotesockaddr, 53))
    self.ExpectPacketOn(netid, "Send after clear, expected %s" % desc, pkt)

    # Clearing the policy twice is safe.
    xfrm_base.SetPolicySockopt(s, family, None)
    s.sendto(net_test.UDP_PAYLOAD, (remotesockaddr, 53))
    self.ExpectPacketOn(netid, "Send after clear 2, expected %s" % desc, pkt)

    # Clearing if a policy was never set is safe.
    s = socket(AF_INET6, SOCK_DGRAM, 0)
    xfrm_base.SetPolicySockopt(s, family, None)

  def testSocketPolicyIPv4(self):
    self._TestSocketPolicy(4)

  def testSocketPolicyIPv6(self):
    self._TestSocketPolicy(6)

  def testSocketPolicyMapped(self):
    self._TestSocketPolicy(5)

  # Sets up sockets and marks to correct netid
  def _SetupUdpEncapSockets(self):
    netid = self.RandomNetid()
    myaddr = self.MyAddress(4, netid)
    remoteaddr = self.GetRemoteAddress(4)

    # Reserve a port on which to receive UDP encapsulated packets. Sending
    # packets works without this (and potentially can send packets with a source
    # port belonging to another application), but receiving requires the port to
    # be bound and the encapsulation socket option enabled.
    encap_sock = net_test.Socket(AF_INET, SOCK_DGRAM, 0)
    encap_sock.bind((myaddr, 0))
    encap_port = encap_sock.getsockname()[1]
    encap_sock.setsockopt(IPPROTO_UDP, xfrm.UDP_ENCAP, xfrm.UDP_ENCAP_ESPINUDP)

    # Open a socket to send traffic.
    s = socket(AF_INET, SOCK_DGRAM, 0)
    self.SelectInterface(s, netid, "mark")
    s.connect((remoteaddr, 53))

    return netid, myaddr, remoteaddr, encap_sock, encap_port, s

  # Sets up SAs and applies socket policy to given socket
  def _SetupUdpEncapSaPair(self, myaddr, remoteaddr, in_spi, out_spi,
                           encap_port, s, use_null_auth):
    in_reqid = 123
    out_reqid = 456

    # Create inbound and outbound SAs that specify UDP encapsulation.
    encaptmpl = xfrm.XfrmEncapTmpl((xfrm.UDP_ENCAP_ESPINUDP, htons(encap_port),
                                    htons(4500), 16 * "\x00"))
    self.CreateNewSa(myaddr, remoteaddr, out_spi, out_reqid, encaptmpl,
                     use_null_auth)

    # Add an encap template that's the mirror of the outbound one.
    encaptmpl.sport, encaptmpl.dport = encaptmpl.dport, encaptmpl.sport
    self.CreateNewSa(remoteaddr, myaddr, in_spi, in_reqid, encaptmpl,
                     use_null_auth)

    # Apply socket policies to s.
    xfrm_base.ApplySocketPolicy(s, AF_INET, xfrm.XFRM_POLICY_OUT, out_spi,
                                out_reqid, None)

    # TODO: why does this work without a per-socket policy applied?
    # The received  packet obviously matches an SA, but don't inbound packets
    # need to match a policy as well? (b/71541609)
    xfrm_base.ApplySocketPolicy(s, AF_INET, xfrm.XFRM_POLICY_IN, in_spi,
                                in_reqid, None)

    # Uncomment for debugging.
    # subprocess.call("ip xfrm state".split())

  # Check that packets can be sent and received.
  def _VerifyUdpEncapSocket(self, netid, remoteaddr, myaddr, encap_port, sock,
                           in_spi, out_spi, null_auth, seq_num):
    # Now send a packet.
    sock.sendto(net_test.UDP_PAYLOAD, (remoteaddr, 53))
    srcport = sock.getsockname()[1]

    # Expect to see an UDP encapsulated packet.
    pkts = self.ReadAllPacketsOn(netid)
    self.assertEquals(1, len(pkts))
    packet = pkts[0]

    auth_algo = (
        xfrm_base._ALGO_AUTH_NULL if null_auth else xfrm_base._ALGO_HMAC_SHA1)
    expected_len = xfrm_base.GetEspPacketLength(
        xfrm.XFRM_MODE_TRANSPORT, 4, True, net_test.UDP_PAYLOAD, auth_algo,
        xfrm_base._ALGO_CBC_AES_256)
    self.assertIsUdpEncapEsp(packet, out_spi, seq_num, expected_len)

