summaryrefslogtreecommitdiff
path: root/runtime/verifier/reg_type.cc
blob: 845bcdc087b40648f41c22b62fe9bccde32ab03b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "reg_type-inl.h"

#include "android-base/stringprintf.h"

#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/casts.h"
#include "class_linker-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "method_verifier.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "reg_type_cache-inl.h"
#include "scoped_thread_state_change-inl.h"

#include <limits>
#include <sstream>

namespace art HIDDEN {
namespace verifier {

using android::base::StringPrintf;

PrimitiveType::PrimitiveType(Handle<mirror::Class> klass,
                             const std::string_view& descriptor,
                             uint16_t cache_id)
    : RegType(klass, descriptor, cache_id) {
  CHECK(klass != nullptr);
  CHECK(!descriptor.empty());
}

Cat1Type::Cat1Type(Handle<mirror::Class> klass,
                   const std::string_view& descriptor,
                   uint16_t cache_id)
    : PrimitiveType(klass, descriptor, cache_id) {
}

Cat2Type::Cat2Type(Handle<mirror::Class> klass,
                   const std::string_view& descriptor,
                   uint16_t cache_id)
    : PrimitiveType(klass, descriptor, cache_id) {
}

std::string PreciseConstType::Dump() const {
  std::stringstream result;
  uint32_t val = ConstantValue();
  if (val == 0) {
    CHECK(IsPreciseConstant());
    result << "Zero/null";
  } else {
    result << "Precise ";
    if (IsConstantShort()) {
      result << StringPrintf("Constant: %d", val);
    } else {
      result << StringPrintf("Constant: 0x%x", val);
    }
  }
  return result.str();
}

std::string BooleanType::Dump() const {
  return "Boolean";
}

std::string ConflictType::Dump() const {
    return "Conflict";
}

std::string ByteType::Dump() const {
  return "Byte";
}

std::string ShortType::Dump() const {
  return "Short";
}

std::string CharType::Dump() const {
  return "Char";
}

std::string FloatType::Dump() const {
  return "Float";
}

std::string LongLoType::Dump() const {
  return "Long (Low Half)";
}

std::string LongHiType::Dump() const {
  return "Long (High Half)";
}

std::string DoubleLoType::Dump() const {
  return "Double (Low Half)";
}

std::string DoubleHiType::Dump() const {
  return "Double (High Half)";
}

std::string IntegerType::Dump() const {
  return "Integer";
}

std::string UndefinedType::Dump() const REQUIRES_SHARED(Locks::mutator_lock_) {
  return "Undefined";
}

PreciseReferenceType::PreciseReferenceType(Handle<mirror::Class> klass,
                                           const std::string_view& descriptor,
                                           uint16_t cache_id)
    : RegType(klass, descriptor, cache_id) {
  // Note: no check for IsInstantiable() here. We may produce this in case an InstantiationError
  //       would be thrown at runtime, but we need to continue verification and *not* create a
  //       hard failure or abort.
  CheckConstructorInvariants(this);
}

std::string UnresolvedMergedType::Dump() const {
  std::stringstream result;
  result << "UnresolvedMergedReferences(" << GetResolvedPart().Dump() << " | ";
  const BitVector& types = GetUnresolvedTypes();

  bool first = true;
  for (uint32_t idx : types.Indexes()) {
    if (!first) {
      result << ", ";
    } else {
      first = false;
    }
    result << reg_type_cache_->GetFromId(idx).Dump();
  }
  result << ")";
  return result.str();
}

std::string UnresolvedSuperClass::Dump() const {
  std::stringstream result;
  uint16_t super_type_id = GetUnresolvedSuperClassChildId();
  result << "UnresolvedSuperClass(" << reg_type_cache_->GetFromId(super_type_id).Dump() << ")";
  return result.str();
}

std::string UnresolvedReferenceType::Dump() const {
  std::stringstream result;
  result << "Unresolved Reference: " << PrettyDescriptor(std::string(GetDescriptor()).c_str());
  return result.str();
}

