#include #include #include #include #include "llvm/Config/llvm-config.h" #if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR < 5 typedef long double max_align_t; #endif #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #if LLVM_VERSION_MAJOR > 3 || \ (LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR > 4) #include "llvm/IR/CFG.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/DebugInfo.h" #else #include "llvm/Support/CFG.h" #include "llvm/Analysis/Dominators.h" #include "llvm/DebugInfo.h" #endif #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/IR/BasicBlock.h" #include #include #include #include #include #include "MarkNodes.h" #include "afl-llvm-common.h" #include "llvm-ngram-coverage.h" #include "config.h" #include "debug.h" using namespace llvm; static cl::opt MarkSetOpt("markset", cl::desc("MarkSet"), cl::init(false)); static cl::opt LoopHeadOpt("loophead", cl::desc("LoopHead"), cl::init(false)); namespace { struct InsTrim : public ModulePass { protected: uint32_t function_minimum_size = 1; char * skip_nozero = NULL; private: std::mt19937 generator; int total_instr = 0; unsigned int genLabel() { return generator() & (MAP_SIZE - 1); } public: static char ID; InsTrim() : ModulePass(ID), generator(0) { initInstrumentList(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } #if LLVM_VERSION_MAJOR < 4 const char * #else StringRef #endif getPassName() const override { return "InstTrim Instrumentation"; } #if LLVM_VERSION_MAJOR > 4 || \ (LLVM_VERSION_MAJOR == 4 && LLVM_VERSION_PATCH >= 1) #define AFL_HAVE_VECTOR_INTRINSICS 1 #endif bool runOnModule(Module &M) override { setvbuf(stdout, NULL, _IONBF, 0); if ((isatty(2) && !getenv("AFL_QUIET")) || getenv("AFL_DEBUG") != NULL) { SAYF(cCYA "LLVMInsTrim" VERSION cRST " by csienslab\n"); } else be_quiet = 1; if (getenv("AFL_DEBUG") != NULL) debug = 1; LLVMContext &C = M.getContext(); IntegerType *Int8Ty = IntegerType::getInt8Ty(C); IntegerType *Int32Ty = IntegerType::getInt32Ty(C); #if LLVM_VERSION_MAJOR < 9 char *neverZero_counters_str; if ((neverZero_counters_str = getenv("AFL_LLVM_NOT_ZERO")) != NULL) if (!be_quiet) OKF("LLVM neverZero activated (by hexcoder)\n"); #endif skip_nozero = getenv("AFL_LLVM_SKIP_NEVERZERO"); if (getenv("AFL_LLVM_INSTRIM_LOOPHEAD") != NULL || getenv("LOOPHEAD") != NULL) { LoopHeadOpt = true; } unsigned int PrevLocSize = 0; char * ngram_size_str = getenv("AFL_LLVM_NGRAM_SIZE"); if (!ngram_size_str) ngram_size_str = getenv("AFL_NGRAM_SIZE"); char *ctx_str = getenv("AFL_LLVM_CTX"); #ifdef AFL_HAVE_VECTOR_INTRINSICS unsigned int ngram_size = 0; /* Decide previous location vector size (must be a power of two) */ VectorType *PrevLocTy = NULL; if (ngram_size_str) if (sscanf(ngram_size_str, "%u", &ngram_size) != 1 || ngram_size < 2 || ngram_size > NGRAM_SIZE_MAX) FATAL( "Bad value of AFL_NGRAM_SIZE (must be between 2 and NGRAM_SIZE_MAX " "(%u))", NGRAM_SIZE_MAX); if (ngram_size) PrevLocSize = ngram_size - 1; else #else if (ngram_size_str) #ifdef LLVM_VERSION_STRING FATAL( "Sorry, NGRAM branch coverage is not supported with llvm version %s!", LLVM_VERSION_STRING); #else #ifndef LLVM_VERSION_PATCH FATAL( "Sorry, NGRAM branch coverage is not supported with llvm version " "%d.%d.