    # Now test the receive path. Because we don't know how to decrypt packets,
    # we just play back the encrypted packet that kernel sent earlier. We swap
    # the addresses in the IP header to make the packet look like it's bound for
    # us, but we can't do that for the port numbers because the UDP header is
    # part of the integrity protected payload, which we can only replay as is.
    # So the source and destination ports are swapped and the packet appears to
    # be sent from srcport to port 53. Open another socket on that port, and
    # apply the inbound policy to it.
    twisted_socket = socket(AF_INET, SOCK_DGRAM, 0)
    csocket.SetSocketTimeout(twisted_socket, 100)
    twisted_socket.bind(("0.0.0.0", 53))

    # Save the payload of the packet so we can replay it back to ourselves, and
    # replace the SPI with our inbound SPI.
    payload = str(packet.payload)[8:]
    spi_seq = xfrm.EspHdr((in_spi, seq_num)).Pack()
    payload = spi_seq + payload[len(spi_seq):]

    sainfo = self.xfrm.FindSaInfo(in_spi)
    start_integrity_failures = sainfo.stats.integrity_failed

    # Now play back the valid packet and check that we receive it.
    incoming = (scapy.IP(src=remoteaddr, dst=myaddr) /
                scapy.UDP(sport=4500, dport=encap_port) / payload)
    incoming = scapy.IP(str(incoming))
    self.ReceivePacketOn(netid, incoming)

    sainfo = self.xfrm.FindSaInfo(in_spi)

    # TODO: break this out into a separate test
    # If our SPIs are different, and we aren't using null authentication,
    # we expect the packet to be dropped. We also expect that the integrity
    # failure counter to increase, as SPIs are part of the authenticated or
    # integrity-verified portion of the packet.
    if not null_auth and in_spi != out_spi:
      self.assertRaisesErrno(EAGAIN, twisted_socket.recv, 4096)
      self.assertEquals(start_integrity_failures + 1,
                        sainfo.stats.integrity_failed)
    else:
      data, src = twisted_socket.recvfrom(4096)
      self.assertEquals(net_test.UDP_PAYLOAD, data)
      self.assertEquals((remoteaddr, srcport), src)
      self.assertEquals(start_integrity_failures, sainfo.stats.integrity_failed)

    # Check that unencrypted packets on twisted_socket are not received.
    unencrypted = (
        scapy.IP(src=remoteaddr, dst=myaddr) / scapy.UDP(
            sport=srcport, dport=53) / net_test.UDP_PAYLOAD)
    self.assertRaisesErrno(EAGAIN, twisted_socket.recv, 4096)

  def _RunEncapSocketPolicyTest(self, in_spi, out_spi, use_null_auth):
    netid, myaddr, remoteaddr, encap_sock, encap_port, s = \
        self._SetupUdpEncapSockets()

    self._SetupUdpEncapSaPair(myaddr, remoteaddr, in_spi, out_spi, encap_port,
                              s, use_null_auth)

    # Check that UDP encap sockets work with socket policy and given SAs
    self._VerifyUdpEncapSocket(netid, remoteaddr, myaddr, encap_port, s, in_spi,
                               out_spi, use_null_auth, 1)

  # TODO: Add tests for ESP (non-encap) sockets.
  def testUdpEncapSameSpisNullAuth(self):
    # Use the same SPI both inbound and outbound because this lets us receive
    # encrypted packets by simply replaying the packets the kernel sends
    # without having to disable authentication
    self._RunEncapSocketPolicyTest(TEST_SPI, TEST_SPI, True)

  def testUdpEncapSameSpis(self):
    self._RunEncapSocketPolicyTest(TEST_SPI, TEST_SPI, False)

  def testUdpEncapDifferentSpisNullAuth(self):
    self._RunEncapSocketPolicyTest(TEST_SPI, TEST_SPI2, True)

  def testUdpEncapDifferentSpis(self):
    self._RunEncapSocketPolicyTest(TEST_SPI, TEST_SPI2, False)

  def testUdpEncapRekey(self):
    # Select the two SPIs that will be used
    start_spi = TEST_SPI
    rekey_spi = TEST_SPI2