std::string UnresolvedUninitializedRefType::Dump() const {
  std::stringstream result;
  result << "Unresolved And Uninitialized Reference: "
      << PrettyDescriptor(std::string(GetDescriptor()).c_str())
      << " Allocation PC: " << GetAllocationPc();
  return result.str();
}

std::string UnresolvedUninitializedThisRefType::Dump() const {
  std::stringstream result;
  result << "Unresolved And Uninitialized This Reference: "
      << PrettyDescriptor(std::string(GetDescriptor()).c_str());
  return result.str();
}

std::string ReferenceType::Dump() const {
  std::stringstream result;
  result << "Reference: " << mirror::Class::PrettyDescriptor(GetClass());
  return result.str();
}

std::string PreciseReferenceType::Dump() const {
  std::stringstream result;
  result << "Precise Reference: " << mirror::Class::PrettyDescriptor(GetClass());
  return result.str();
}

std::string UninitializedReferenceType::Dump() const {
  std::stringstream result;
  result << "Uninitialized Reference: " << mirror::Class::PrettyDescriptor(GetClass());
  result << " Allocation PC: " << GetAllocationPc();
  return result.str();
}

std::string UninitializedThisReferenceType::Dump() const {
  std::stringstream result;
  result << "Uninitialized This Reference: " << mirror::Class::PrettyDescriptor(GetClass());
  result << "Allocation PC: " << GetAllocationPc();
  return result.str();
}

std::string ImpreciseConstType::Dump() const {
  std::stringstream result;
  uint32_t val = ConstantValue();
  if (val == 0) {
    result << "Zero/null";
  } else {
    result << "Imprecise ";
    if (IsConstantShort()) {
      result << StringPrintf("Constant: %d", val);
    } else {
      result << StringPrintf("Constant: 0x%x", val);
    }
  }
  return result.str();
}
std::string PreciseConstLoType::Dump() const {
  std::stringstream result;

  int32_t val = ConstantValueLo();
  result << "Precise ";
  if (val >= std::numeric_limits<jshort>::min() &&
      val <= std::numeric_limits<jshort>::max()) {
    result << StringPrintf("Low-half Constant: %d", val);
  } else {
    result << StringPrintf("Low-half Constant: 0x%x", val);
  }
  return result.str();
}

std::string ImpreciseConstLoType::Dump() const {
  std::stringstream result;

  int32_t val = ConstantValueLo();
  result << "Imprecise ";
  if (val >= std::numeric_limits<jshort>::min() &&
      val <= std::numeric_limits<jshort>::max()) {
    result << StringPrintf("Low-half Constant: %d", val);
  } else {
    result << StringPrintf("Low-half Constant: 0x%x", val);
  }
  return result.str();
}

std::string PreciseConstHiType::Dump() const {
  std::stringstream result;
  int32_t val = ConstantValueHi();
  result << "Precise ";
  if (val >= std::numeric_limits<jshort>::min() &&
      val <= std::numeric_limits<jshort>::max()) {
    result << StringPrintf("High-half Constant: %d", val);
  } else {
    result << StringPrintf("High-half Constant: 0x%x", val);
  }
  return result.str();
}

std::string ImpreciseConstHiType::Dump() const {
  std::stringstream result;
  int32_t val = ConstantValueHi();
  result << "Imprecise ";
  if (val >= std::numeric_limits<jshort>::min() &&
      val <= std::numeric_limits<jshort>::max()) {
    result << StringPrintf("High-half Constant: %d", val);
  } else {
    result << StringPrintf("High-half Constant: 0x%x", val);
  }
  return result.str();
}

const RegType& RegType::HighHalf(RegTypeCache* cache) const {
  DCHECK(IsLowHalf());
  if (IsLongLo()) {
    return cache->LongHi();
  } else if (IsDoubleLo()) {
    return cache->DoubleHi();
  } else {
    DCHECK(IsImpreciseConstantLo());
    const ConstantType* const_val = down_cast<const ConstantType*>(this);
    return cache->FromCat2ConstHi(const_val->ConstantValue(), false);
  }
}

