summaryrefslogtreecommitdiff
path: root/runtime/jit/jit_code_cache.cc
blob: 333f2da13672b0591e1f2220f5124233f5284ab5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "jit_code_cache.h"

#include <sstream>

#include <android-base/logging.h>
#include <android-base/unique_fd.h>

#include "arch/context.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/histogram-inl.h"
#include "base/logging.h"  // For VLOG.
#include "base/membarrier.h"
#include "base/memfd.h"
#include "base/mem_map.h"
#include "base/quasi_atomic.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "cha.h"
#include "debugger_interface.h"
#include "dex/dex_file_loader.h"
#include "dex/method_reference.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/bitmap-inl.h"
#include "gc/allocator/dlmalloc.h"
#include "gc/scoped_gc_critical_section.h"
#include "handle.h"
#include "instrumentation.h"
#include "intern_table.h"
#include "jit/jit.h"
#include "jit/profiling_info.h"
#include "linear_alloc.h"
#include "oat_file-inl.h"
#include "oat_quick_method_header.h"
#include "object_callbacks.h"
#include "profile/profile_compilation_info.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "thread-current-inl.h"
#include "thread_list.h"

using android::base::unique_fd;

namespace art {
namespace jit {

static constexpr size_t kCodeSizeLogThreshold = 50 * KB;
static constexpr size_t kStackMapSizeLogThreshold = 50 * KB;

// Data cache will be half of the capacity
// Code cache will be the other half of the capacity.
// TODO: Make this variable?
static constexpr size_t kCodeAndDataCapacityDivider = 2;

static constexpr int kProtR = PROT_READ;
static constexpr int kProtRW = PROT_READ | PROT_WRITE;
static constexpr int kProtRWX = PROT_READ | PROT_WRITE | PROT_EXEC;
static constexpr int kProtRX = PROT_READ | PROT_EXEC;

namespace {

// Translate an address belonging to one memory map into an address in a second. This is useful
// when there are two virtual memory ranges for the same physical memory range.
template <typename T>
T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) {
  CHECK(src.HasAddress(src_ptr));
  uint8_t* const raw_src_ptr = reinterpret_cast<uint8_t*>(src_ptr);
  return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin());
}

}  // namespace

class JitCodeCache::JniStubKey {
 public:
  explicit JniStubKey(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_)
      : shorty_(method->GetShorty()),
        is_static_(method->IsStatic()),
        is_fast_native_(method->IsFastNative()),
        is_critical_native_(method->IsCriticalNative()),
        is_synchronized_(method->IsSynchronized()) {
    DCHECK(!(is_fast_native_ && is_critical_native_));
  }

  bool operator<(const JniStubKey& rhs) const {
    if (is_static_ != rhs.is_static_) {
      return rhs.is_static_;
    }
    if (is_synchronized_ != rhs.is_synchronized_) {
      return rhs.is_synchronized_;
    }
    if (is_fast_native_ != rhs.is_fast_native_) {
      return rhs.is_fast_native_;
    }
    if (is_critical_native_ != rhs.is_critical_native_) {
      return rhs.is_critical_native_;
    }
    return strcmp(shorty_, rhs.shorty_) < 0;
  }

  // Update the shorty to point to another method's shorty. Call this function when removing
  // the method that references the old shorty from JniCodeData and not removing the entire
  // JniCodeData; the old shorty may become a dangling pointer when that method is unloaded.
  void UpdateShorty(ArtMethod* method) const REQUIRES_SHARED(Locks::mutator_lock_) {
    const char* shorty = method->GetShorty();
    DCHECK_STREQ(shorty_, shorty);
    shorty_ = shorty;
  }

 private:
  // The shorty points to a DexFile data and may need to change
  // to point to the same shorty in a different DexFile.
  mutable const char* shorty_;

  const bool is_static_;
  const bool is_fast_native_;
  const bool is_critical_native_;
  const bool is_synchronized_;
};

class JitCodeCache::JniStubData {
 public:
  JniStubData() : code_(nullptr), methods_() {}

  void SetCode(const void* code) {
    DCHECK(code != nullptr);
    code_ = code;
  }

  const void* GetCode() const {
    return code_;
  }

  bool IsCompiled() const {
    return GetCode() != nullptr;
  }

  void AddMethod(ArtMethod* method) {
    if (!ContainsElement(methods_, method)) {
      methods_.push_back(method);
    }
  }

  const std::vector<ArtMethod*>& GetMethods() const {
    return methods_;
  }

  void RemoveMethodsIn(const LinearAlloc& alloc) {
    auto kept_end = std::remove_if(
        methods_.begin(),
        methods_.end(),
        [&alloc](ArtMethod* method) { return alloc.ContainsUnsafe(method); });
    methods_.erase(kept_end, methods_.end());
  }

  bool RemoveMethod(ArtMethod* method) {
    auto it = std::find(methods_.begin(), methods_.end(), method);
    if (it != methods_.end()) {
      methods_.erase(it);
      return true;
    } else {
      return false;
    }
  }

  void MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) {
    std::replace(methods_.begin(), methods_.end(), old_method, new_method);
  }

 private:
  const void* code_;
  std::vector<ArtMethod*> methods_;
};

bool JitCodeCache::InitializeMappings(bool rwx_memory_allowed,
                                      bool is_zygote,
                                      std::string* error_msg) {
  ScopedTrace trace(__PRETTY_FUNCTION__);

  const size_t capacity = max_capacity_;
  const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
  const size_t exec_capacity = capacity - data_capacity;

  // File descriptor enabling dual-view mapping of code section.
  unique_fd mem_fd;

  // Zygote shouldn't create a shared mapping for JIT, so we cannot use dual view
  // for it.
  if (!is_zygote) {
    // Bionic supports memfd_create, but the call may fail on older kernels.
    mem_fd = unique_fd(art::memfd_create("/jit-cache", /* flags= */ 0));
    if (mem_fd.get() < 0) {
      std::ostringstream oss;
      oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
      if (!rwx_memory_allowed) {
        // Without using RWX page permissions, the JIT can not fallback to single mapping as it
        // requires tranitioning the code pages to RWX for updates.
        *error_msg = oss.str();
        return false;
      }
      VLOG(jit) << oss.str();
    }
  }

  if (mem_fd.get() >= 0 && ftruncate(mem_fd, capacity) != 0) {
    std::ostringstream oss;
    oss << "Failed to initialize memory file: " << strerror(errno);
    *error_msg = oss.str();
    return false;
  }

  std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
  std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";

  std::string error_str;
  // Map name specific for android_os_Debug.cpp accounting.
  // Map in low 4gb to simplify accessing root tables for x86_64.
  // We could do PC-relative addressing to avoid this problem, but that
  // would require reserving code and data area before submitting, which
  // means more windows for the code memory to be RWX.
  int base_flags;
  MemMap data_pages;
  if (mem_fd.get() >= 0) {
    // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
    // for data and non-writable view of JIT code pages. We use the memory file descriptor to
    // enable dual mapping - we'll create a second mapping using the descriptor below. The
    // mappings will look like:
    //
    //       VA                  PA
    //
    //       +---------------+
    //       | non exec code |\
    //       +---------------+ \
    //       :               :\ \
    //       +---------------+.\.+---------------+
    //       |  exec code    |  \|     code      |
    //       +---------------+...+---------------+
    //       |      data     |   |     data      |
    //       +---------------+...+---------------+
    //
    // In this configuration code updates are written to the non-executable view of the code
    // cache, and the executable view of the code cache has fixed RX memory protections.
    //
    // This memory needs to be mapped shared as the code portions will have two mappings.
    base_flags = MAP_SHARED;
    data_pages = MemMap::MapFile(
        data_capacity + exec_capacity,
        kProtRW,
        base_flags,
        mem_fd,
        /* start= */ 0,
        /* low_4gb= */ true,
        data_cache_name.c_str(),
        &error_str);
  } else {
    // Single view of JIT code cache case. Create an initial mapping of data pages large enough
    // for data and JIT code pages. The mappings will look like:
    //
    //       VA                  PA
    //
    //       +---------------+...+---------------+
    //       |  exec code    |   |     code      |
    //       +---------------+...+---------------+
    //       |      data     |   |     data      |
    //       +---------------+...+---------------+
    //
    // In this configuration code updates are written to the executable view of the code cache,
    // and the executable view of the code cache transitions RX to RWX for the update and then
    // back to RX after the update.
    base_flags = MAP_PRIVATE | MAP_ANON;
    data_pages = MemMap::MapAnonymous(
        data_cache_name.c_str(),
        data_capacity + exec_capacity,
        kProtRW,
        /* low_4gb= */ true,
        &error_str);
  }

  if (!data_pages.IsValid()) {
    std::ostringstream oss;
    oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
    *error_msg = oss.str();
    return false;
  }