    # Setup sockets
    netid, myaddr, remoteaddr, encap_sock, encap_port, s = \
        self._SetupUdpEncapSockets()

    # The SAs must use null authentication, since we change SPIs on the fly
    # Without null authentication, this would result in an ESP authentication
    # error since the SPI is part of the authenticated section. The packet
    # would then be dropped
    self._SetupUdpEncapSaPair(myaddr, remoteaddr, start_spi, start_spi,
                              encap_port, s, True)

    # Check that UDP encap sockets work with socket policy and given SAs
    self._VerifyUdpEncapSocket(netid, remoteaddr, myaddr, encap_port, s,
                               start_spi, start_spi, True, 1)

    # Rekey this socket using the make-before-break paradigm. First we create
    # new SAs, update the per-socket policies, and only then remove the old SAs
    #
    # This allows us to switch to the new SA without breaking the outbound path.
    self._SetupUdpEncapSaPair(myaddr, remoteaddr, rekey_spi, rekey_spi,
                              encap_port, s, True)

    # Check that UDP encap socket works with updated socket policy, sending
    # using new SA, but receiving on both old and new SAs
    self._VerifyUdpEncapSocket(netid, remoteaddr, myaddr, encap_port, s,
                               rekey_spi, rekey_spi, True, 1)
    self._VerifyUdpEncapSocket(netid, remoteaddr, myaddr, encap_port, s,
                               start_spi, rekey_spi, True, 2)

    # Delete old SAs
    self.xfrm.DeleteSaInfo(remoteaddr, start_spi, IPPROTO_ESP)
    self.xfrm.DeleteSaInfo(myaddr, start_spi, IPPROTO_ESP)

    # Check that UDP encap socket works with updated socket policy and new SAs
    self._VerifyUdpEncapSocket(netid, remoteaddr, myaddr, encap_port, s,
                               rekey_spi, rekey_spi, True, 3)

  def testAllocSpecificSpi(self):
    spi = 0xABCD
    new_sa = self.xfrm.AllocSpi("::", IPPROTO_ESP, spi, spi)
    self.assertEquals(spi, new_sa.id.spi)

  def testAllocSpecificSpiUnavailable(self):
    """Attempt to allocate the same SPI twice."""
    spi = 0xABCD
    new_sa = self.xfrm.AllocSpi("::", IPPROTO_ESP, spi, spi)
    self.assertEquals(spi, new_sa.id.spi)
    with self.assertRaisesErrno(ENOENT):
      new_sa = self.xfrm.AllocSpi("::", IPPROTO_ESP, spi, spi)

  def testAllocRangeSpi(self):
    start, end = 0xABCD0, 0xABCDF
    new_sa = self.xfrm.AllocSpi("::", IPPROTO_ESP, start, end)
    spi = new_sa.id.spi
    self.assertGreaterEqual(spi, start)
    self.assertLessEqual(spi, end)

  def testAllocRangeSpiUnavailable(self):
    """Attempt to allocate N+1 SPIs from a range of size N."""
    start, end = 0xABCD0, 0xABCDF
    range_size = end - start + 1
    spis = set()
    # Assert that allocating SPI fails when none are available.
    with self.assertRaisesErrno(ENOENT):
      # Allocating range_size + 1 SPIs is guaranteed to fail.  Due to the way
      # kernel picks random SPIs, this has a high probability of failing before
      # reaching that limit.
      for i in xrange(range_size + 1):
        new_sa = self.xfrm.AllocSpi("::", IPPROTO_ESP, start, end)
        spi = new_sa.id.spi
        self.assertNotIn(spi, spis)
        spis.add(spi)

  def testSocketPolicyDstCacheV6(self):
    self._TestSocketPolicyDstCache(6)

  def testSocketPolicyDstCacheV4(self):
    self._TestSocketPolicyDstCache(4)

  def _TestSocketPolicyDstCache(self, version):
    """Test that destination cache is cleared with socket policy.