Primitive::Type RegType::GetPrimitiveType() const {
  if (IsNonZeroReferenceTypes()) {
    return Primitive::kPrimNot;
  } else if (IsBooleanTypes()) {
    return Primitive::kPrimBoolean;
  } else if (IsByteTypes()) {
    return Primitive::kPrimByte;
  } else if (IsShortTypes()) {
    return Primitive::kPrimShort;
  } else if (IsCharTypes()) {
    return Primitive::kPrimChar;
  } else if (IsFloat()) {
    return Primitive::kPrimFloat;
  } else if (IsIntegralTypes()) {
    return Primitive::kPrimInt;
  } else if (IsDoubleLo()) {
    return Primitive::kPrimDouble;
  } else {
    DCHECK(IsLongTypes());
    return Primitive::kPrimLong;
  }
}

bool UninitializedType::IsUninitializedTypes() const {
  return true;
}

bool UninitializedType::IsNonZeroReferenceTypes() const {
  return true;
}

bool UnresolvedType::IsNonZeroReferenceTypes() const {
  return true;
}

const RegType& RegType::GetSuperClass(RegTypeCache* cache) const {
  if (!IsUnresolvedTypes()) {
    ObjPtr<mirror::Class> super_klass = GetClass()->GetSuperClass();
    if (super_klass != nullptr) {
      // A super class of a precise type isn't precise as a precise type indicates the register
      // holds exactly that type.
      std::string temp;
      return cache->FromClass(super_klass->GetDescriptor(&temp), super_klass, false);
    } else {
      return cache->Zero();
    }
  } else {
    if (!IsUnresolvedMergedReference() && !IsUnresolvedSuperClass() &&
        GetDescriptor()[0] == '[') {
      // Super class of all arrays is Object.
      return cache->JavaLangObject(true);
    } else {
      return cache->FromUnresolvedSuperClass(*this);
    }
  }
}

bool RegType::IsJavaLangObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
  return IsReference() && GetClass()->IsObjectClass();
}

bool RegType::IsObjectArrayTypes() const REQUIRES_SHARED(Locks::mutator_lock_) {
  if (IsUnresolvedTypes()) {
    DCHECK(!IsUnresolvedMergedReference());

    if (IsUnresolvedSuperClass()) {
      // Cannot be an array, as the superclass of arrays is java.lang.Object (which cannot be
      // unresolved).
      return false;
    }

    // Primitive arrays will always resolve.
    DCHECK(descriptor_[1] == 'L' || descriptor_[1] == '[');
    return descriptor_[0] == '[';
  } else if (HasClass()) {
    ObjPtr<mirror::Class> type = GetClass();
    return type->IsArrayClass() && !type->GetComponentType()->IsPrimitive();
  } else {
    return false;
  }
}

bool RegType::IsArrayTypes() const REQUIRES_SHARED(Locks::mutator_lock_) {
  if (IsUnresolvedTypes()) {
    DCHECK(!IsUnresolvedMergedReference());

    if (IsUnresolvedSuperClass()) {
      // Cannot be an array, as the superclass of arrays is java.lang.Object (which cannot be
      // unresolved).
      return false;
    }
    return descriptor_[0] == '[';
  } else if (HasClass()) {
    return GetClass()->IsArrayClass();
  } else {
    return false;
  }
}

bool RegType::IsJavaLangObjectArray() const {
  if (HasClass()) {
    ObjPtr<mirror::Class> type = GetClass();
    return type->IsArrayClass() && type->GetComponentType()->IsObjectClass();
  }
  return false;
}