  MemMap exec_pages;
  MemMap non_exec_pages;
  if (exec_capacity > 0) {
    uint8_t* const divider = data_pages.Begin() + data_capacity;
    // Set initial permission for executable view to catch any SELinux permission problems early
    // (for processes that cannot map WX pages). Otherwise, this region does not need to be
    // executable as there is no code in the cache yet.
    exec_pages = data_pages.RemapAtEnd(divider,
                                       exec_cache_name.c_str(),
                                       kProtRX,
                                       base_flags | MAP_FIXED,
                                       mem_fd.get(),
                                       (mem_fd.get() >= 0) ? data_capacity : 0,
                                       &error_str);
    if (!exec_pages.IsValid()) {
      std::ostringstream oss;
      oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
      *error_msg = oss.str();
      return false;
    }

    if (mem_fd.get() >= 0) {
      // For dual view, create the secondary view of code memory used for updating code. This view
      // is never executable.
      std::string name = exec_cache_name + "-rw";
      non_exec_pages = MemMap::MapFile(exec_capacity,
                                       kProtR,
                                       base_flags,
                                       mem_fd,
                                       /* start= */ data_capacity,
                                       /* low_4GB= */ false,
                                       name.c_str(),
                                       &error_str);
      if (!non_exec_pages.IsValid()) {
        static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
        if (rwx_memory_allowed) {
          // Log and continue as single view JIT (requires RWX memory).
          VLOG(jit) << kFailedNxView;
        } else {
          *error_msg = kFailedNxView;
          return false;
        }
      }
    }
  } else {
    // Profiling only. No memory for code required.
  }

  data_pages_ = std::move(data_pages);
  exec_pages_ = std::move(exec_pages);
  non_exec_pages_ = std::move(non_exec_pages);
  return true;
}

JitCodeCache* JitCodeCache::Create(bool used_only_for_profile_data,
                                   bool rwx_memory_allowed,
                                   bool is_zygote,
                                   std::string* error_msg) {
  // Register for membarrier expedited sync core if JIT will be generating code.
  if (!used_only_for_profile_data) {
    if (art::membarrier(art::MembarrierCommand::kRegisterPrivateExpeditedSyncCore) != 0) {
      // MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE ensures that CPU instruction pipelines are
      // flushed and it's used when adding code to the JIT. The memory used by the new code may
      // have just been released and, in theory, the old code could still be in a pipeline.
      VLOG(jit) << "Kernel does not support membarrier sync-core";
    }
  }

  // Check whether the provided max capacity in options is below 1GB.
  size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity();
  // We need to have 32 bit offsets from method headers in code cache which point to things
  // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work.
  // Ensure we're below 1 GB to be safe.
  if (max_capacity > 1 * GB) {
    std::ostringstream oss;
    oss << "Maxium code cache capacity is limited to 1 GB, "
        << PrettySize(max_capacity) << " is too big";
    *error_msg = oss.str();
    return nullptr;
  }

  size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity();

  std::unique_ptr<JitCodeCache> jit_code_cache(new JitCodeCache());

  MutexLock mu(Thread::Current(), jit_code_cache->lock_);
  jit_code_cache->InitializeState(initial_capacity, max_capacity);

  // Zygote should never collect code to share the memory with the children.
  if (is_zygote) {
    jit_code_cache->garbage_collect_code_ = false;
  }

  if (!jit_code_cache->InitializeMappings(rwx_memory_allowed, is_zygote, error_msg)) {
    return nullptr;
  }

  jit_code_cache->InitializeSpaces();

  VLOG(jit) << "Created jit code cache: initial capacity="
            << PrettySize(initial_capacity)
            << ", maximum capacity="
            << PrettySize(max_capacity);

  return jit_code_cache.release();
}

JitCodeCache::JitCodeCache()
    : lock_("Jit code cache", kJitCodeCacheLock),
      lock_cond_("Jit code cache condition variable", lock_),
      collection_in_progress_(false),
      last_collection_increased_code_cache_(false),
      garbage_collect_code_(true),
      used_memory_for_data_(0),
      used_memory_for_code_(0),
      number_of_compilations_(0),
      number_of_osr_compilations_(0),
      number_of_collections_(0),
      histogram_stack_map_memory_use_("Memory used for stack maps", 16),
      histogram_code_memory_use_("Memory used for compiled code", 16),
      histogram_profiling_info_memory_use_("Memory used for profiling info", 16),
      is_weak_access_enabled_(true),
      inline_cache_cond_("Jit inline cache condition variable", lock_),
      zygote_data_pages_(),
      zygote_exec_pages_(),
      zygote_data_mspace_(nullptr),
      zygote_exec_mspace_(nullptr) {
}

void JitCodeCache::InitializeState(size_t initial_capacity, size_t max_capacity) {
  CHECK_GE(max_capacity, initial_capacity);
  CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
  // Align both capacities to page size, as that's the unit mspaces use.
  initial_capacity = RoundDown(initial_capacity, 2 * kPageSize);
  max_capacity = RoundDown(max_capacity, 2 * kPageSize);

  used_memory_for_data_ = 0;
  used_memory_for_code_ = 0;
  number_of_compilations_ = 0;
  number_of_osr_compilations_ = 0;
  number_of_collections_ = 0;

  data_pages_ = MemMap();
  exec_pages_ = MemMap();
  non_exec_pages_ = MemMap();
  initial_capacity_ = initial_capacity;
  max_capacity_ = max_capacity;
  current_capacity_ = initial_capacity,
  data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
  exec_end_ = initial_capacity - data_end_;
}

void JitCodeCache::InitializeSpaces() {
  // Initialize the data heap
  data_mspace_ = create_mspace_with_base(data_pages_.Begin(), data_end_, false /*locked*/);
  CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";

  // Initialize the code heap
  MemMap* code_heap = nullptr;
  if (non_exec_pages_.IsValid()) {
    code_heap = &non_exec_pages_;
  } else if (exec_pages_.IsValid()) {
    code_heap = &exec_pages_;
  }
  if (code_heap != nullptr) {
    // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
    // heap, will take and initialize pages in create_mspace_with_base().
    CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW);
    exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
    CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
    SetFootprintLimit(initial_capacity_);
    // Protect pages containing heap metadata. Updates to the code heap toggle write permission to
    // perform the update and there are no other times write access is required.
    CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR);
  } else {
    exec_mspace_ = nullptr;
    SetFootprintLimit(initial_capacity_);
  }
}

JitCodeCache::~JitCodeCache() {}

bool JitCodeCache::ContainsPc(const void* ptr) const {
  return exec_pages_.HasAddress(ptr) || zygote_exec_pages_.HasAddress(ptr);
}

bool JitCodeCache::WillExecuteJitCode(ArtMethod* method) {
  ScopedObjectAccess soa(art::Thread::Current());
  ScopedAssertNoThreadSuspension sants(__FUNCTION__);
  if (ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
    return true;
  } else if (method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint()) {
    return FindCompiledCodeForInstrumentation(method) != nullptr;
  }
  return false;
}

bool JitCodeCache::ContainsMethod(ArtMethod* method) {
  MutexLock mu(Thread::Current(), lock_);
  if (UNLIKELY(method->IsNative())) {
    auto it = jni_stubs_map_.find(JniStubKey(method));
    if (it != jni_stubs_map_.end() &&
        it->second.IsCompiled() &&
        ContainsElement(it->second.GetMethods(), method)) {
      return true;
    }
  } else {
    for (const auto& it : method_code_map_) {
      if (it.second == method) {
        return true;
      }
    }
  }
  return false;
}

const void* JitCodeCache::GetJniStubCode(ArtMethod* method) {
  DCHECK(method->IsNative());
  MutexLock mu(Thread::Current(), lock_);
  auto it = jni_stubs_map_.find(JniStubKey(method));
  if (it != jni_stubs_map_.end()) {
    JniStubData& data = it->second;
    if (data.IsCompiled() && ContainsElement(data.GetMethods(), method)) {
      return data.GetCode();
    }
  }
  return nullptr;
}

const void* JitCodeCache::FindCompiledCodeForInstrumentation(ArtMethod* method) {
  // If jit-gc is still on we use the SavedEntryPoint field for doing that and so cannot use it to
  // find the instrumentation entrypoint.
  if (LIKELY(GetGarbageCollectCode())) {
    return nullptr;
  }
  ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
  if (info == nullptr) {
    return nullptr;
  }
  // When GC is disabled for trampoline tracing we will use SavedEntrypoint to hold the actual
  // jit-compiled version of the method. If jit-gc is disabled for other reasons this will just be
  // nullptr.
  return info->GetSavedEntryPoint();
}

const void* JitCodeCache::GetZygoteSavedEntryPoint(ArtMethod* method) {
  if (Runtime::Current()->IsUsingApexBootImageLocation() &&
      // Currently only applies to boot classpath
      method->GetDeclaringClass()->GetClassLoader() == nullptr) {
    const void* entry_point = nullptr;
    if (method->IsNative()) {
      const void* code_ptr = GetJniStubCode(method);
      if (code_ptr != nullptr) {
        entry_point = OatQuickMethodHeader::FromCodePointer(code_ptr)->GetEntryPoint();
      }
    } else {
      ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
      if (profiling_info != nullptr) {
        entry_point = profiling_info->GetSavedEntryPoint();
      }
    }
    if (Runtime::Current()->IsZygote() || IsInZygoteExecSpace(entry_point)) {
      return entry_point;
    }
  }
  return nullptr;
}

class ScopedCodeCacheWrite : ScopedTrace {
 public:
  explicit ScopedCodeCacheWrite(const JitCodeCache* const code_cache)
      : ScopedTrace("ScopedCodeCacheWrite"),
        code_cache_(code_cache) {
    ScopedTrace trace("mprotect all");
    const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping();
    if (updatable_pages != nullptr) {
      int prot = code_cache_->HasDualCodeMapping() ? kProtRW : kProtRWX;
      CheckedCall(mprotect, "Cache +W", updatable_pages->Begin(), updatable_pages->Size(), prot);
    }
  }

  ~ScopedCodeCacheWrite() {
    ScopedTrace trace("mprotect code");
    const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping();
    if (updatable_pages != nullptr) {
      int prot = code_cache_->HasDualCodeMapping() ? kProtR : kProtRX;
      CheckedCall(mprotect, "Cache -W", updatable_pages->Begin(), updatable_pages->Size(), prot);
    }
  }

 private:
  const JitCodeCache* const code_cache_;

  DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite);
};

uint8_t* JitCodeCache::CommitCode(Thread* self,
                                  ArtMethod* method,
                                  uint8_t* stack_map,
                                  uint8_t* roots_data,
                                  const uint8_t* code,
                                  size_t code_size,
                                  size_t data_size,
                                  bool osr,
                                  const std::vector<Handle<mirror::Object>>& roots,
                                  bool has_should_deoptimize_flag,
                                  const ArenaSet<ArtMethod*>& cha_single_implementation_list) {
  uint8_t* result = CommitCodeInternal(self,
                                       method,
                                       stack_map,
                                       roots_data,
                                       code,
                                       code_size,
                                       data_size,
                                       osr,
                                       roots,
                                       has_should_deoptimize_flag,
                                       cha_single_implementation_list);
  if (result == nullptr) {
    // Retry.
    GarbageCollectCache(self);
    result = CommitCodeInternal(self,
                                method,
                                stack_map,
                                roots_data,
                                code,
                                code_size,
                                data_size,
                                osr,
                                roots,
                                has_should_deoptimize_flag,
                                cha_single_implementation_list);
  }
  return result;
}

bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) {
  bool in_collection = false;
  while (collection_in_progress_) {
    in_collection = true;
    lock_cond_.Wait(self);
  }
  return in_collection;
}

static size_t GetJitCodeAlignment() {
  if (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kThumb2) {
    // Some devices with 32-bit ARM kernels need additional JIT code alignment when using dual
    // view JIT (b/132205399). The alignment returned here coincides with the typical ARM d-cache
    // line (though the value should be probed ideally). Both the method header and code in the
    // cache are aligned to this size. Anything less than 64-bytes exhibits the problem.
    return 64;
  }
  return GetInstructionSetAlignment(kRuntimeISA);
}

static uintptr_t FromCodeToAllocation(const void* code) {
  size_t alignment = GetJitCodeAlignment();
  return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment);
}

static uint32_t ComputeRootTableSize(uint32_t number_of_roots) {
  return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>);
}

static uint32_t GetNumberOfRoots(const uint8_t* stack_map) {
  // The length of the table is stored just before the stack map (and therefore at the end of
  // the table itself), in order to be able to fetch it from a `stack_map` pointer.
  return reinterpret_cast<const uint32_t*>(stack_map)[-1];
}

static void FillRootTableLength(uint8_t* roots_data, uint32_t length) {
  // Store the length of the table at the end. This will allow fetching it from a `stack_map`
  // pointer.
  reinterpret_cast<uint32_t*>(roots_data)[length] = length;
}

static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) {
  return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data));
}

static void DCheckRootsAreValid(const std::vector<Handle<mirror::Object>>& roots)
    REQUIRES(!Locks::intern_table_lock_) REQUIRES_SHARED(Locks::mutator_lock_) {
  if (!kIsDebugBuild) {
    return;
  }
  // Put all roots in `roots_data`.
  for (Handle<mirror::Object> object : roots) {
    // Ensure the string is strongly interned. b/32995596
    if (object->IsString()) {
      ObjPtr<mirror::String> str = object->AsString();
      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
      CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr);
    }
  }
}

void JitCodeCache::FillRootTable(uint8_t* roots_data,
                                 const std::vector<Handle<mirror::Object>>& roots) {
  GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
  const uint32_t length = roots.size();
  // Put all roots in `roots_data`.
  for (uint32_t i = 0; i < length; ++i) {
    ObjPtr<mirror::Object> object = roots[i].Get();
    gc_roots[i] = GcRoot<mirror::Object>(object);
  }
}

static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) {
  OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
  uint8_t* data = method_header->GetOptimizedCodeInfoPtr();
  uint32_t roots = GetNumberOfRoots(data);
  if (number_of_roots != nullptr) {
    *number_of_roots = roots;
  }
  return data - ComputeRootTableSize(roots);
}

// Use a sentinel for marking entries in the JIT table that have been cleared.
// This helps diagnosing in case the compiled code tries to wrongly access such
// entries.
static mirror::Class* const weak_sentinel =
    reinterpret_cast<mirror::Class*>(Context::kBadGprBase + 0xff);

// Helper for the GC to process a weak class in a JIT root table.
static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
                                    IsMarkedVisitor* visitor,
                                    mirror::Class* update)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // This does not need a read barrier because this is called by GC.
  mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
  if (cls != nullptr && cls != weak_sentinel) {
    DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
    // Look at the classloader of the class to know if it has been unloaded.
    // This does not need a read barrier because this is called by GC.
    ObjPtr<mirror::Object> class_loader =
        cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
    if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
      // The class loader is live, update the entry if the class has moved.
      mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
      // Note that new_object can be null for CMS and newly allocated objects.
      if (new_cls != nullptr && new_cls != cls) {
        *root_ptr = GcRoot<mirror::Class>(new_cls);
      }
    } else {
      // The class loader is not live, clear the entry.
      *root_ptr = GcRoot<mirror::Class>(update);
    }
  }
}

void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) {
  MutexLock mu(Thread::Current(), lock_);
  for (const auto& entry : method_code_map_) {
    uint32_t number_of_roots = 0;
    uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots);
    GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
    for (uint32_t i = 0; i < number_of_roots; ++i) {
      // This does not need a read barrier because this is called by GC.
      mirror::Object* object = roots[i].Read<kWithoutReadBarrier>();
      if (object == nullptr || object == weak_sentinel) {
        // entry got deleted in a previous sweep.
      } else if (object->IsString<kDefaultVerifyFlags>()) {
        mirror::Object* new_object = visitor->IsMarked(object);
        // We know the string is marked because it's a strongly-interned string that
        // is always alive. The IsMarked implementation of the CMS collector returns
        // null for newly allocated objects, but we know those haven't moved. Therefore,
        // only update the entry if we get a different non-null string.
        // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method
        // out of the weak access/creation pause. b/32167580
        if (new_object != nullptr && new_object != object) {
          DCHECK(new_object->IsString());
          roots[i] = GcRoot<mirror::Object>(new_object);
        }
      } else {
        ProcessWeakClass(
            reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor, weak_sentinel);
      }
    }
  }
  // Walk over inline caches to clear entries containing unloaded classes.
  for (ProfilingInfo* info : profiling_infos_) {
    for (size_t i = 0; i < info->number_of_inline_caches_; ++i) {
      InlineCache* cache = &info->cache_[i];
      for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) {
        ProcessWeakClass(&cache->classes_[j], visitor, nullptr);
      }
    }
  }
}

void JitCodeCache::FreeCodeAndData(const void* code_ptr) {
  if (IsInZygoteExecSpace(code_ptr)) {
    // No need to free, this is shared memory.
    return;
  }
  uintptr_t allocation = FromCodeToAllocation(code_ptr);
  // Notify native debugger that we are about to remove the code.
  // It does nothing if we are not using native debugger.
  RemoveNativeDebugInfoForJit(Thread::Current(), code_ptr);
  if (OatQuickMethodHeader::FromCodePointer(code_ptr)->IsOptimized()) {
    FreeData(GetRootTable(code_ptr));
  }  // else this is a JNI stub without any data.

  uint8_t* code_allocation = reinterpret_cast<uint8_t*>(allocation);
  if (HasDualCodeMapping()) {
    code_allocation = TranslateAddress(code_allocation, exec_pages_, non_exec_pages_);
  }

  FreeCode(code_allocation);
}

void JitCodeCache::FreeAllMethodHeaders(
    const std::unordered_set<OatQuickMethodHeader*>& method_headers) {
  // We need to remove entries in method_headers from CHA dependencies
  // first since once we do FreeCode() below, the memory can be reused
  // so it's possible for the same method_header to start representing
  // different compile code.
  MutexLock mu(Thread::Current(), lock_);
  {
    MutexLock mu2(Thread::Current(), *Locks::cha_lock_);
    Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()
        ->RemoveDependentsWithMethodHeaders(method_headers);
  }

  ScopedCodeCacheWrite scc(this);
  for (const OatQuickMethodHeader* method_header : method_headers) {
    FreeCodeAndData(method_header->GetCode());
  }
}

void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) {
  ScopedTrace trace(__PRETTY_FUNCTION__);
  // We use a set to first collect all method_headers whose code need to be
  // removed. We need to free the underlying code after we remove CHA dependencies
  // for entries in this set. And it's more efficient to iterate through
  // the CHA dependency map just once with an unordered_set.
  std::unordered_set<OatQuickMethodHeader*> method_headers;
  {
    MutexLock mu(self, lock_);
    // We do not check if a code cache GC is in progress, as this method comes
    // with the classlinker_classes_lock_ held, and suspending ourselves could
    // lead to a deadlock.
    {
      ScopedCodeCacheWrite scc(this);
      for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) {
        it->second.RemoveMethodsIn(alloc);
        if (it->second.GetMethods().empty()) {
          method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->second.GetCode()));
          it = jni_stubs_map_.erase(it);
        } else {
          it->first.UpdateShorty(it->second.GetMethods().front());
          ++it;
        }
      }
      for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
        if (alloc.ContainsUnsafe(it->second)) {
          method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first));
          it = method_code_map_.erase(it);
        } else {
          ++it;
        }
      }
    }
    for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) {
      if (alloc.ContainsUnsafe(it->first)) {
        // Note that the code has already been pushed to method_headers in the loop
        // above and is going to be removed in FreeCode() below.
        it = osr_code_map_.erase(it);
      } else {
        ++it;
      }
    }
    for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) {
      ProfilingInfo* info = *it;
      if (alloc.ContainsUnsafe(info->GetMethod())) {
        info->GetMethod()->SetProfilingInfo(nullptr);
        FreeData(reinterpret_cast<uint8_t*>(info));
        it = profiling_infos_.erase(it);
      } else {
        ++it;
      }
    }
  }
  FreeAllMethodHeaders(method_headers);
}

bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const {
  return kUseReadBarrier
      ? self->GetWeakRefAccessEnabled()
      : is_weak_access_enabled_.load(std::memory_order_seq_cst);
}

void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) {
  if (IsWeakAccessEnabled(self)) {
    return;
  }
  ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead);
  MutexLock mu(self, lock_);
  while (!IsWeakAccessEnabled(self)) {
    inline_cache_cond_.Wait(self);
  }
}

void JitCodeCache::BroadcastForInlineCacheAccess() {
  Thread* self = Thread::Current();
  MutexLock mu(self, lock_);
  inline_cache_cond_.Broadcast(self);
}

void JitCodeCache::AllowInlineCacheAccess() {
  DCHECK(!kUseReadBarrier);
  is_weak_access_enabled_.store(true, std::memory_order_seq_cst);
  BroadcastForInlineCacheAccess();
}

void JitCodeCache::DisallowInlineCacheAccess() {
  DCHECK(!kUseReadBarrier);
  is_weak_access_enabled_.store(false, std::memory_order_seq_cst);
}

void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic,
                                       Handle<mirror::ObjectArray<mirror::Class>> array) {
  WaitUntilInlineCacheAccessible(Thread::Current());
  // Note that we don't need to lock `lock_` here, the compiler calling
  // this method has already ensured the inline cache will not be deleted.
  for (size_t in_cache = 0, in_array = 0;
       in_cache < InlineCache::kIndividualCacheSize;
       ++in_cache) {
    mirror::Class* object = ic.classes_[in_cache].Read();
    if (object != nullptr) {
      array->Set(in_array++, object);
    }
  }
}

static void ClearMethodCounter(ArtMethod* method, bool was_warm)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (was_warm) {
    method->SetPreviouslyWarm();
  }
  // We reset the counter to 1 so that the profile knows that the method was executed at least once.
  // This is required for layout purposes.
  // We also need to make sure we'll pass the warmup threshold again, so we set to 0 if
  // the warmup threshold is 1.
  uint16_t jit_warmup_threshold = Runtime::Current()->GetJITOptions()->GetWarmupThreshold();
  method->SetCounter(std::min(jit_warmup_threshold - 1, 1));
}

void JitCodeCache::WaitForPotentialCollectionToCompleteRunnable(Thread* self) {
  while (collection_in_progress_) {
    lock_.Unlock(self);
    {
      ScopedThreadSuspension sts(self, kSuspended);
      MutexLock mu(self, lock_);
      WaitForPotentialCollectionToComplete(self);
    }
    lock_.Lock(self);
  }
}

const MemMap* JitCodeCache::GetUpdatableCodeMapping() const {
  if (HasDualCodeMapping()) {
    return &non_exec_pages_;
  } else if (HasCodeMapping()) {
    return &exec_pages_;
  } else {
    return nullptr;
  }
}

uint8_t* JitCodeCache::CommitCodeInternal(Thread* self,
                                          ArtMethod* method,
                                          uint8_t* stack_map,
                                          uint8_t* roots_data,
                                          const uint8_t* code,
                                          size_t code_size,
                                          size_t data_size,
                                          bool osr,
                                          const std::vector<Handle<mirror::Object>>& roots,
                                          bool has_should_deoptimize_flag,
                                          const ArenaSet<ArtMethod*>&
                                              cha_single_implementation_list) {
  DCHECK(!method->IsNative() || !osr);

  if (!method->IsNative()) {
    // We need to do this before grabbing the lock_ because it needs to be able to see the string
    // InternTable. Native methods do not have roots.
    DCheckRootsAreValid(roots);
  }

  OatQuickMethodHeader* method_header = nullptr;
  uint8_t* nox_memory = nullptr;
  uint8_t* code_ptr = nullptr;

  MutexLock mu(self, lock_);
  // We need to make sure that there will be no jit-gcs going on and wait for any ongoing one to
  // finish.
  WaitForPotentialCollectionToCompleteRunnable(self);
  {
    ScopedCodeCacheWrite scc(this);

    size_t alignment = GetJitCodeAlignment();
    // Ensure the header ends up at expected instruction alignment.
    size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment);
    size_t total_size = header_size + code_size;

    // AllocateCode allocates memory in non-executable region for alignment header and code. The
    // header size may include alignment padding.
    nox_memory = AllocateCode(total_size);
    if (nox_memory == nullptr) {
      return nullptr;
    }

    // code_ptr points to non-executable code.
    code_ptr = nox_memory + header_size;
    std::copy(code, code + code_size, code_ptr);
    method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);

    // From here code_ptr points to executable code.
    if (HasDualCodeMapping()) {
      code_ptr = TranslateAddress(code_ptr, non_exec_pages_, exec_pages_);
    }

    new (method_header) OatQuickMethodHeader(
        (stack_map != nullptr) ? code_ptr - stack_map : 0u,
        code_size);

    DCHECK(!Runtime::Current()->IsAotCompiler());
    if (has_should_deoptimize_flag) {
      method_header->SetHasShouldDeoptimizeFlag();
    }

    // Update method_header pointer to executable code region.
    if (HasDualCodeMapping()) {
      method_header = TranslateAddress(method_header, non_exec_pages_, exec_pages_);
    }

    // Both instruction and data caches need flushing to the point of unification where both share
    // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
    // newly added code are written out to the point of unification. Flushing the instruction
    // cache ensures the newly written code will be fetched from the point of unification before
    // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
    // prevent stale code from residing in the instruction cache.
    //
    // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
    // may trigger a segfault if a page fault occurs when requesting a cache maintenance
    // operation. This is a kernel bug that we need to work around until affected devices
    // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
    //
    // For reference, this behavior is caused by this commit:
    // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
    //
    bool cache_flush_success = true;
    if (HasDualCodeMapping()) {
      // Flush the data cache lines associated with the non-executable copy of the code just added.
      cache_flush_success = FlushCpuCaches(nox_memory, nox_memory + total_size);
    }

    // Invalidate i-cache for the executable mapping.
    uint8_t* x_memory = reinterpret_cast<uint8_t*>(method_header);
    if (cache_flush_success) {
      cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
    }

    // If flushing the cache has failed, reject the allocation because we can't guarantee
    // correctness of the instructions present in the processor caches.
    if (!cache_flush_success) {
      PLOG(ERROR) << "Cache flush failed for JIT code, code not committed.";
      FreeCode(nox_memory);
      return nullptr;
    }

    // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
    // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
    // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
    // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
    // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
    // hardware support that broadcasts TLB invalidations and so their kernels have no software
    // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
    // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
    // platforms lacking the appropriate support.
    art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);

    number_of_compilations_++;
  }

  // We need to update the entry point in the runnable state for the instrumentation.
  {
    // The following needs to be guarded by cha_lock_ also. Otherwise it's possible that the
    // compiled code is considered invalidated by some class linking, but below we still make the
    // compiled code valid for the method.  Need cha_lock_ for checking all single-implementation
    // flags and register dependencies.
    MutexLock cha_mu(self, *Locks::cha_lock_);
    bool single_impl_still_valid = true;
    for (ArtMethod* single_impl : cha_single_implementation_list) {
      if (!single_impl->HasSingleImplementation()) {
        // Simply discard the compiled code. Clear the counter so that it may be recompiled later.
        // Hopefully the class hierarchy will be more stable when compilation is retried.
        single_impl_still_valid = false;
        ClearMethodCounter(method, /*was_warm=*/ false);
        break;
      }
    }

    // Discard the code if any single-implementation assumptions are now invalid.
    if (!single_impl_still_valid) {
      VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions.";
      return nullptr;
    }
    DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable())
        << "Should not be using cha on debuggable apps/runs!";

    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    for (ArtMethod* single_impl : cha_single_implementation_list) {
      class_linker->GetClassHierarchyAnalysis()->AddDependency(single_impl, method, method_header);
    }

    if (UNLIKELY(method->IsNative())) {
      auto it = jni_stubs_map_.find(JniStubKey(method));
      DCHECK(it != jni_stubs_map_.end())
          << "Entry inserted in NotifyCompilationOf() should be alive.";
      JniStubData* data = &it->second;
      DCHECK(ContainsElement(data->GetMethods(), method))
          << "Entry inserted in NotifyCompilationOf() should contain this method.";
      data->SetCode(code_ptr);
      instrumentation::Instrumentation* instrum = Runtime::Current()->GetInstrumentation();
      for (ArtMethod* m : data->GetMethods()) {
        if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) {
          instrum->UpdateMethodsCode(m, method_header->GetEntryPoint());
        }
      }
    } else {
      // Fill the root table before updating the entry point.
      DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data);
      DCHECK_LE(roots_data, stack_map);
      FillRootTable(roots_data, roots);
      {
        // Flush data cache, as compiled code references literals in it.
        // TODO(oth): establish whether this is necessary.
        if (!FlushCpuCaches(roots_data, roots_data + data_size)) {
          PLOG(ERROR) << "Cache flush failed for JIT data, code not committed.";
          ScopedCodeCacheWrite scc(this);
          FreeCode(nox_memory);
          return nullptr;
        }
      }
      method_code_map_.Put(code_ptr, method);
      if (osr) {
        number_of_osr_compilations_++;
        osr_code_map_.Put(method, code_ptr);
      } else if (class_linker->IsQuickResolutionStub(
          method->GetEntryPointFromQuickCompiledCode())) {
        // This situation currently only occurs in the jit-zygote mode.
        DCHECK(Runtime::Current()->IsZygote());
        DCHECK(Runtime::Current()->IsUsingApexBootImageLocation());
        DCHECK(method->GetProfilingInfo(kRuntimePointerSize) != nullptr);
        DCHECK(method->GetDeclaringClass()->GetClassLoader() == nullptr);
        // Save the entrypoint, so it can be fethed later once the class is
        // initialized.
        method->GetProfilingInfo(kRuntimePointerSize)->SetSavedEntryPoint(
            method_header->GetEntryPoint());
      } else {
        Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
            method, method_header->GetEntryPoint());
      }
    }
    VLOG(jit)
        << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") "
        << ArtMethod::PrettyMethod(method) << "@" << method
        << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": "
        << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": "
        << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << ","
        << reinterpret_cast<const void*>(method_header->GetEntryPoint() +
                                         method_header->GetCodeSize());
    histogram_code_memory_use_.AddValue(code_size);
    if (code_size > kCodeSizeLogThreshold) {
      LOG(INFO) << "JIT allocated "
                << PrettySize(code_size)
                << " for compiled code of "
                << ArtMethod::PrettyMethod(method);
    }
  }