    This relies on the fact that connect() on a UDP socket populates the
    destination cache.
    """

    # Create UDP socket.
    family = net_test.GetAddressFamily(version)
    netid = self.RandomNetid()
    s = socket(family, SOCK_DGRAM, 0)
    self.SelectInterface(s, netid, "mark")

    # Populate the socket's destination cache.
    remote = self.GetRemoteAddress(version)
    s.connect((remote, 53))

    # Apply a policy to the socket. Should clear dst cache.
    reqid = 123
    xfrm_base.ApplySocketPolicy(s, family, xfrm.XFRM_POLICY_OUT,
                                TEST_SPI, reqid, None)

    # Policy with no matching SA should result in EAGAIN. If destination cache
    # failed to clear, then the UDP packet will be sent normally.
    with self.assertRaisesErrno(EAGAIN):
      s.send(net_test.UDP_PAYLOAD)
    self.ExpectNoPacketsOn(netid, "Packet not blocked by policy")

  def _CheckNullEncryptionTunnelMode(self, version):
    family = net_test.GetAddressFamily(version)
    netid = self.RandomNetid()
    local_addr = self.MyAddress(version, netid)
    remote_addr = self.GetRemoteAddress(version)

    # Borrow the address of another netId as the source address of the tunnel
    tun_local = self.MyAddress(version, self.RandomNetid(netid))
    # For generality, pick a tunnel endpoint that's not the address we
    # connect the socket to.
    tun_remote = TUNNEL_ENDPOINTS[version]

    # Output
    self.xfrm.AddSaInfo(
        tun_local, tun_remote, 0xABCD, xfrm.XFRM_MODE_TUNNEL, 123,
        xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL,
        None, None, None, netid)
    # Input
    self.xfrm.AddSaInfo(
        tun_remote, tun_local, 0x9876, xfrm.XFRM_MODE_TUNNEL, 456,
        xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL,
        None, None, None, None)

    sock = net_test.UDPSocket(family)
    self.SelectInterface(sock, netid, "mark")
    sock.bind((local_addr, 0))
    local_port = sock.getsockname()[1]
    remote_port = 5555

    xfrm_base.ApplySocketPolicy(
        sock, family, xfrm.XFRM_POLICY_OUT, 0xABCD, 123,
        (tun_local, tun_remote))
    xfrm_base.ApplySocketPolicy(
        sock, family, xfrm.XFRM_POLICY_IN, 0x9876, 456,
        (tun_remote, tun_local))

    # Create and receive an ESP packet.
    IpType = {4: scapy.IP, 6: scapy.IPv6}[version]
    input_pkt = (IpType(src=remote_addr, dst=local_addr) /
                 scapy.UDP(sport=remote_port, dport=local_port) /
                 "input hello")
    input_pkt = IpType(str(input_pkt)) # Compute length, checksum.
    input_pkt = xfrm_base.EncryptPacketWithNull(input_pkt, 0x9876,
                                                1, (tun_remote, tun_local))

    self.ReceivePacketOn(netid, input_pkt)
    msg, addr = sock.recvfrom(1024)
    self.assertEquals("input hello", msg)
    self.assertEquals((remote_addr, remote_port), addr[:2])

    # Send and capture a packet.
    sock.sendto("output hello", (remote_addr, remote_port))
    packets = self.ReadAllPacketsOn(netid)
    self.assertEquals(1, len(packets))
    output_pkt = packets[0]
    output_pkt, esp_hdr = xfrm_base.DecryptPacketWithNull(output_pkt)
    self.assertEquals(output_pkt[scapy.UDP].len, len("output_hello") + 8)
    self.assertEquals(remote_addr, output_pkt.dst)
    self.assertEquals(remote_port, output_pkt[scapy.UDP].dport)
    # length of the payload plus the UDP header
    self.assertEquals("output hello", str(output_pkt[scapy.UDP].payload))
    self.assertEquals(0xABCD, esp_hdr.spi)

  def testNullEncryptionTunnelMode(self):
    """Verify null encryption in tunnel mode.

    This test verifies both manual assembly and disassembly of UDP packets
    with ESP in IPsec tunnel mode.
    """
    for version in [4, 6]:
      self._CheckNullEncryptionTunnelMode(version)

  def _CheckNullEncryptionTransportMode(self, version):
    family = net_test.GetAddressFamily(version)
    netid = self.RandomNetid()
    local_addr = self.MyAddress(version, netid)
    remote_addr = self.GetRemoteAddress(version)