bool RegType::IsInstantiableTypes() const {
  return IsUnresolvedTypes() || (IsNonZeroReferenceTypes() && GetClass()->IsInstantiable());
}

static const RegType& SelectNonConstant(const RegType& a, const RegType& b) {
  return a.IsConstantTypes() ? b : a;
}

static const RegType& SelectNonConstant2(const RegType& a, const RegType& b) {
  return a.IsConstantTypes() ? (b.IsZero() ? a : b) : a;
}


namespace {

ObjPtr<mirror::Class> ArrayClassJoin(ObjPtr<mirror::Class> s,
                                     ObjPtr<mirror::Class> t,
                                     ClassLinker* class_linker)
    REQUIRES_SHARED(Locks::mutator_lock_);

ObjPtr<mirror::Class> InterfaceClassJoin(ObjPtr<mirror::Class> s, ObjPtr<mirror::Class> t)
    REQUIRES_SHARED(Locks::mutator_lock_);

/*
 * A basic Join operation on classes. For a pair of types S and T the Join, written S v T = J, is
 * S <: J, T <: J and for-all U such that S <: U, T <: U then J <: U. That is J is the parent of
 * S and T such that there isn't a parent of both S and T that isn't also the parent of J (ie J
 * is the deepest (lowest upper bound) parent of S and T).
 *
 * This operation applies for regular classes and arrays, however, for interface types there
 * needn't be a partial ordering on the types. We could solve the problem of a lack of a partial
 * order by introducing sets of types, however, the only operation permissible on an interface is
 * invoke-interface. In the tradition of Java verifiers [1] we defer the verification of interface
 * types until an invoke-interface call on the interface typed reference at runtime and allow
 * the perversion of Object being assignable to an interface type (note, however, that we don't
 * allow assignment of Object or Interface to any concrete class and are therefore type safe).
 *
 * Note: This may return null in case of internal errors, e.g., OOME when a new class would have
 *       to be created but there is no heap space. The exception will stay pending, and it is
 *       the job of the caller to handle it.
 *
 * [1] Java bytecode verification: algorithms and formalizations, Xavier Leroy
 */
ObjPtr<mirror::Class> ClassJoin(ObjPtr<mirror::Class> s,
                                ObjPtr<mirror::Class> t,
                                ClassLinker* class_linker)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(!s->IsPrimitive()) << s->PrettyClass();
  DCHECK(!t->IsPrimitive()) << t->PrettyClass();
  if (s == t) {
    return s;
  } else if (s->IsAssignableFrom(t)) {
    return s;
  } else if (t->IsAssignableFrom(s)) {
    return t;
  } else if (s->IsArrayClass() && t->IsArrayClass()) {
    return ArrayClassJoin(s, t, class_linker);
  } else if (s->IsInterface() || t->IsInterface()) {
    return InterfaceClassJoin(s, t);
  } else {
    size_t s_depth = s->Depth();
    size_t t_depth = t->Depth();
    // Get s and t to the same depth in the hierarchy
    if (s_depth > t_depth) {
      while (s_depth > t_depth) {
        s = s->GetSuperClass();
        s_depth--;
      }
    } else {
      while (t_depth > s_depth) {
        t = t->GetSuperClass();
        t_depth--;
      }
    }
    // Go up the hierarchy until we get to the common parent
    while (s != t) {
      s = s->GetSuperClass();
      t = t->GetSuperClass();
    }
    return s;
  }
}

