/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include "pthread_internal.h" #include "private/bionic_macros.h" #include "private/bionic_prctl.h" #include "private/bionic_ssp.h" #include "private/bionic_tls.h" #include "private/libc_logging.h" #include "private/ErrnoRestorer.h" #include "private/ScopedPthreadMutexLocker.h" // x86 uses segment descriptors rather than a direct pointer to TLS. #if __i386__ #include extern "C" __LIBC_HIDDEN__ void __init_user_desc(struct user_desc*, int, void*); #endif extern "C" int __isthreaded; // This code is used both by each new pthread and the code that initializes the main thread. void __init_tls(pthread_internal_t* thread) { if (thread->mmap_size == 0) { // If the TLS area was not allocated by mmap(), it may not have been cleared to zero. // So assume the worst and zero the TLS area. memset(thread->tls, 0, sizeof(thread->tls)); memset(thread->key_data, 0, sizeof(thread->key_data)); } // Slot 0 must point to itself. The x86 Linux kernel reads the TLS from %fs:0. thread->tls[TLS_SLOT_SELF] = thread->tls; thread->tls[TLS_SLOT_THREAD_ID] = thread; // GCC looks in the TLS for the stack guard on x86, so copy it there from our global. thread->tls[TLS_SLOT_STACK_GUARD] = reinterpret_cast(__stack_chk_guard); } void __init_alternate_signal_stack(pthread_internal_t* thread) { // Create and set an alternate signal stack. void* stack_base = mmap(NULL, SIGNAL_STACK_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (stack_base != MAP_FAILED) { // Create a guard page to catch stack overflows in signal handlers. if (mprotect(stack_base, PAGE_SIZE, PROT_NONE) == -1) { munmap(stack_base, SIGNAL_STACK_SIZE); return; } stack_t ss; ss.ss_sp = reinterpret_cast(stack_base) + PAGE_SIZE; ss.ss_size = SIGNAL_STACK_SIZE - PAGE_SIZE; ss.ss_flags = 0; sigaltstack(&ss, NULL); thread->alternate_signal_stack = stack_base; // We can only use const static allocated string for mapped region name, as Android kernel // uses the string pointer directly when dumping /proc/pid/maps. prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack"); prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, stack_base, PAGE_SIZE, "thread signal stack guard page"); } } int __init_thread(pthread_internal_t* thread) { int error = 0; if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) { atomic_init(&thread->join_state, THREAD_NOT_JOINED); } else { atomic_init(&thread->join_state, THREAD_DETACHED); } // Set the scheduling policy/priority of the thread. if (thread->attr.sched_policy != SCHED_NORMAL) { sched_param param; param.sched_priority = thread->attr.sched_priority; if (sched_setscheduler(thread->tid, thread->attr.sched_policy, ¶m) == -1) { #if __LP64__ // For backwards compatibility reasons, we only report failures on 64-bit devices. error = errno; #endif __libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create sched_setscheduler call failed: %s", strerror(errno)); } } thread->cleanup_stack = NULL; return error; } static void* __create_thread_mapped_space(size_t mmap_size, size_t stack_guard_size) { // Create a new private anonymous map. int prot = PROT_READ | PROT_WRITE; int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; void* space = mmap(NULL, mmap_size, prot, flags, -1, 0); if (space == MAP_FAILED) { __libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: couldn't allocate %zu-bytes mapped space: %s", mmap_size, strerror(errno)); return NULL; } // Stack is at the lower end of mapped space, stack guard region is at the lower end of stack. // Set the stack guard region to PROT_NONE, so we can detect thread stack overflow. if (mprotect(space, stack_guard_size, PROT_NONE) == -1) { __libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: couldn't mprotect PROT_NONE %zu-byte stack guard region: %s", stack_guard_size, strerror(errno)); munmap(space, mmap_size); return NULL; } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, space, stack_guard_size, "thread stack guard page"); return space; } static int __allocate_thread(pthread_attr_t* attr, pthread_internal_t** threadp, void** child_stack) { size_t mmap_size; uint8_t* stack_top; if (attr->stack_base == NULL) { // The caller didn't provide a stack, so allocate one. // Make sure the stack size and guard size are multiples of PAGE_SIZE. mmap_size = BIONIC_ALIGN(attr->stack_size + sizeof(pthread_internal_t), PAGE_SIZE); attr->guard_size = BIONIC_ALIGN(attr->guard_size, PAGE_SIZE); attr->stack_base = __create_thread_mapped_space(mmap_size, attr->guard_size); if (attr->stack_base == NULL) { return EAGAIN; } stack_top = reinterpret_cast(attr->stack_base) + mmap_size; } else { // Remember the mmap size is zero and we don't need to free it. mmap_size = 0; stack_top = reinterpret_cast(attr->stack_base) + attr->stack_size; } // Mapped space(or user allocated stack) is used for: // pthread_internal_t // thread stack (including guard page) // To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary. stack_top = reinterpret_cast( (reinterpret_cast(stack_top) - sizeof(pthread_internal_t)) & ~0xf); pthread_internal_t* thread = reinterpret_cast(stack_top); attr->stack_size = stack_top - reinterpret_cast(attr->stack_base); thread->mmap_size = mmap_size; thread->attr = *attr; __init_tls(thread); *threadp = thread; *child_stack = stack_top; return 0; } static int __pthread_start(void* arg) { pthread_internal_t* thread = reinterpret_cast(arg); // Wait for our creating thread to release us. This lets it have time to // notify gdb about this thread before we start doing anything. // This also provides the memory barrier needed to ensure that all memory // accesses previously made by the creating thread are visible to us. pthread_mutex_lock(&thread->startup_handshake_mutex); pthread_mutex_destroy(&thread->startup_handshake_mutex); __init_alternate_signal_stack(thread); void* result = thread->start_routine(thread->start_routine_arg); pthread_exit(result); return 0; } // A dummy start routine for pthread_create failures where we've created a thread but aren't // going to run user code on it. We swap out the user's start routine for this and take advantage // of the regular thread teardown to free up resources. static void* __do_nothing(void*) { return NULL; } int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr, void* (*start_routine)(void*), void* arg) { ErrnoRestorer errno_restorer; // Inform the rest of the C library that at least one thread was created. __isthreaded = 1; pthread_attr_t thread_attr; if (attr == NULL) { pthread_attr_init(&thread_attr); } else { thread_attr = *attr; attr = NULL; // Prevent misuse below. } pthread_internal_t* thread = NULL; void* child_stack = NULL; int result = __allocate_thread(&thread_attr, &thread, &child_stack); if (result != 0) { return result; } // Create a mutex for the thread in TLS to wait on once it starts so we can keep // it from doing anything until after we notify the debugger about it // // This also provides the memory barrier we need to ensure that all // memory accesses previously performed by this thread are visible to // the new thread. pthread_mutex_init(&thread->startup_handshake_mutex, NULL); pthread_mutex_lock(&thread->startup_handshake_mutex); thread->start_routine = start_routine; thread->start_routine_arg = arg; thread->set_cached_pid(getpid()); int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM | CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; void* tls = reinterpret_cast(thread->tls); #if defined(__i386__) // On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than // a pointer to the TLS itself. user_desc tls_descriptor; __init_user_desc(&tls_descriptor, false, tls); tls = &tls_descriptor; #endif int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid)); if (rc == -1) { int clone_errno = errno; // We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to // be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a // reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker. pthread_mutex_unlock(&thread->startup_handshake_mutex); if (thread->mmap_size != 0) { munmap(thread->attr.stack_base, thread->mmap_size); } __libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s", strerror(errno)); return clone_errno; } int init_errno = __init_thread(thread); if (init_errno != 0) { // Mark the thread detached and replace its start_routine with a no-op. // Letting the thread run is the easiest way to clean up its resources. atomic_store(&thread->join_state, THREAD_DETACHED); __pthread_internal_add(thread); thread->start_routine = __do_nothing; pthread_mutex_unlock(&thread->startup_handshake_mutex); return init_errno; } // Publish the pthread_t and unlock the mutex to let the new thread start running. *thread_out = __pthread_internal_add(thread); pthread_mutex_unlock(&thread->startup_handshake_mutex); return 0; }