    # Output
    self.xfrm.AddSaInfo(
        local_addr, remote_addr, 0xABCD, xfrm.XFRM_MODE_TRANSPORT, 123,
        xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL,
        None, None, None, None)
    # Input
    self.xfrm.AddSaInfo(
        remote_addr, local_addr, 0x9876, xfrm.XFRM_MODE_TRANSPORT, 456,
        xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL,
        None, None, None, None)

    sock = net_test.UDPSocket(family)
    self.SelectInterface(sock, netid, "mark")
    sock.bind((local_addr, 0))
    local_port = sock.getsockname()[1]
    remote_port = 5555

    xfrm_base.ApplySocketPolicy(
        sock, family, xfrm.XFRM_POLICY_OUT, 0xABCD, 123, None)
    xfrm_base.ApplySocketPolicy(
        sock, family, xfrm.XFRM_POLICY_IN, 0x9876, 456, None)

    # Create and receive an ESP packet.
    IpType = {4: scapy.IP, 6: scapy.IPv6}[version]
    input_pkt = (IpType(src=remote_addr, dst=local_addr) /
                 scapy.UDP(sport=remote_port, dport=local_port) /
                 "input hello")
    input_pkt = IpType(str(input_pkt)) # Compute length, checksum.
    input_pkt = xfrm_base.EncryptPacketWithNull(input_pkt, 0x9876, 1, None)

    self.ReceivePacketOn(netid, input_pkt)
    msg, addr = sock.recvfrom(1024)
    self.assertEquals("input hello", msg)
    self.assertEquals((remote_addr, remote_port), addr[:2])

    # Send and capture a packet.
    sock.sendto("output hello", (remote_addr, remote_port))
    packets = self.ReadAllPacketsOn(netid)
    self.assertEquals(1, len(packets))
    output_pkt = packets[0]
    output_pkt, esp_hdr = xfrm_base.DecryptPacketWithNull(output_pkt)
    # length of the payload plus the UDP header
    self.assertEquals(output_pkt[scapy.UDP].len, len("output_hello") + 8)
    self.assertEquals(remote_addr, output_pkt.dst)
    self.assertEquals(remote_port, output_pkt[scapy.UDP].dport)
    self.assertEquals("output hello", str(output_pkt[scapy.UDP].payload))
    self.assertEquals(0xABCD, esp_hdr.spi)

  def testNullEncryptionTransportMode(self):
    """Verify null encryption in transport mode.

    This test verifies both manual assembly and disassembly of UDP packets
    with ESP in IPsec transport mode.
    """
    for version in [4, 6]:
      self._CheckNullEncryptionTransportMode(version)

  def _CheckGlobalPoliciesByMark(self, version):
    """Tests that global policies may differ by only the mark."""
    family = net_test.GetAddressFamily(version)
    sel = xfrm.EmptySelector(family)
    # Pick 2 arbitrary mark values.
    mark1 = xfrm.XfrmMark(mark=0xf00, mask=xfrm_base.MARK_MASK_ALL)
    mark2 = xfrm.XfrmMark(mark=0xf00d, mask=xfrm_base.MARK_MASK_ALL)
    # Create a global policy.
    policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
    tmpl = xfrm.UserTemplate(AF_UNSPEC, 0xfeed, 0, None)
    # Create the policy with the first mark.
    self.xfrm.AddPolicyInfo(policy, tmpl, mark1)
    # Create the same policy but with the second (different) mark.
    self.xfrm.AddPolicyInfo(policy, tmpl, mark2)
    # Delete the policies individually
    self.xfrm.DeletePolicyInfo(sel, xfrm.XFRM_POLICY_OUT, mark1)
    self.xfrm.DeletePolicyInfo(sel, xfrm.XFRM_POLICY_OUT, mark2)

  def testGlobalPoliciesByMarkV4(self):
    self._CheckGlobalPoliciesByMark(4)

  def testGlobalPoliciesByMarkV6(self):
    self._CheckGlobalPoliciesByMark(6)

  def _CheckUpdatePolicy(self, version):
    """Tests that we can can update the template on a policy."""
    family = net_test.GetAddressFamily(version)
    tmpl1 = xfrm.UserTemplate(family, 0xdead, 0, None)
    tmpl2 = xfrm.UserTemplate(family, 0xbeef, 0, None)
    sel = xfrm.EmptySelector(family)
    policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
    mark = xfrm.XfrmMark(mark=0xf00, mask=xfrm_base.MARK_MASK_ALL)

    def _CheckTemplateMatch(tmpl):
      """Dump the SPD and match a single template on a single policy."""
      dump = self.xfrm.DumpPolicyInfo()
      self.assertEquals(1, len(dump))
      _, attributes = dump[0]
      self.assertEquals(attributes['XFRMA_TMPL'], tmpl)