ObjPtr<mirror::Class> ArrayClassJoin(ObjPtr<mirror::Class> s,
                                     ObjPtr<mirror::Class> t,
                                     ClassLinker* class_linker) {
  ObjPtr<mirror::Class> s_ct = s->GetComponentType();
  ObjPtr<mirror::Class> t_ct = t->GetComponentType();
  if (s_ct->IsPrimitive() || t_ct->IsPrimitive()) {
    // Given the types aren't the same, if either array is of primitive types then the only
    // common parent is java.lang.Object
    ObjPtr<mirror::Class> result = s->GetSuperClass();  // short-cut to java.lang.Object
    DCHECK(result->IsObjectClass());
    return result;
  }
  Thread* self = Thread::Current();
  ObjPtr<mirror::Class> common_elem = ClassJoin(s_ct, t_ct, class_linker);
  if (UNLIKELY(common_elem == nullptr)) {
    self->AssertPendingException();
    return nullptr;
  }
  // Note: The following lookup invalidates existing ObjPtr<>s.
  ObjPtr<mirror::Class> array_class = class_linker->FindArrayClass(self, common_elem);
  if (UNLIKELY(array_class == nullptr)) {
    self->AssertPendingException();
    return nullptr;
  }
  return array_class;
}

ObjPtr<mirror::Class> InterfaceClassJoin(ObjPtr<mirror::Class> s, ObjPtr<mirror::Class> t) {
  // This is expensive, as we do not have good data structures to do this even halfway
  // efficiently.
  //
  // We're not following JVMS for interface verification (not everything is assignable to an
  // interface, we trade this for IMT dispatch). We also don't have set types to make up for
  // it. So we choose one arbitrary common ancestor interface by walking the interface tables
  // backwards.
  //
  // For comparison, runtimes following the JVMS will punt all interface type checking to
  // runtime.
  ObjPtr<mirror::IfTable> s_if = s->GetIfTable();
  int32_t s_if_count = s->GetIfTableCount();
  ObjPtr<mirror::IfTable> t_if = t->GetIfTable();
  int32_t t_if_count = t->GetIfTableCount();

  // Note: we'll be using index == count to stand for the argument itself.
  for (int32_t s_it = s_if_count; s_it >= 0; --s_it) {
    ObjPtr<mirror::Class> s_cl = s_it == s_if_count ? s : s_if->GetInterface(s_it);
    if (!s_cl->IsInterface()) {
      continue;
    }

    for (int32_t t_it = t_if_count; t_it >= 0; --t_it) {
      ObjPtr<mirror::Class> t_cl = t_it == t_if_count ? t : t_if->GetInterface(t_it);
      if (!t_cl->IsInterface()) {
        continue;
      }

      if (s_cl == t_cl) {
        // Found something arbitrary in common.
        return s_cl;
      }
    }
  }

  // Return java.lang.Object.
  ObjPtr<mirror::Class> obj_class = s->IsInterface() ? s->GetSuperClass() : t->GetSuperClass();
  DCHECK(obj_class->IsObjectClass());
  return obj_class;
}