%d!", LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, 0); #else FATAL( "Sorry, NGRAM branch coverage is not supported with llvm version " "%d.%d.%d!", LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, LLVM_VERISON_PATCH); #endif #endif #endif PrevLocSize = 1; #ifdef AFL_HAVE_VECTOR_INTRINSICS // IntegerType *Int64Ty = IntegerType::getInt64Ty(C); int PrevLocVecSize = PowerOf2Ceil(PrevLocSize); IntegerType *IntLocTy = IntegerType::getIntNTy(C, sizeof(PREV_LOC_T) * CHAR_BIT); if (ngram_size) PrevLocTy = VectorType::get(IntLocTy, PrevLocVecSize #if LLVM_VERSION_MAJOR >= 12 , false #endif ); #endif /* Get globals for the SHM region and the previous location. Note that __afl_prev_loc is thread-local. */ GlobalVariable *AFLMapPtr = new GlobalVariable(M, PointerType::get(Int8Ty, 0), false, GlobalValue::ExternalLinkage, 0, "__afl_area_ptr"); GlobalVariable *AFLPrevLoc; GlobalVariable *AFLContext = NULL; LoadInst * PrevCtx = NULL; // for CTX sensitive coverage if (ctx_str) #if defined(__ANDROID__) || defined(__HAIKU__) AFLContext = new GlobalVariable( M, Int32Ty, false, GlobalValue::ExternalLinkage, 0, "__afl_prev_ctx"); #else AFLContext = new GlobalVariable( M, Int32Ty, false, GlobalValue::ExternalLinkage, 0, "__afl_prev_ctx", 0, GlobalVariable::GeneralDynamicTLSModel, 0, false); #endif #ifdef AFL_HAVE_VECTOR_INTRINSICS if (ngram_size) #if defined(__ANDROID__) || defined(__HAIKU__) AFLPrevLoc = new GlobalVariable( M, PrevLocTy, /* isConstant */ false, GlobalValue::ExternalLinkage, /* Initializer */ nullptr, "__afl_prev_loc"); #else AFLPrevLoc = new GlobalVariable( M, PrevLocTy, /* isConstant */ false, GlobalValue::ExternalLinkage, /* Initializer */ nullptr, "__afl_prev_loc", /* InsertBefore */ nullptr, GlobalVariable::GeneralDynamicTLSModel, /* AddressSpace */ 0, /* IsExternallyInitialized */ false); #endif else #endif #if defined(__ANDROID__) || defined(__HAIKU__) AFLPrevLoc = new GlobalVariable( M, Int32Ty, false, GlobalValue::ExternalLinkage, 0, "__afl_prev_loc"); #else AFLPrevLoc = new GlobalVariable( M, Int32Ty, false, GlobalValue::ExternalLinkage, 0, "__afl_prev_loc", 0, GlobalVariable::GeneralDynamicTLSModel, 0, false); #endif #ifdef AFL_HAVE_VECTOR_INTRINSICS /* Create the vector shuffle mask for updating the previous block history. Note that the first element of the vector will store cur_loc, so just set it to undef to allow the optimizer to do its thing. */ SmallVector PrevLocShuffle = {UndefValue::get(Int32Ty)}; for (unsigned I = 0; I < PrevLocSize - 1; ++I) PrevLocShuffle.push_back(ConstantInt::get(Int32Ty, I)); for (int I = PrevLocSize; I < PrevLocVecSize; ++I) PrevLocShuffle.push_back(ConstantInt::get(Int32Ty, PrevLocSize)); Constant *PrevLocShuffleMask = ConstantVector::get(PrevLocShuffle); #endif // this is our default MarkSetOpt = true; ConstantInt *Zero = ConstantInt::get(Int8Ty, 0); ConstantInt *One = ConstantInt::get(Int8Ty, 1); u64 total_rs = 0; u64 total_hs = 0; scanForDangerousFunctions(&M); for (Function &F : M) { if (debug) { uint32_t bb_cnt = 0; for (auto &BB : F) if (BB.size() > 0) ++bb_cnt; DEBUGF("Function %s size %zu %u\n", F.getName().str().c_str(), F.size(), bb_cnt); } if (!isInInstrumentList(&F)) continue; // if the function below