    # Create a new policy using update.
    self.xfrm.UpdatePolicyInfo(policy, tmpl1, mark, None)
    # NEWPOLICY will not update the existing policy. This checks both that
    # UPDPOLICY created a policy and that NEWPOLICY will not perform updates.
    _CheckTemplateMatch(tmpl1)
    with self.assertRaisesErrno(EEXIST):
      self.xfrm.AddPolicyInfo(policy, tmpl2, mark, None)
    # Update the policy using UPDPOLICY.
    self.xfrm.UpdatePolicyInfo(policy, tmpl2, mark, None)
    # There should only be one policy after update, and it should have the
    # updated template.
    _CheckTemplateMatch(tmpl2)

  def testUpdatePolicyV4(self):
    self._CheckUpdatePolicy(4)

  def testUpdatePolicyV6(self):
    self._CheckUpdatePolicy(6)

  def _CheckPolicyDifferByDirection(self,version):
    """Tests that policies can differ only by direction."""
    family = net_test.GetAddressFamily(version)
    tmpl = xfrm.UserTemplate(family, 0xdead, 0, None)
    sel = xfrm.EmptySelector(family)
    mark = xfrm.XfrmMark(mark=0xf00, mask=xfrm_base.MARK_MASK_ALL)
    policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
    self.xfrm.AddPolicyInfo(policy, tmpl, mark)
    policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_IN, sel)
    self.xfrm.AddPolicyInfo(policy, tmpl, mark)

  def testPolicyDifferByDirectionV4(self):
    self._CheckPolicyDifferByDirection(4)

  def testPolicyDifferByDirectionV6(self):
    self._CheckPolicyDifferByDirection(6)

class XfrmOutputMarkTest(xfrm_base.XfrmLazyTest):

  def _CheckTunnelModeOutputMark(self, version, tunsrc, mark, expected_netid):
    """Tests sending UDP packets to tunnel mode SAs with output marks.

    Opens a UDP socket and binds it to a random netid, then sets up tunnel mode
    SAs with an output_mark of mark and sets a socket policy to use the SA.
    Then checks that sending on those SAs sends a packet on expected_netid,
    or, if expected_netid is zero, checks that sending returns ENETUNREACH.

    Args:
      version: 4 or 6.
      tunsrc: A string, the source address of the tunnel.
      mark: An integer, the output_mark to set in the SA.
      expected_netid: An integer, the netid to expect the kernel to send the
          packet on. If None, expect that sendto will fail with ENETUNREACH.
    """
    # Open a UDP socket and bind it to a random netid.
    family = net_test.GetAddressFamily(version)
    s = socket(family, SOCK_DGRAM, 0)
    self.SelectInterface(s, self.RandomNetid(), "mark")

    # For generality, pick a tunnel endpoint that's not the address we
    # connect the socket to.
    tundst = TUNNEL_ENDPOINTS[version]
    tun_addrs = (tunsrc, tundst)

    # Create a tunnel mode SA and use XFRM_OUTPUT_MARK to bind it to netid.
    spi = TEST_SPI * mark
    reqid = 100 + spi
    self.xfrm.AddSaInfo(tunsrc, tundst, spi, xfrm.XFRM_MODE_TUNNEL, reqid,
                        xfrm_base._ALGO_CBC_AES_256, xfrm_base._ALGO_HMAC_SHA1,
                        None, None, None, mark)

    # Set a socket policy to use it.
    xfrm_base.ApplySocketPolicy(s, family, xfrm.XFRM_POLICY_OUT, spi, reqid,
                                tun_addrs)

    # Send a packet and check that we see it on the wire.
    remoteaddr = self.GetRemoteAddress(version)

    packetlen = xfrm_base.GetEspPacketLength(xfrm.XFRM_MODE_TUNNEL, version,
                                             False, net_test.UDP_PAYLOAD,
                                             xfrm_base._ALGO_HMAC_SHA1,
                                             xfrm_base._ALGO_CBC_AES_256)

    if expected_netid is not None:
      s.sendto(net_test.UDP_PAYLOAD, (remoteaddr, 53))
      self._ExpectEspPacketOn(expected_netid, spi, 1, packetlen, tunsrc, tundst)
    else:
      with self.assertRaisesErrno(ENETUNREACH):
        s.sendto(net_test.UDP_PAYLOAD, (remoteaddr, 53))