}  // namespace

const RegType& RegType::Merge(const RegType& incoming_type,
                              RegTypeCache* reg_types,
                              MethodVerifier* verifier) const {
  DCHECK(!Equals(incoming_type));  // Trivial equality handled by caller
  // Perform pointer equality tests for undefined and conflict to avoid virtual method dispatch.
  const UndefinedType& undefined = reg_types->Undefined();
  const ConflictType& conflict = reg_types->Conflict();
  DCHECK_EQ(this == &undefined, IsUndefined());
  DCHECK_EQ(&incoming_type == &undefined, incoming_type.IsUndefined());
  DCHECK_EQ(this == &conflict, IsConflict());
  DCHECK_EQ(&incoming_type == &conflict, incoming_type.IsConflict());
  if (this == &undefined || &incoming_type == &undefined) {
    // There is a difference between undefined and conflict. Conflicts may be copied around, but
    // not used. Undefined registers must not be copied. So any merge with undefined should return
    // undefined.
    return undefined;
  } else if (this == &conflict || &incoming_type == &conflict) {
    return conflict;  // (Conflict MERGE *) or (* MERGE Conflict) => Conflict
  } else if (IsConstant() && incoming_type.IsConstant()) {
    const ConstantType& type1 = *down_cast<const ConstantType*>(this);
    const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
    int32_t val1 = type1.ConstantValue();
    int32_t val2 = type2.ConstantValue();
    if (val1 >= 0 && val2 >= 0) {
      // +ve1 MERGE +ve2 => MAX(+ve1, +ve2)
      if (val1 >= val2) {
        if (!type1.IsPreciseConstant()) {
          return *this;
        } else {
          return reg_types->FromCat1Const(val1, false);
        }
      } else {
        if (!type2.IsPreciseConstant()) {
          return type2;
        } else {
          return reg_types->FromCat1Const(val2, false);
        }
      }
    } else if (val1 < 0 && val2 < 0) {
      // -ve1 MERGE -ve2 => MIN(-ve1, -ve2)
      if (val1 <= val2) {
        if (!type1.IsPreciseConstant()) {
          return *this;
        } else {
          return reg_types->FromCat1Const(val1, false);
        }
      } else {
        if (!type2.IsPreciseConstant()) {
          return type2;
        } else {
          return reg_types->FromCat1Const(val2, false);
        }
      }
    } else {
      // Values are +ve and -ve, choose smallest signed type in which they both fit
      if (type1.IsConstantByte()) {
        if (type2.IsConstantByte()) {
          return reg_types->ByteConstant();
        } else if (type2.IsConstantShort()) {
          return reg_types->ShortConstant();
        } else {
          return reg_types->IntConstant();
        }
      } else if (type1.IsConstantShort()) {
        if (type2.IsConstantShort()) {
          return reg_types->ShortConstant();
        } else {
          return reg_types->IntConstant();
        }
      } else {
        return reg_types->IntConstant();
      }
    }
  } else if (IsConstantLo() && incoming_type.IsConstantLo()) {
    const ConstantType& type1 = *down_cast<const ConstantType*>(this);
    const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
    int32_t val1 = type1.ConstantValueLo();
    int32_t val2 = type2.ConstantValueLo();
    return reg_types->FromCat2ConstLo(val1 | val2, false);
  } else if (IsConstantHi() && incoming_type.IsConstantHi()) {
    const ConstantType& type1 = *down_cast<const ConstantType*>(this);
    const ConstantType& type2 = *down_cast<const ConstantType*>(&incoming_type);
    int32_t val1 = type1.ConstantValueHi();
    int32_t val2 = type2.ConstantValueHi();
    return reg_types->FromCat2ConstHi(val1 | val2, false);
  } else if (IsIntegralTypes() && incoming_type.IsIntegralTypes()) {
    if (IsBooleanTypes() && incoming_type.IsBooleanTypes()) {
      return reg_types->Boolean();  // boolean MERGE boolean => boolean
    }
    if (IsByteTypes() && incoming_type.IsByteTypes()) {
      return reg_types->Byte();  // byte MERGE byte => byte
    }
    if (IsShortTypes() && incoming_type.IsShortTypes()) {
      return reg_types->Short();  // short MERGE short => short
    }
    if (IsCharTypes() && incoming_type.IsCharTypes()) {
      return reg_types->Char();  // char MERGE char => char
    }
    return reg_types->Integer();  // int MERGE * => int
  } else if ((IsFloatTypes() && incoming_type.IsFloatTypes()) ||
             (IsLongTypes() && incoming_type.IsLongTypes()) ||
             (IsLongHighTypes() && incoming_type.IsLongHighTypes()) ||
             (IsDoubleTypes() && incoming_type.IsDoubleTypes()) ||
             (IsDoubleHighTypes() && incoming_type.IsDoubleHighTypes())) {
    // check constant case was handled prior to entry
    DCHECK_IMPLIES(IsConstant(), !incoming_type.IsConstant());
    // float/long/double MERGE float/long/double_constant => float/long/double
    return SelectNonConstant(*this, incoming_type);
  } else if (IsReferenceTypes() && incoming_type.IsReferenceTypes()) {
    if (IsUninitializedTypes() || incoming_type.IsUninitializedTypes()) {
      // Something that is uninitialized hasn't had its constructor called. Unitialized types are
      // special. They may only ever be merged with themselves (must be taken care of by the
      // caller of Merge(), see the DCHECK on entry). So mark any other merge as conflicting here.
      return conflict;
    } else if (IsZeroOrNull() || incoming_type.IsZeroOrNull()) {
      return SelectNonConstant2(*this, incoming_type);  // 0 MERGE ref => ref
    } else if (IsJavaLangObject() || incoming_type.IsJavaLangObject()) {
      return reg_types->JavaLangObject(false);  // Object MERGE ref => Object
    } else if (IsUnresolvedTypes() || incoming_type.IsUnresolvedTypes()) {
      // We know how to merge an unresolved type with itself, 0 or Object. In this case we
      // have two sub-classes and don't know how to merge. Create a new string-based unresolved
      // type that reflects our lack of knowledge and that allows the rest of the unresolved
      // mechanics to continue.
      return reg_types->FromUnresolvedMerge(*this, incoming_type, verifier);
    } else {  // Two reference types, compute Join
      // Do not cache the classes as ClassJoin() can suspend and invalidate ObjPtr<>s.
      DCHECK(GetClass() != nullptr && !GetClass()->IsPrimitive());
      DCHECK(incoming_type.GetClass() != nullptr && !incoming_type.GetClass()->IsPrimitive());
      ObjPtr<mirror::Class> join_class = ClassJoin(GetClass(),
                                                   incoming_type.GetClass(),
                                                   reg_types->GetClassLinker());
      if (UNLIKELY(join_class == nullptr)) {
        // Internal error joining the classes (e.g., OOME). Report an unresolved reference type.
        // We cannot report an unresolved merge type, as that will attempt to merge the resolved
        // components, leaving us in an infinite loop.
        // We do not want to report the originating exception, as that would require a fast path
        // out all the way to VerifyClass. Instead attempt to continue on without a detailed type.
        Thread* self = Thread::Current();
        self->AssertPendingException();
        self->ClearException();