our minimum size skip it (1 or 2) if (F.size() < function_minimum_size) { continue; } std::unordered_set MS; if (!MarkSetOpt) { for (auto &BB : F) { MS.insert(&BB); } total_rs += F.size(); } else { auto Result = markNodes(&F); auto RS = Result.first; auto HS = Result.second; MS.insert(RS.begin(), RS.end()); if (!LoopHeadOpt) { MS.insert(HS.begin(), HS.end()); total_rs += MS.size(); } else { DenseSet> EdgeSet; DominatorTreeWrapperPass * DTWP = &getAnalysis(F); auto DT = &DTWP->getDomTree(); total_rs += RS.size(); total_hs += HS.size(); for (BasicBlock *BB : HS) { bool Inserted = false; for (auto BI = pred_begin(BB), BE = pred_end(BB); BI != BE; ++BI) { auto Edge = BasicBlockEdge(*BI, BB); if (Edge.isSingleEdge() && DT->dominates(Edge, BB)) { EdgeSet.insert({*BI, BB}); Inserted = true; break; } } if (!Inserted) { MS.insert(BB); total_rs += 1; total_hs -= 1; } } for (auto I = EdgeSet.begin(), E = EdgeSet.end(); I != E; ++I) { auto PredBB = I->first; auto SuccBB = I->second; auto NewBB = SplitBlockPredecessors(SuccBB, {PredBB}, ".split", DT, nullptr, #if LLVM_VERSION_MAJOR >= 8 nullptr, #endif false); MS.insert(NewBB); } } for (BasicBlock &BB : F) { if (MS.find(&BB) == MS.end()) { continue; } IRBuilder<> IRB(&*BB.getFirstInsertionPt()); #ifdef AFL_HAVE_VECTOR_INTRINSICS if (ngram_size) { LoadInst *PrevLoc = IRB.CreateLoad(AFLPrevLoc); PrevLoc->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); Value *ShuffledPrevLoc = IRB.CreateShuffleVector( PrevLoc, UndefValue::get(PrevLocTy), PrevLocShuffleMask); Value *UpdatedPrevLoc = IRB.CreateInsertElement( ShuffledPrevLoc, ConstantInt::get(Int32Ty, genLabel()), (uint64_t)0); IRB.CreateStore(UpdatedPrevLoc, AFLPrevLoc) ->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); } else #endif { IRB.CreateStore(ConstantInt::get(Int32Ty, genLabel()), AFLPrevLoc); } } } int has_calls = 0; for (BasicBlock &BB : F) { auto PI = pred_begin(&BB); auto PE = pred_end(&BB); IRBuilder<> IRB(&*BB.getFirstInsertionPt()); Value * L = NULL; unsigned int cur_loc; // Context sensitive coverage if (ctx_str && &BB == &F.getEntryBlock()) { PrevCtx = IRB.CreateLoad(AFLContext); PrevCtx->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); // does the function have calls? and is any of the calls larger than // one basic block? has_calls = 0; for (auto &BB2 : F) { if (has_calls) break; for (auto &IN : BB2) { CallInst *callInst = nullptr; if ((callInst = dyn_cast(&IN))) { Function *Callee = callInst->getCalledFunction(); if (!Callee || Callee->size() < function_minimum_size) continue; else { has_calls = 1; break; } } } } // if yes we store a context ID for this function in the global var if (has_calls) { ConstantInt *NewCtx = ConstantInt::get(Int32Ty, genLabel()); StoreInst * StoreCtx = IRB.CreateStore(NewCtx, AFLContext); StoreCtx->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); } } // END of ctx_str if (MarkSetOpt && MS.find(&BB) == MS.end()) { continue; } if (PI == PE) { cur_loc = genLabel(); L = ConstantInt::get(Int32Ty, cur_loc); } else { auto *PN = PHINode::Create(Int32Ty, 0, "", &*BB.begin()); DenseMap PredMap; for (PI = pred_begin(&BB), PE = pred_end(&BB); PI != PE; ++PI) { BasicBlock *PBB = *PI; auto It = PredMap.insert({PBB, genLabel()}); unsigned