  def testTunnelModeOutputMarkIPv4(self):
    for netid in self.NETIDS:
      tunsrc = self.MyAddress(4, netid)
      self._CheckTunnelModeOutputMark(4, tunsrc, netid, netid)

  def testTunnelModeOutputMarkIPv6(self):
    for netid in self.NETIDS:
      tunsrc = self.MyAddress(6, netid)
      self._CheckTunnelModeOutputMark(6, tunsrc, netid, netid)

  def testTunnelModeOutputNoMarkIPv4(self):
    tunsrc = self.MyAddress(4, self.RandomNetid())
    self._CheckTunnelModeOutputMark(4, tunsrc, 0, None)

  def testTunnelModeOutputNoMarkIPv6(self):
    tunsrc = self.MyAddress(6, self.RandomNetid())
    self._CheckTunnelModeOutputMark(6, tunsrc, 0, None)

  def testTunnelModeOutputInvalidMarkIPv4(self):
    tunsrc = self.MyAddress(4, self.RandomNetid())
    self._CheckTunnelModeOutputMark(4, tunsrc, 9999, None)

  def testTunnelModeOutputInvalidMarkIPv6(self):
    tunsrc = self.MyAddress(6, self.RandomNetid())
    self._CheckTunnelModeOutputMark(6, tunsrc, 9999, None)

  def testTunnelModeOutputMarkAttributes(self):
    mark = 1234567
    self.xfrm.AddSaInfo(TEST_ADDR1, TUNNEL_ENDPOINTS[6], 0x1234,
                        xfrm.XFRM_MODE_TUNNEL, 100, xfrm_base._ALGO_CBC_AES_256,
                        xfrm_base._ALGO_HMAC_SHA1, None, None, None, mark)
    dump = self.xfrm.DumpSaInfo()
    self.assertEquals(1, len(dump))
    sainfo, attributes = dump[0]
    self.assertEquals(mark, attributes["XFRMA_OUTPUT_MARK"])

  def testInvalidAlgorithms(self):
    key = "af442892cdcd0ef650e9c299f9a8436a".decode("hex")
    invalid_auth = (xfrm.XfrmAlgoAuth(("invalid(algo)", 128, 96)), key)
    invalid_crypt = (xfrm.XfrmAlgo(("invalid(algo)", 128)), key)
    with self.assertRaisesErrno(ENOSYS):
        self.xfrm.AddSaInfo(TEST_ADDR1, TEST_ADDR2, 0x1234,
            xfrm.XFRM_MODE_TRANSPORT, 0, xfrm_base._ALGO_CBC_AES_256,
            invalid_auth, None, None, None, 0)
    with self.assertRaisesErrno(ENOSYS):
        self.xfrm.AddSaInfo(TEST_ADDR1, TEST_ADDR2, 0x1234,
            xfrm.XFRM_MODE_TRANSPORT, 0, invalid_crypt,
            xfrm_base._ALGO_HMAC_SHA1, None, None, None, 0)

  def testUpdateSaAddMark(self):
    """Test that an embryonic SA can be updated to add a mark."""
    for version in [4, 6]:
      spi = 0xABCD
      # Test that an SA created with ALLOCSPI can be updated with the mark.
      new_sa = self.xfrm.AllocSpi(net_test.GetWildcardAddress(version),
                                  IPPROTO_ESP, spi, spi)
      mark = xfrm.ExactMatchMark(0xf00d)
      self.xfrm.AddSaInfo(net_test.GetWildcardAddress(version),
                          net_test.GetWildcardAddress(version),
                          spi, xfrm.XFRM_MODE_TUNNEL, 0,
                          xfrm_base._ALGO_CBC_AES_256,
                          xfrm_base._ALGO_HMAC_SHA1,
                          None, None, mark, 0, is_update=True)
      dump = self.xfrm.DumpSaInfo()
      self.assertEquals(1, len(dump)) # check that update updated
      sainfo, attributes = dump[0]
      self.assertEquals(mark, attributes["XFRMA_MARK"])
      self.xfrm.DeleteSaInfo(net_test.GetWildcardAddress(version),
                             spi, IPPROTO_ESP, mark)

  def getXfrmStat(self, statName):
    stateVal = 0
    with open(XFRM_STATS_PROCFILE, 'r') as f:
      for line in f:
          if statName in line:
            stateVal = int(line.split()[1])
            break
      f.close()
    return stateVal

  def testUpdateActiveSaMarks(self):
    """Test that the OUTPUT_MARK can be updated on an ACTIVE SA."""
    for version in [4, 6]:
      family = net_test.GetAddressFamily(version)
      netid = self.RandomNetid()
      remote = self.GetRemoteAddress(version)
      local = self.MyAddress(version, netid)
      s = socket(family, SOCK_DGRAM, 0)
      self.SelectInterface(s, netid, "mark")
      # Create a mark that we will apply to the policy and later the SA
      mark = xfrm.ExactMatchMark(netid)