        // When compiling on the host, we rather want to abort to ensure determinism for preopting.
        // (In that case, it is likely a misconfiguration of dex2oat.)
        if (!kIsTargetBuild && (verifier != nullptr && verifier->IsAotMode())) {
          LOG(FATAL) << "Could not create class join of "
                     << GetClass()->PrettyClass()
                     << " & "
                     << incoming_type.GetClass()->PrettyClass();
          UNREACHABLE();
        }

        return reg_types->MakeUnresolvedReference();
      }

      // Record the dependency that both `GetClass()` and `incoming_type.GetClass()`
      // are assignable to `join_class`. The `verifier` is null during unit tests.
      if (verifier != nullptr) {
        VerifierDeps::MaybeRecordAssignability(verifier->GetVerifierDeps(),
                                               verifier->GetDexFile(),
                                               verifier->GetClassDef(),
                                               join_class,
                                               GetClass());
        VerifierDeps::MaybeRecordAssignability(verifier->GetVerifierDeps(),
                                               verifier->GetDexFile(),
                                               verifier->GetClassDef(),
                                               join_class,
                                               incoming_type.GetClass());
      }
      if (GetClass() == join_class && !IsPreciseReference()) {
        return *this;
      } else if (incoming_type.GetClass() == join_class && !incoming_type.IsPreciseReference()) {
        return incoming_type;
      } else {
        std::string temp;
        const char* descriptor = join_class->GetDescriptor(&temp);
        return reg_types->FromClass(descriptor, join_class, /* precise= */ false);
      }
    }
  } else {
    return conflict;  // Unexpected types => Conflict
  }
}

void RegType::CheckInvariants() const {
  if (IsConstant() || IsConstantLo() || IsConstantHi()) {
    CHECK(descriptor_.empty()) << *this;
    CHECK(klass_.IsNull()) << *this;
  }
  if (!klass_.IsNull()) {
    CHECK(!descriptor_.empty()) << *this;
    std::string temp;
    CHECK_EQ(descriptor_, klass_->GetDescriptor(&temp)) << *this;
  }
}