Label = It.first->second; cur_loc = Label; PN->addIncoming(ConstantInt::get(Int32Ty, Label), PBB); } L = PN; } /* Load prev_loc */ LoadInst *PrevLoc = IRB.CreateLoad(AFLPrevLoc); PrevLoc->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); Value *PrevLocTrans; #ifdef AFL_HAVE_VECTOR_INTRINSICS /* "For efficiency, we propose to hash the tuple as a key into the hit_count map as (prev_block_trans << 1) ^ curr_block_trans, where prev_block_trans = (block_trans_1 ^ ... ^ block_trans_(n-1)" */ if (ngram_size) PrevLocTrans = IRB.CreateZExt(IRB.CreateXorReduce(PrevLoc), IRB.getInt32Ty()); else #endif PrevLocTrans = IRB.CreateZExt(PrevLoc, IRB.getInt32Ty()); if (ctx_str) PrevLocTrans = IRB.CreateZExt(IRB.CreateXor(PrevLocTrans, PrevCtx), Int32Ty); /* Load SHM pointer */ LoadInst *MapPtr = IRB.CreateLoad(AFLMapPtr); MapPtr->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); Value *MapPtrIdx; #ifdef AFL_HAVE_VECTOR_INTRINSICS if (ngram_size) MapPtrIdx = IRB.CreateGEP( MapPtr, IRB.CreateZExt(IRB.CreateXor(PrevLocTrans, L), Int32Ty)); else #endif MapPtrIdx = IRB.CreateGEP(MapPtr, IRB.CreateXor(PrevLocTrans, L)); /* Update bitmap */ LoadInst *Counter = IRB.CreateLoad(MapPtrIdx); Counter->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); Value *Incr = IRB.CreateAdd(Counter, One); #if LLVM_VERSION_MAJOR < 9 if (neverZero_counters_str != NULL) // with llvm 9 we make this the default as the bug in llvm is // then fixed #else if (!skip_nozero) #endif { /* hexcoder: Realize a counter that skips zero during overflow. * Once this counter reaches its maximum value, it next increments to * 1 * * Instead of * Counter + 1 -> Counter * we inject now this * Counter + 1 -> {Counter, OverflowFlag} * Counter + OverflowFlag -> Counter */ auto cf = IRB.CreateICmpEQ(Incr, Zero); auto carry = IRB.CreateZExt(cf, Int8Ty); Incr = IRB.CreateAdd(Incr, carry); } IRB.CreateStore(Incr, MapPtrIdx) ->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); if (ctx_str && has_calls) { // in CTX mode we have to restore the original context for the // caller - she might be calling other functions which need the // correct CTX Instruction *Inst = BB.getTerminator(); if (isa(Inst) || isa(Inst)) { IRBuilder<> Post_IRB(Inst); StoreInst * RestoreCtx = Post_IRB.CreateStore(PrevCtx, AFLContext); RestoreCtx->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None)); } } total_instr++; } } if (!be_quiet) { char modeline[100]; snprintf(modeline, sizeof(modeline), "%s%s%s%s%s", getenv("AFL_HARDEN") ? "hardened" : "non-hardened", getenv("AFL_USE_ASAN") ? ", ASAN" : "", getenv("AFL_USE_MSAN") ? ", MSAN" : "", getenv("AFL_USE_CFISAN") ? ", CFISAN" : "", getenv("AFL_USE_UBSAN") ? ", UBSAN" : ""); OKF("Instrumented %d locations (%llu, %llu) (%s mode)\n", total_instr, total_rs, total_hs, modeline); } return false; } }; // end of struct InsTrim } // end of anonymous namespace char InsTrim::ID = 0; static void registerAFLPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new InsTrim()); } static RegisterStandardPasses RegisterAFLPass( PassManagerBuilder::EP_OptimizerLast, registerAFLPass); static RegisterStandardPasses RegisterAFLPass0( PassManagerBuilder::EP_EnabledOnOptLevel0, registerAFLPass);