  return reinterpret_cast<uint8_t*>(method_header);
}

size_t JitCodeCache::CodeCacheSize() {
  MutexLock mu(Thread::Current(), lock_);
  return CodeCacheSizeLocked();
}

bool JitCodeCache::RemoveMethod(ArtMethod* method, bool release_memory) {
  // This function is used only for testing and only with non-native methods.
  CHECK(!method->IsNative());

  MutexLock mu(Thread::Current(), lock_);

  bool osr = osr_code_map_.find(method) != osr_code_map_.end();
  bool in_cache = RemoveMethodLocked(method, release_memory);

  if (!in_cache) {
    return false;
  }

  method->SetCounter(0);
  Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
      method, GetQuickToInterpreterBridge());
  VLOG(jit)
      << "JIT removed (osr=" << std::boolalpha << osr << std::noboolalpha << ") "
      << ArtMethod::PrettyMethod(method) << "@" << method
      << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": "
      << " dcache_size=" << PrettySize(DataCacheSizeLocked());
  return true;
}

bool JitCodeCache::RemoveMethodLocked(ArtMethod* method, bool release_memory) {
  if (LIKELY(!method->IsNative())) {
    ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
    if (info != nullptr) {
      RemoveElement(profiling_infos_, info);
    }
    method->SetProfilingInfo(nullptr);
  }

  bool in_cache = false;
  ScopedCodeCacheWrite ccw(this);
  if (UNLIKELY(method->IsNative())) {
    auto it = jni_stubs_map_.find(JniStubKey(method));
    if (it != jni_stubs_map_.end() && it->second.RemoveMethod(method)) {
      in_cache = true;
      if (it->second.GetMethods().empty()) {
        if (release_memory) {
          FreeCodeAndData(it->second.GetCode());
        }
        jni_stubs_map_.erase(it);
      } else {
        it->first.UpdateShorty(it->second.GetMethods().front());
      }
    }
  } else {
    for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
      if (it->second == method) {
        in_cache = true;
        if (release_memory) {
          FreeCodeAndData(it->first);
        }
        it = method_code_map_.erase(it);
      } else {
        ++it;
      }
    }

    auto osr_it = osr_code_map_.find(method);
    if (osr_it != osr_code_map_.end()) {
      osr_code_map_.erase(osr_it);
    }
  }

  return in_cache;
}

// This notifies the code cache that the given method has been redefined and that it should remove
// any cached information it has on the method. All threads must be suspended before calling this
// method. The compiled code for the method (if there is any) must not be in any threads call stack.
void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) {
  MutexLock mu(Thread::Current(), lock_);
  RemoveMethodLocked(method, /* release_memory= */ true);
}

// This invalidates old_method. Once this function returns one can no longer use old_method to
// execute code unless it is fixed up. This fixup will happen later in the process of installing a
// class redefinition.
// TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and
// shouldn't be used since it is no longer logically in the jit code cache.
// TODO We should add DCHECKS that validate that the JIT is paused when this method is entered.
void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) {
  MutexLock mu(Thread::Current(), lock_);
  if (old_method->IsNative()) {
    // Update methods in jni_stubs_map_.
    for (auto& entry : jni_stubs_map_) {
      JniStubData& data = entry.second;
      data.MoveObsoleteMethod(old_method, new_method);
    }
    return;
  }
  // Update ProfilingInfo to the new one and remove it from the old_method.
  if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) {
    DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method);
    ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize);
    old_method->SetProfilingInfo(nullptr);
    // Since the JIT should be paused and all threads suspended by the time this is called these
    // checks should always pass.
    DCHECK(!info->IsInUseByCompiler());
    new_method->SetProfilingInfo(info);
    // Get rid of the old saved entrypoint if it is there.
    info->SetSavedEntryPoint(nullptr);
    info->method_ = new_method;
  }
  // Update method_code_map_ to point to the new method.
  for (auto& it : method_code_map_) {
    if (it.second == old_method) {
      it.second = new_method;
    }
  }
  // Update osr_code_map_ to point to the new method.
  auto code_map = osr_code_map_.find(old_method);
  if (code_map != osr_code_map_.end()) {
    osr_code_map_.Put(new_method, code_map->second);
    osr_code_map_.erase(old_method);
  }
}

void JitCodeCache::ClearEntryPointsInZygoteExecSpace() {
  MutexLock mu(Thread::Current(), lock_);
  // Iterate over profiling infos to know which methods may have been JITted. Note that
  // to be JITted, a method must have a profiling info.
  for (ProfilingInfo* info : profiling_infos_) {
    ArtMethod* method = info->GetMethod();
    if (IsInZygoteExecSpace(method->GetEntryPointFromQuickCompiledCode())) {
      method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
    }
    // If zygote does method tracing, or in some configuration where
    // the JIT zygote does GC, we also need to clear the saved entry point
    // in the profiling info.
    if (IsInZygoteExecSpace(info->GetSavedEntryPoint())) {
      info->SetSavedEntryPoint(nullptr);
    }
  }
}

size_t JitCodeCache::CodeCacheSizeLocked() {
  return used_memory_for_code_;
}

size_t JitCodeCache::DataCacheSize() {
  MutexLock mu(Thread::Current(), lock_);
  return DataCacheSizeLocked();
}

size_t JitCodeCache::DataCacheSizeLocked() {
  return used_memory_for_data_;
}

void JitCodeCache::ClearData(Thread* self,
                             uint8_t* stack_map_data,
                             uint8_t* roots_data) {
  DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data);
  MutexLock mu(self, lock_);
  FreeData(reinterpret_cast<uint8_t*>(roots_data));
}

size_t JitCodeCache::ReserveData(Thread* self,
                                 size_t stack_map_size,
                                 size_t number_of_roots,
                                 ArtMethod* method,
                                 uint8_t** stack_map_data,
                                 uint8_t** roots_data) {
  size_t table_size = ComputeRootTableSize(number_of_roots);
  size_t size = RoundUp(stack_map_size + table_size, sizeof(void*));
  uint8_t* result = nullptr;

  {
    ScopedThreadSuspension sts(self, kSuspended);
    MutexLock mu(self, lock_);
    WaitForPotentialCollectionToComplete(self);
    result = AllocateData(size);
  }

  if (result == nullptr) {
    // Retry.
    GarbageCollectCache(self);
    ScopedThreadSuspension sts(self, kSuspended);
    MutexLock mu(self, lock_);
    WaitForPotentialCollectionToComplete(self);
    result = AllocateData(size);
  }

  MutexLock mu(self, lock_);
  histogram_stack_map_memory_use_.AddValue(size);
  if (size > kStackMapSizeLogThreshold) {
    LOG(INFO) << "JIT allocated "
              << PrettySize(size)
              << " for stack maps of "
              << ArtMethod::PrettyMethod(method);
  }
  if (result != nullptr) {
    *roots_data = result;
    *stack_map_data = result + table_size;
    FillRootTableLength(*roots_data, number_of_roots);
    return size;
  } else {
    *roots_data = nullptr;
    *stack_map_data = nullptr;
    return 0;
  }
}

class MarkCodeClosure final : public Closure {
 public:
  MarkCodeClosure(JitCodeCache* code_cache, CodeCacheBitmap* bitmap, Barrier* barrier)
      : code_cache_(code_cache), bitmap_(bitmap), barrier_(barrier) {}

  void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
    ScopedTrace trace(__PRETTY_FUNCTION__);
    DCHECK(thread == Thread::Current() || thread->IsSuspended());
    StackVisitor::WalkStack(
        [&](const art::StackVisitor* stack_visitor) {
          const OatQuickMethodHeader* method_header =
              stack_visitor->GetCurrentOatQuickMethodHeader();
          if (method_header == nullptr) {
            return true;
          }
          const void* code = method_header->GetCode();
          if (code_cache_->ContainsPc(code) && !code_cache_->IsInZygoteExecSpace(code)) {
            // Use the atomic set version, as multiple threads are executing this code.
            bitmap_->AtomicTestAndSet(FromCodeToAllocation(code));
          }
          return true;
        },
        thread,
        /* context= */ nullptr,
        art::StackVisitor::StackWalkKind::kSkipInlinedFrames);

    if (kIsDebugBuild) {
      // The stack walking code queries the side instrumentation stack if it
      // sees an instrumentation exit pc, so the JIT code of methods in that stack
      // must have been seen. We sanity check this below.
      for (const instrumentation::InstrumentationStackFrame& frame
              : *thread->GetInstrumentationStack()) {
        // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in
        // its stack frame, it is not the method owning return_pc_. We just pass null to
        // LookupMethodHeader: the method is only checked against in debug builds.
        OatQuickMethodHeader* method_header =
            code_cache_->LookupMethodHeader(frame.return_pc_, /* method= */ nullptr);
        if (method_header != nullptr) {
          const void* code = method_header->GetCode();
          CHECK(bitmap_->Test(FromCodeToAllocation(code)));
        }
      }
    }
    barrier_->Pass(Thread::Current());
  }

 private:
  JitCodeCache* const code_cache_;
  CodeCacheBitmap* const bitmap_;
  Barrier* const barrier_;
};

void JitCodeCache::NotifyCollectionDone(Thread* self) {
  collection_in_progress_ = false;
  lock_cond_.Broadcast(self);
}

void JitCodeCache::SetFootprintLimit(size_t new_footprint) {
  size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
  DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
  DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
  mspace_set_footprint_limit(data_mspace_, data_space_footprint);
  if (HasCodeMapping()) {
    ScopedCodeCacheWrite scc(this);
    mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
  }
}

bool JitCodeCache::IncreaseCodeCacheCapacity() {
  if (current_capacity_ == max_capacity_) {
    return false;
  }