void UninitializedThisReferenceType::CheckInvariants() const {
  CHECK_EQ(GetAllocationPc(), 0U) << *this;
}

void UnresolvedUninitializedThisRefType::CheckInvariants() const {
  CHECK_EQ(GetAllocationPc(), 0U) << *this;
  CHECK(!descriptor_.empty()) << *this;
  CHECK(!HasClass()) << *this;
}

void UnresolvedUninitializedRefType::CheckInvariants() const {
  CHECK(!descriptor_.empty()) << *this;
  CHECK(!HasClass()) << *this;
}

UnresolvedMergedType::UnresolvedMergedType(const RegType& resolved,
                                           const BitVector& unresolved,
                                           const RegTypeCache* reg_type_cache,
                                           uint16_t cache_id)
    : UnresolvedType(reg_type_cache->GetNullHandle(), "", cache_id),
      reg_type_cache_(reg_type_cache),
      resolved_part_(resolved),
      unresolved_types_(unresolved, false, unresolved.GetAllocator()) {
  CheckConstructorInvariants(this);
}
void UnresolvedMergedType::CheckInvariants() const {
  CHECK(reg_type_cache_ != nullptr);

  // Unresolved merged types: merged types should be defined.
  CHECK(descriptor_.empty()) << *this;
  CHECK(!HasClass()) << *this;

  CHECK(!resolved_part_.IsConflict());
  CHECK(resolved_part_.IsReferenceTypes());
  CHECK(!resolved_part_.IsUnresolvedTypes());

  CHECK(resolved_part_.IsZero() ||
        !(resolved_part_.IsArrayTypes() && !resolved_part_.IsObjectArrayTypes()));

  CHECK_GT(unresolved_types_.NumSetBits(), 0U);
  bool unresolved_is_array =
      reg_type_cache_->GetFromId(unresolved_types_.GetHighestBitSet()).IsArrayTypes();
  for (uint32_t idx : unresolved_types_.Indexes()) {
    const RegType& t = reg_type_cache_->GetFromId(idx);
    CHECK_EQ(unresolved_is_array, t.IsArrayTypes());
  }

  if (!resolved_part_.IsZero()) {
    CHECK_EQ(resolved_part_.IsArrayTypes(), unresolved_is_array);
  }
}

bool UnresolvedMergedType::IsArrayTypes() const {
  // For a merge to be an array, both the resolved and the unresolved part need to be object
  // arrays.
  // (Note: we encode a missing resolved part [which doesn't need to be an array] as zero.)

  if (!resolved_part_.IsZero() && !resolved_part_.IsArrayTypes()) {
    return false;
  }

  // It is enough to check just one of the merged types. Otherwise the merge should have been
  // collapsed (checked in CheckInvariants on construction).
  uint32_t idx = unresolved_types_.GetHighestBitSet();
  const RegType& unresolved = reg_type_cache_->GetFromId(idx);
  return unresolved.IsArrayTypes();
}
bool UnresolvedMergedType::IsObjectArrayTypes() const {
  // Same as IsArrayTypes, as primitive arrays are always resolved.
  return IsArrayTypes();
}

void UnresolvedReferenceType::CheckInvariants() const {
  CHECK(!descriptor_.empty()) << *this;
  CHECK(!HasClass()) << *this;
}

void UnresolvedSuperClass::CheckInvariants() const {
  // Unresolved merged types: merged types should be defined.
  CHECK(descriptor_.empty()) << *this;
  CHECK(!HasClass()) << *this;
  CHECK_NE(unresolved_child_id_, 0U) << *this;
}

std::ostream& operator<<(std::ostream& os, const RegType& rhs) {
  os << rhs.Dump();
  return os;
}

}  // namespace verifier
}  // namespace art