      # Create a global policy that selects using the mark.
      sel = xfrm.EmptySelector(family)
      policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
      tmpl = xfrm.UserTemplate(family, 0, 0, (local, remote))
      self.xfrm.AddPolicyInfo(policy, tmpl, mark)

      # Pull /proc/net/xfrm_stats for baseline
      outNoStateCount = self.getXfrmStat(XFRM_STATS_OUT_NO_STATES);

      # should increment XfrmOutNoStates
      s.sendto(net_test.UDP_PAYLOAD, (remote, 53))

      # Check to make sure XfrmOutNoStates is incremented by exactly 1
      self.assertEquals(outNoStateCount + 1,
                        self.getXfrmStat(XFRM_STATS_OUT_NO_STATES))

      length = xfrm_base.GetEspPacketLength(xfrm.XFRM_MODE_TUNNEL,
                                            version, False,
                                            net_test.UDP_PAYLOAD,
                                            xfrm_base._ALGO_HMAC_SHA1,
                                            xfrm_base._ALGO_CBC_AES_256)

      # Add a default SA with no mark that routes to nowhere.
      try:
          self.xfrm.AddSaInfo(local,
                              remote,
                              TEST_SPI, xfrm.XFRM_MODE_TUNNEL, 0,
                              xfrm_base._ALGO_CBC_AES_256,
                              xfrm_base._ALGO_HMAC_SHA1,
                              None, None, mark, 0, is_update=False)
      except IOError as e:
          self.assertEquals(EEXIST, e.errno, "SA exists")
          self.xfrm.AddSaInfo(local,
                              remote,
                              TEST_SPI, xfrm.XFRM_MODE_TUNNEL, 0,
                              xfrm_base._ALGO_CBC_AES_256,
                              xfrm_base._ALGO_HMAC_SHA1,
                              None, None, mark, 0, is_update=True)

      self.assertRaisesErrno(
          ENETUNREACH,
          s.sendto, net_test.UDP_PAYLOAD, (remote, 53))

      # Update the SA to route to a valid netid.
      self.xfrm.AddSaInfo(local,
                          remote,
                          TEST_SPI, xfrm.XFRM_MODE_TUNNEL, 0,
                          xfrm_base._ALGO_CBC_AES_256,
                          xfrm_base._ALGO_HMAC_SHA1,
                          None, None, mark, netid, is_update=True)

      # Now the payload routes to the updated netid.
      s.sendto(net_test.UDP_PAYLOAD, (remote, 53))
      self._ExpectEspPacketOn(netid, TEST_SPI, 1, length, None, None)

      # Get a new netid and reroute the packets to the new netid.
      reroute_netid = self.RandomNetid(netid)
      # Update the SA to change the output mark.
      self.xfrm.AddSaInfo(local,
                         remote,
                         TEST_SPI, xfrm.XFRM_MODE_TUNNEL, 0,
                         xfrm_base._ALGO_CBC_AES_256,
                         xfrm_base._ALGO_HMAC_SHA1,
                         None, None, mark, reroute_netid, is_update=True)

      s.sendto(net_test.UDP_PAYLOAD, (remote, 53))
      self._ExpectEspPacketOn(reroute_netid, TEST_SPI, 2, length, None, None)

      dump = self.xfrm.DumpSaInfo()

      self.assertEquals(1, len(dump)) # check that update updated
      sainfo, attributes = dump[0]
      self.assertEquals(reroute_netid, attributes["XFRMA_OUTPUT_MARK"])

      self.xfrm.DeleteSaInfo(remote, TEST_SPI, IPPROTO_ESP, mark)
      self.xfrm.DeletePolicyInfo(sel, xfrm.XFRM_POLICY_OUT, mark)

if __name__ == "__main__":
  unittest.main()