  // Double the capacity if we're below 1MB, or increase it by 1MB if
  // we're above.
  if (current_capacity_ < 1 * MB) {
    current_capacity_ *= 2;
  } else {
    current_capacity_ += 1 * MB;
  }
  if (current_capacity_ > max_capacity_) {
    current_capacity_ = max_capacity_;
  }

  VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);

  SetFootprintLimit(current_capacity_);

  return true;
}

void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) {
  Barrier barrier(0);
  size_t threads_running_checkpoint = 0;
  MarkCodeClosure closure(this, GetLiveBitmap(), &barrier);
  threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
  // Now that we have run our checkpoint, move to a suspended state and wait
  // for other threads to run the checkpoint.
  ScopedThreadSuspension sts(self, kSuspended);
  if (threads_running_checkpoint != 0) {
    barrier.Increment(self, threads_running_checkpoint);
  }
}

bool JitCodeCache::ShouldDoFullCollection() {
  if (current_capacity_ == max_capacity_) {
    // Always do a full collection when the code cache is full.
    return true;
  } else if (current_capacity_ < kReservedCapacity) {
    // Always do partial collection when the code cache size is below the reserved
    // capacity.
    return false;
  } else if (last_collection_increased_code_cache_) {
    // This time do a full collection.
    return true;
  } else {
    // This time do a partial collection.
    return false;
  }
}

void JitCodeCache::GarbageCollectCache(Thread* self) {
  ScopedTrace trace(__FUNCTION__);
  // Wait for an existing collection, or let everyone know we are starting one.
  {
    ScopedThreadSuspension sts(self, kSuspended);
    MutexLock mu(self, lock_);
    if (!garbage_collect_code_) {
      IncreaseCodeCacheCapacity();
      return;
    } else if (WaitForPotentialCollectionToComplete(self)) {
      return;
    } else {
      number_of_collections_++;
      live_bitmap_.reset(CodeCacheBitmap::Create(
          "code-cache-bitmap",
          reinterpret_cast<uintptr_t>(exec_pages_.Begin()),
          reinterpret_cast<uintptr_t>(exec_pages_.Begin() + current_capacity_ / 2)));
      collection_in_progress_ = true;
    }
  }

  TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit));
  {
    TimingLogger::ScopedTiming st("Code cache collection", &logger);

    bool do_full_collection = false;
    {
      MutexLock mu(self, lock_);
      do_full_collection = ShouldDoFullCollection();
    }

    VLOG(jit) << "Do "
              << (do_full_collection ? "full" : "partial")
              << " code cache collection, code="
              << PrettySize(CodeCacheSize())
              << ", data=" << PrettySize(DataCacheSize());

    DoCollection(self, /* collect_profiling_info= */ do_full_collection);

    VLOG(jit) << "After code cache collection, code="
              << PrettySize(CodeCacheSize())
              << ", data=" << PrettySize(DataCacheSize());

    {
      MutexLock mu(self, lock_);

      // Increase the code cache only when we do partial collections.
      // TODO: base this strategy on how full the code cache is?
      if (do_full_collection) {
        last_collection_increased_code_cache_ = false;
      } else {
        last_collection_increased_code_cache_ = true;
        IncreaseCodeCacheCapacity();
      }

      bool next_collection_will_be_full = ShouldDoFullCollection();

      // Start polling the liveness of compiled code to prepare for the next full collection.
      if (next_collection_will_be_full) {
        // Save the entry point of methods we have compiled, and update the entry
        // point of those methods to the interpreter. If the method is invoked, the
        // interpreter will update its entry point to the compiled code and call it.
        for (ProfilingInfo* info : profiling_infos_) {
          const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
          if (!IsInZygoteDataSpace(info) && ContainsPc(entry_point)) {
            info->SetSavedEntryPoint(entry_point);
            // Don't call Instrumentation::UpdateMethodsCode(), as it can check the declaring
            // class of the method. We may be concurrently running a GC which makes accessing
            // the class unsafe. We know it is OK to bypass the instrumentation as we've just
            // checked that the current entry point is JIT compiled code.
            info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
          }
        }

        DCHECK(CheckLiveCompiledCodeHasProfilingInfo());

        // Change entry points of native methods back to the GenericJNI entrypoint.
        for (const auto& entry : jni_stubs_map_) {
          const JniStubData& data = entry.second;
          if (!data.IsCompiled() || IsInZygoteExecSpace(data.GetCode())) {
            continue;
          }
          // Make sure a single invocation of the GenericJNI trampoline tries to recompile.
          uint16_t new_counter = Runtime::Current()->GetJit()->HotMethodThreshold() - 1u;
          const OatQuickMethodHeader* method_header =
              OatQuickMethodHeader::FromCodePointer(data.GetCode());
          for (ArtMethod* method : data.GetMethods()) {
            if (method->GetEntryPointFromQuickCompiledCode() == method_header->GetEntryPoint()) {
              // Don't call Instrumentation::UpdateMethodsCode(), same as for normal methods above.
              method->SetCounter(new_counter);
              method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
            }
          }
        }
      }
      live_bitmap_.reset(nullptr);
      NotifyCollectionDone(self);
    }
  }
  Runtime::Current()->GetJit()->AddTimingLogger(logger);
}

void JitCodeCache::RemoveUnmarkedCode(Thread* self) {
  ScopedTrace trace(__FUNCTION__);
  std::unordered_set<OatQuickMethodHeader*> method_headers;
  {
    MutexLock mu(self, lock_);
    ScopedCodeCacheWrite scc(this);
    // Iterate over all compiled code and remove entries that are not marked.
    for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) {
      JniStubData* data = &it->second;
      if (IsInZygoteExecSpace(data->GetCode()) ||
          !data->IsCompiled() ||
          GetLiveBitmap()->Test(FromCodeToAllocation(data->GetCode()))) {
        ++it;
      } else {
        method_headers.insert(OatQuickMethodHeader::FromCodePointer(data->GetCode()));
        it = jni_stubs_map_.erase(it);
      }
    }
    for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
      const void* code_ptr = it->first;
      uintptr_t allocation = FromCodeToAllocation(code_ptr);
      if (IsInZygoteExecSpace(code_ptr) || GetLiveBitmap()->Test(allocation)) {
        ++it;
      } else {
        OatQuickMethodHeader* header = OatQuickMethodHeader::FromCodePointer(code_ptr);
        method_headers.insert(header);
        it = method_code_map_.erase(it);
      }
    }
  }
  FreeAllMethodHeaders(method_headers);
}

bool JitCodeCache::GetGarbageCollectCode() {
  MutexLock mu(Thread::Current(), lock_);
  return garbage_collect_code_;
}

void JitCodeCache::SetGarbageCollectCode(bool value) {
  Thread* self = Thread::Current();
  MutexLock mu(self, lock_);
  if (garbage_collect_code_ != value) {
    if (garbage_collect_code_) {
      // When dynamically disabling the garbage collection, we neee
      // to make sure that a potential current collection is finished, and also
      // clear the saved entry point in profiling infos to avoid dangling pointers.
      WaitForPotentialCollectionToComplete(self);
      for (ProfilingInfo* info : profiling_infos_) {
        info->SetSavedEntryPoint(nullptr);
      }
    }
    // Update the flag while holding the lock to ensure no thread will try to GC.
    garbage_collect_code_ = value;
  }
}

void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) {
  ScopedTrace trace(__FUNCTION__);
  {
    MutexLock mu(self, lock_);
    if (collect_profiling_info) {
      // Clear the profiling info of methods that do not have compiled code as entrypoint.
      // Also remove the saved entry point from the ProfilingInfo objects.
      for (ProfilingInfo* info : profiling_infos_) {
        const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
        if (!ContainsPc(ptr) && !info->IsInUseByCompiler() && !IsInZygoteDataSpace(info)) {
          info->GetMethod()->SetProfilingInfo(nullptr);
        }

        if (info->GetSavedEntryPoint() != nullptr) {
          info->SetSavedEntryPoint(nullptr);
          // We are going to move this method back to interpreter. Clear the counter now to
          // give it a chance to be hot again.
          ClearMethodCounter(info->GetMethod(), /*was_warm=*/ true);
        }
      }
    } else if (kIsDebugBuild) {
      // Sanity check that the profiling infos do not have a dangling entry point.
      for (ProfilingInfo* info : profiling_infos_) {
        DCHECK(!Runtime::Current()->IsZygote());
        const void* entry_point = info->GetSavedEntryPoint();
        DCHECK(entry_point == nullptr || IsInZygoteExecSpace(entry_point));
      }
    }

    // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not
    // an entry point is either:
    // - an osr compiled code, that will be removed if not in a thread call stack.
    // - discarded compiled code, that will be removed if not in a thread call stack.
    for (const auto& entry : jni_stubs_map_) {
      const JniStubData& data = entry.second;
      const void* code_ptr = data.GetCode();
      if (IsInZygoteExecSpace(code_ptr)) {
        continue;
      }
      const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
      for (ArtMethod* method : data.GetMethods()) {
        if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
          GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr));
          break;
        }
      }
    }
    for (const auto& it : method_code_map_) {
      ArtMethod* method = it.second;
      const void* code_ptr = it.first;
      if (IsInZygoteExecSpace(code_ptr)) {
        continue;
      }
      const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
      if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
        GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr));
      }
    }

    // Empty osr method map, as osr compiled code will be deleted (except the ones
    // on thread stacks).
    osr_code_map_.clear();
  }

  // Run a checkpoint on all threads to mark the JIT compiled code they are running.
  MarkCompiledCodeOnThreadStacks(self);

  // At this point, mutator threads are still running, and entrypoints of methods can
  // change. We do know they cannot change to a code cache entry that is not marked,
  // therefore we can safely remove those entries.
  RemoveUnmarkedCode(self);

  if (collect_profiling_info) {
    MutexLock mu(self, lock_);
    // Free all profiling infos of methods not compiled nor being compiled.
    auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(),
      [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS {
        const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
        // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope
        // that the compiled code would not get revived. As mutator threads run concurrently,
        // they may have revived the compiled code, and now we are in the situation where
        // a method has compiled code but no ProfilingInfo.
        // We make sure compiled methods have a ProfilingInfo object. It is needed for
        // code cache collection.
        if (ContainsPc(ptr) &&
            info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) {
          info->GetMethod()->SetProfilingInfo(info);
        } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) {
          // No need for this ProfilingInfo object anymore.
          FreeData(reinterpret_cast<uint8_t*>(info));
          return true;
        }
        return false;
      });
    profiling_infos_.erase(profiling_kept_end, profiling_infos_.end());
    DCHECK(CheckLiveCompiledCodeHasProfilingInfo());
  }
}

bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() {
  ScopedTrace trace(__FUNCTION__);
  // Check that methods we have compiled do have a ProfilingInfo object. We would
  // have memory leaks of compiled code otherwise.
  for (const auto& it : method_code_map_) {
    ArtMethod* method = it.second;
    if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) {
      const void* code_ptr = it.first;
      const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
      if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
        // If the code is not dead, then we have a problem. Note that this can even
        // happen just after a collection, as mutator threads are running in parallel
        // and could deoptimize an existing compiled code.
        return false;
      }
    }
  }
  return true;
}

OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) {
  static_assert(kRuntimeISA != InstructionSet::kThumb2, "kThumb2 cannot be a runtime ISA");
  if (kRuntimeISA == InstructionSet::kArm) {
    // On Thumb-2, the pc is offset by one.
    --pc;
  }
  if (!ContainsPc(reinterpret_cast<const void*>(pc))) {
    return nullptr;
  }

  if (!kIsDebugBuild) {
    // Called with null `method` only from MarkCodeClosure::Run() in debug build.
    CHECK(method != nullptr);
  }

  MutexLock mu(Thread::Current(), lock_);
  OatQuickMethodHeader* method_header = nullptr;
  ArtMethod* found_method = nullptr;  // Only for DCHECK(), not for JNI stubs.
  if (method != nullptr && UNLIKELY(method->IsNative())) {
    auto it = jni_stubs_map_.find(JniStubKey(method));
    if (it == jni_stubs_map_.end() || !ContainsElement(it->second.GetMethods(), method)) {
      return nullptr;
    }
    const void* code_ptr = it->second.GetCode();
    method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
    if (!method_header->Contains(pc)) {
      return nullptr;
    }
  } else {
    auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc));
    if (it != method_code_map_.begin()) {
      --it;
      const void* code_ptr = it->first;
      if (OatQuickMethodHeader::FromCodePointer(code_ptr)->Contains(pc)) {
        method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
        found_method = it->second;
      }
    }
    if (method_header == nullptr && method == nullptr) {
      // Scan all compiled JNI stubs as well. This slow search is used only
      // for checks in debug build, for release builds the `method` is not null.
      for (auto&& entry : jni_stubs_map_) {
        const JniStubData& data = entry.second;
        if (data.IsCompiled() &&
            OatQuickMethodHeader::FromCodePointer(data.GetCode())->Contains(pc)) {
          method_header = OatQuickMethodHeader::FromCodePointer(data.GetCode());
        }
      }
    }
    if (method_header == nullptr) {
      return nullptr;
    }
  }

  if (kIsDebugBuild && method != nullptr && !method->IsNative()) {
    // When we are walking the stack to redefine classes and creating obsolete methods it is
    // possible that we might have updated the method_code_map by making this method obsolete in a
    // previous frame. Therefore we should just check that the non-obsolete version of this method
    // is the one we expect. We change to the non-obsolete versions in the error message since the
    // obsolete version of the method might not be fully initialized yet. This situation can only
    // occur when we are in the process of allocating and setting up obsolete methods. Otherwise
    // method and it->second should be identical. (See openjdkjvmti/ti_redefine.cc for more
    // information.)
    DCHECK_EQ(found_method->GetNonObsoleteMethod(), method->GetNonObsoleteMethod())
        << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " "
        << ArtMethod::PrettyMethod(found_method->GetNonObsoleteMethod()) << " "
        << std::hex << pc;
  }
  return method_header;
}

OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) {
  MutexLock mu(Thread::Current(), lock_);
  auto it = osr_code_map_.find(method);
  if (it == osr_code_map_.end()) {
    return nullptr;
  }
  return OatQuickMethodHeader::FromCodePointer(it->second);
}

ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self,
                                              ArtMethod* method,
                                              const std::vector<uint32_t>& entries,
                                              bool retry_allocation)
    // No thread safety analysis as we are using TryLock/Unlock explicitly.
    NO_THREAD_SAFETY_ANALYSIS {
  ProfilingInfo* info = nullptr;
  if (!retry_allocation) {
    // If we are allocating for the interpreter, just try to lock, to avoid
    // lock contention with the JIT.
    if (lock_.ExclusiveTryLock(self)) {
      info = AddProfilingInfoInternal(self, method, entries);
      lock_.ExclusiveUnlock(self);
    }
  } else {
    {
      MutexLock mu(self, lock_);
      info = AddProfilingInfoInternal(self, method, entries);
    }

    if (info == nullptr) {
      GarbageCollectCache(self);
      MutexLock mu(self, lock_);
      info = AddProfilingInfoInternal(self, method, entries);
    }
  }
  return info;
}

ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED,
                                                      ArtMethod* method,
                                                      const std::vector<uint32_t>& entries) {
  size_t profile_info_size = RoundUp(
      sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(),
      sizeof(void*));

  // Check whether some other thread has concurrently created it.
  ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
  if (info != nullptr) {
    return info;
  }

  uint8_t* data = AllocateData(profile_info_size);
  if (data == nullptr) {
    return nullptr;
  }
  info = new (data) ProfilingInfo(method, entries);

  // Make sure other threads see the data in the profiling info object before the
  // store in the ArtMethod's ProfilingInfo pointer.
  std::atomic_thread_fence(std::memory_order_release);

  method->SetProfilingInfo(info);
  profiling_infos_.push_back(info);
  histogram_profiling_info_memory_use_.AddValue(profile_info_size);
  return info;
}

// NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
// is already held.
void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
  if (mspace == exec_mspace_) {
    DCHECK(exec_mspace_ != nullptr);
    const MemMap* const code_pages = GetUpdatableCodeMapping();
    void* result = code_pages->Begin() + exec_end_;
    exec_end_ += increment;
    return result;
  } else {
    DCHECK_EQ(data_mspace_, mspace);
    void* result = data_pages_.Begin() + data_end_;
    data_end_ += increment;
    return result;
  }
}

void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations,
                                      std::vector<ProfileMethodInfo>& methods) {
  Thread* self = Thread::Current();
  WaitUntilInlineCacheAccessible(self);
  MutexLock mu(self, lock_);
  ScopedTrace trace(__FUNCTION__);
  uint16_t jit_compile_threshold = Runtime::Current()->GetJITOptions()->GetCompileThreshold();
  for (const ProfilingInfo* info : profiling_infos_) {
    ArtMethod* method = info->GetMethod();
    const DexFile* dex_file = method->GetDexFile();
    const std::string base_location = DexFileLoader::GetBaseLocation(dex_file->GetLocation());
    if (!ContainsElement(dex_base_locations, base_location)) {
      // Skip dex files which are not profiled.
      continue;
    }
    std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches;

    // If the method didn't reach the compilation threshold don't save the inline caches.
    // They might be incomplete and cause unnecessary deoptimizations.
    // If the inline cache is empty the compiler will generate a regular invoke virtual/interface.
    if (method->GetCounter() < jit_compile_threshold) {
      methods.emplace_back(/*ProfileMethodInfo*/
          MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches);
      continue;
    }

    for (size_t i = 0; i < info->number_of_inline_caches_; ++i) {
      std::vector<TypeReference> profile_classes;
      const InlineCache& cache = info->cache_[i];
      ArtMethod* caller = info->GetMethod();
      bool is_missing_types = false;
      for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) {
        mirror::Class* cls = cache.classes_[k].Read();
        if (cls == nullptr) {
          break;
        }

