/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include "private/bionic_defs.h" #include "private/bionic_tls.h" #include "pthread_internal.h" typedef void (*key_destructor_t)(void*); #define SEQ_KEY_IN_USE_BIT 0 #define SEQ_INCREMENT_STEP (1 << SEQ_KEY_IN_USE_BIT) // pthread_key_internal_t records the use of each pthread key slot: // seq records the state of the slot. // bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the // pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use // a sequence number instead of a boolean value here is that when the key slot is deleted and // reused for a new key, pthread_getspecific will not return stale data. // key_destructor records the destructor called at thread exit. struct pthread_key_internal_t { atomic_uintptr_t seq; atomic_uintptr_t key_destructor; }; static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT]; static inline bool SeqOfKeyInUse(uintptr_t seq) { return seq & (1 << SEQ_KEY_IN_USE_BIT); } #define KEY_VALID_FLAG (1 << 31) static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast(-1) < 0, "pthread_key_t should be typedef to int"); static inline bool KeyInValidRange(pthread_key_t key) { // key < 0 means bit 31 is set. // Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT. return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT)); } // Called from pthread_exit() to remove all pthread keys. This must call the destructor of // all keys that have a non-NULL data value and a non-NULL destructor. __LIBC_HIDDEN__ void pthread_key_clean_all() { // Because destructors can do funky things like deleting/creating other keys, // we need to implement this in a loop. pthread_key_data_t* key_data = __get_thread()->key_data; for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) { size_t called_destructor_count = 0; for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) { uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed); if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != nullptr) { // Other threads may be calling pthread_key_delete/pthread_key_create while current thread // is exiting. So we need to ensure we read the right key_destructor. // We can rely on a user-established happens-before relationship between the creation and // use of pthread key to ensure that we're not getting an earlier key_destructor. // To avoid using the key_destructor of the newly created key in the same slot, we need to // recheck the sequence number after reading key_destructor. As a result, we either see the // right key_destructor, or the sequence number must have changed when we reread it below. key_destructor_t key_destructor = reinterpret_cast( atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed)); if (key_destructor == nullptr) { continue; } atomic_thread_fence(memory_order_acquire); if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) { continue; } // We need to clear the key data now, this will prevent the destructor (or a later one) // from seeing the old value if it calls pthread_getspecific(). // We don't do this if 'key_destructor == NULL' just in case another destructor // function is responsible for manually releasing the corresponding data. void* data = key_data[i].data; key_data[i].data = nullptr; (*key_destructor)(data); ++called_destructor_count; } } // If we didn't call any destructors, there is no need to check the pthread keys again. if (called_destructor_count == 0) { break; } } } __BIONIC_WEAK_FOR_NATIVE_BRIDGE int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) { for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) { uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed); while (!SeqOfKeyInUse(seq)) { if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) { atomic_store(&key_map[i].key_destructor, reinterpret_cast(key_destructor)); *key = i | KEY_VALID_FLAG; return 0; } } } return EAGAIN; } // Deletes a pthread_key_t. note that the standard mandates that this does // not call the destructors for non-NULL key values. Instead, it is the // responsibility of the caller to properly dispose of the corresponding data // and resources, using any means it finds suitable. __BIONIC_WEAK_FOR_NATIVE_BRIDGE int pthread_key_delete(pthread_key_t key) { if (__predict_false(!KeyInValidRange(key))) { return EINVAL; } key &= ~KEY_VALID_FLAG; // Increase seq to invalidate values in all threads. uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed); if (SeqOfKeyInUse(seq)) { if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) { return 0; } } return EINVAL; } __BIONIC_WEAK_FOR_NATIVE_BRIDGE void* pthread_getspecific(pthread_key_t key) { if (__predict_false(!KeyInValidRange(key))) { return nullptr; } key &= ~KEY_VALID_FLAG; uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed); pthread_key_data_t* data = &(__get_thread()->key_data[key]); // It is user's responsibility to synchornize between the creation and use of pthread keys, // so we use memory_order_relaxed when checking the sequence number. if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) { return data->data; } // We arrive here when current thread holds the seq of an deleted pthread key. So the // data is for the deleted pthread key, and should be cleared. data->data = nullptr; return nullptr; } __BIONIC_WEAK_FOR_NATIVE_BRIDGE int pthread_setspecific(pthread_key_t key, const void* ptr) { if (__predict_false(!KeyInValidRange(key))) { return EINVAL; } key &= ~KEY_VALID_FLAG; uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed); if (__predict_true(SeqOfKeyInUse(seq))) { pthread_key_data_t* data = &(__get_thread()->key_data[key]); data->seq = seq; data->data = const_cast(ptr); return 0; } return EINVAL; }