        // Check if the receiver is in the boot class path or if it's in the
        // same class loader as the caller. If not, skip it, as there is not
        // much we can do during AOT.
        if (!cls->IsBootStrapClassLoaded() &&
            caller->GetClassLoader() != cls->GetClassLoader()) {
          is_missing_types = true;
          continue;
        }

        const DexFile* class_dex_file = nullptr;
        dex::TypeIndex type_index;

        if (cls->GetDexCache() == nullptr) {
          DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
          // Make a best effort to find the type index in the method's dex file.
          // We could search all open dex files but that might turn expensive
          // and probably not worth it.
          class_dex_file = dex_file;
          type_index = cls->FindTypeIndexInOtherDexFile(*dex_file);
        } else {
          class_dex_file = &(cls->GetDexFile());
          type_index = cls->GetDexTypeIndex();
        }
        if (!type_index.IsValid()) {
          // Could be a proxy class or an array for which we couldn't find the type index.
          is_missing_types = true;
          continue;
        }
        if (ContainsElement(dex_base_locations,
                            DexFileLoader::GetBaseLocation(class_dex_file->GetLocation()))) {
          // Only consider classes from the same apk (including multidex).
          profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/
              class_dex_file, type_index);
        } else {
          is_missing_types = true;
        }
      }
      if (!profile_classes.empty()) {
        inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/
            cache.dex_pc_, is_missing_types, profile_classes);
      }
    }
    methods.emplace_back(/*ProfileMethodInfo*/
        MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches);
  }
}

bool JitCodeCache::IsOsrCompiled(ArtMethod* method) {
  MutexLock mu(Thread::Current(), lock_);
  return osr_code_map_.find(method) != osr_code_map_.end();
}

bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) {
  if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
    return false;
  }

  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  if (class_linker->IsQuickResolutionStub(method->GetEntryPointFromQuickCompiledCode())) {
    if (!Runtime::Current()->IsUsingApexBootImageLocation() || !Runtime::Current()->IsZygote()) {
      // Unless we're running as zygote in the jitzygote experiment, we currently don't save
      // the JIT compiled code if we cannot update the entrypoint due to having the resolution stub.
      VLOG(jit) << "Not compiling "
                << method->PrettyMethod()
                << " because it has the resolution stub";
      // Give it a new chance to be hot.
      ClearMethodCounter(method, /*was_warm=*/ false);
      return false;
    }
  }

  MutexLock mu(self, lock_);
  if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) {
    return false;
  }

  if (UNLIKELY(method->IsNative())) {
    JniStubKey key(method);
    auto it = jni_stubs_map_.find(key);
    bool new_compilation = false;
    if (it == jni_stubs_map_.end()) {
      // Create a new entry to mark the stub as being compiled.
      it = jni_stubs_map_.Put(key, JniStubData{});
      new_compilation = true;
    }
    JniStubData* data = &it->second;
    data->AddMethod(method);
    if (data->IsCompiled()) {
      OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(data->GetCode());
      const void* entrypoint = method_header->GetEntryPoint();
      // Update also entrypoints of other methods held by the JniStubData.
      // We could simply update the entrypoint of `method` but if the last JIT GC has
      // changed these entrypoints to GenericJNI in preparation for a full GC, we may
      // as well change them back as this stub shall not be collected anyway and this
      // can avoid a few expensive GenericJNI calls.
      instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
      for (ArtMethod* m : data->GetMethods()) {
        // Call the dedicated method instead of the more generic UpdateMethodsCode, because
        // `m` might be in the process of being deleted.
        if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) {
          instrumentation->UpdateNativeMethodsCodeToJitCode(m, entrypoint);
        }
      }
      if (collection_in_progress_) {
        if (!IsInZygoteExecSpace(data->GetCode())) {
          GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(data->GetCode()));
        }
      }
    }
    return new_compilation;
  } else {
    ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
    if (info == nullptr) {
      VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled";
      // Because the counter is not atomic, there are some rare cases where we may not hit the
      // threshold for creating the ProfilingInfo. Reset the counter now to "correct" this.
      ClearMethodCounter(method, /*was_warm=*/ false);
      return false;
    }

    if (info->IsMethodBeingCompiled(osr)) {
      return false;
    }

    info->SetIsMethodBeingCompiled(true, osr);
    return true;
  }
}

ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) {
  MutexLock mu(self, lock_);
  ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
  if (info != nullptr) {
    if (!info->IncrementInlineUse()) {
      // Overflow of inlining uses, just bail.
      return nullptr;
    }
  }
  return info;
}

void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) {
  MutexLock mu(self, lock_);
  ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
  DCHECK(info != nullptr);
  info->DecrementInlineUse();
}

void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self, bool osr) {
  DCHECK_EQ(Thread::Current(), self);
  MutexLock mu(self, lock_);
  if (UNLIKELY(method->IsNative())) {
    auto it = jni_stubs_map_.find(JniStubKey(method));
    DCHECK(it != jni_stubs_map_.end());
    JniStubData* data = &it->second;
    DCHECK(ContainsElement(data->GetMethods(), method));
    if (UNLIKELY(!data->IsCompiled())) {
      // Failed to compile; the JNI compiler never fails, but the cache may be full.
      jni_stubs_map_.erase(it);  // Remove the entry added in NotifyCompilationOf().
    }  // else CommitCodeInternal() updated entrypoints of all methods in the JniStubData.
  } else {
    ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
    DCHECK(info->IsMethodBeingCompiled(osr));
    info->SetIsMethodBeingCompiled(false, osr);
  }
}

void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method,
                                             const OatQuickMethodHeader* header) {
  DCHECK(!method->IsNative());
  ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
  const void* method_entrypoint = method->GetEntryPointFromQuickCompiledCode();
  if ((profiling_info != nullptr) &&
      (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) {
    // When instrumentation is set, the actual entrypoint is the one in the profiling info.
    method_entrypoint = profiling_info->GetSavedEntryPoint();
    // Prevent future uses of the compiled code.
    profiling_info->SetSavedEntryPoint(nullptr);
  }

  // Clear the method counter if we are running jitted code since we might want to jit this again in
  // the future.
  if (method_entrypoint == header->GetEntryPoint()) {
    // The entrypoint is the one to invalidate, so we just update it to the interpreter entry point
    // and clear the counter to get the method Jitted again.
    Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
        method, GetQuickToInterpreterBridge());
    ClearMethodCounter(method, /*was_warm=*/ profiling_info != nullptr);
  } else {
    MutexLock mu(Thread::Current(), lock_);
    auto it = osr_code_map_.find(method);
    if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) {
      // Remove the OSR method, to avoid using it again.
      osr_code_map_.erase(it);
    }
  }
}

uint8_t* JitCodeCache::AllocateCode(size_t allocation_size) {
  // Each allocation should be on its own set of cache lines. The allocation must be large enough
  // for header, code, and any padding.
  size_t alignment = GetJitCodeAlignment();
  uint8_t* result = reinterpret_cast<uint8_t*>(
      mspace_memalign(exec_mspace_, alignment, allocation_size));
  size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment);
  // Ensure the header ends up at expected instruction alignment.
  DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment);
  used_memory_for_code_ += mspace_usable_size(result);
  return result;
}

void JitCodeCache::FreeCode(uint8_t* code) {
  if (IsInZygoteExecSpace(code)) {
    // No need to free, this is shared memory.
    return;
  }
  used_memory_for_code_ -= mspace_usable_size(code);
  mspace_free(exec_mspace_, code);
}

uint8_t* JitCodeCache::AllocateData(size_t data_size) {
  void* result = mspace_malloc(data_mspace_, data_size);
  used_memory_for_data_ += mspace_usable_size(result);
  return reinterpret_cast<uint8_t*>(result);
}

void JitCodeCache::FreeData(uint8_t* data) {
  if (IsInZygoteDataSpace(data)) {
    // No need to free, this is shared memory.
    return;
  }
  used_memory_for_data_ -= mspace_usable_size(data);
  mspace_free(data_mspace_, data);
}

void JitCodeCache::Dump(std::ostream& os) {
  MutexLock mu(Thread::Current(), lock_);
  os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n"
     << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n"
     << "Current JIT mini-debug-info size: " << PrettySize(GetJitMiniDebugInfoMemUsage()) << "\n"
     << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n"
     << "Current number of JIT JNI stub entries: " << jni_stubs_map_.size() << "\n"
     << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n"
     << "Total number of JIT compilations: " << number_of_compilations_ << "\n"
     << "Total number of JIT compilations for on stack replacement: "
        << number_of_osr_compilations_ << "\n"
     << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl;
  histogram_stack_map_memory_use_.PrintMemoryUse(os);
  histogram_code_memory_use_.PrintMemoryUse(os);
  histogram_profiling_info_memory_use_.PrintMemoryUse(os);
}

void JitCodeCache::PostForkChildAction(bool is_system_server, bool is_zygote) {
  if (is_zygote) {
    // Don't transition if this is for a child zygote.
    return;
  }
  MutexLock mu(Thread::Current(), lock_);

  zygote_data_pages_ = std::move(data_pages_);
  zygote_exec_pages_ = std::move(exec_pages_);
  zygote_data_mspace_ = data_mspace_;
  zygote_exec_mspace_ = exec_mspace_;

  size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity();
  size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity();

  InitializeState(initial_capacity, max_capacity);

  std::string error_msg;
  if (!InitializeMappings(/* rwx_memory_allowed= */ !is_system_server, is_zygote, &error_msg)) {
    LOG(WARNING) << "Could not reset JIT state after zygote fork: " << error_msg;
    return;
  }

  InitializeSpaces();
}

}  // namespace jit
}  // namespace art