summaryrefslogtreecommitdiff
path: root/MagickCore/morphology.c
blob: 7b667e435af12476d2e90441199f3f7641d9b60c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%    M   M    OOO    RRRR   PPPP   H   H   OOO   L       OOO    GGGG  Y   Y   %
%    MM MM   O   O   R   R  P   P  H   H  O   O  L      O   O  G       Y Y    %
%    M M M   O   O   RRRR   PPPP   HHHHH  O   O  L      O   O  G GGG    Y     %
%    M   M   O   O   R R    P      H   H  O   O  L      O   O  G   G    Y     %
%    M   M    OOO    R  R   P      H   H   OOO   LLLLL   OOO    GGG     Y     %
%                                                                             %
%                                                                             %
%                        MagickCore Morphology Methods                        %
%                                                                             %
%                              Software Design                                %
%                              Anthony Thyssen                                %
%                               January 2010                                  %
%                                                                             %
%                                                                             %
%  Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization      %
%  dedicated to making software imaging solutions freely available.           %
%                                                                             %
%  You may not use this file except in compliance with the License.  You may  %
%  obtain a copy of the License at                                            %
%                                                                             %
%    https://imagemagick.org/script/license.php                               %
%                                                                             %
%  Unless required by applicable law or agreed to in writing, software        %
%  distributed under the License is distributed on an "AS IS" BASIS,          %
%  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
%  See the License for the specific language governing permissions and        %
%  limitations under the License.                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Morphology is the application of various kernels, of any size or shape, to an
% image in various ways (typically binary, but not always).
%
% Convolution (weighted sum or average) is just one specific type of
% morphology. Just one that is very common for image bluring and sharpening
% effects.  Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
%
% This module provides not only a general morphology function, and the ability
% to apply more advanced or iterative morphologies, but also functions for the
% generation of many different types of kernel arrays from user supplied
% arguments. Prehaps even the generation of a kernel from a small image.
*/

/*
  Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/artifact.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/channel.h"
#include "MagickCore/color-private.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/linked-list.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/memory-private.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/morphology.h"
#include "MagickCore/morphology-private.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/pixel-private.h"
#include "MagickCore/prepress.h"
#include "MagickCore/quantize.h"
#include "MagickCore/resource_.h"
#include "MagickCore/registry.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/splay-tree.h"
#include "MagickCore/statistic.h"
#include "MagickCore/string_.h"
#include "MagickCore/string-private.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/token.h"
#include "MagickCore/utility.h"
#include "MagickCore/utility-private.h"

/*
  Other global definitions used by module.
*/
#define Minimize(assign,value) assign=MagickMin(assign,value)
#define Maximize(assign,value) assign=MagickMax(assign,value)

/* Integer Factorial Function - for a Binomial kernel */
#if 1
static inline size_t fact(size_t n)
{
  size_t f,l;
  for(f=1, l=2; l <= n; f=f*l, l++);
  return(f);
}
#elif 1 /* glibc floating point alternatives */
#define fact(n) ((size_t)tgamma((double)n+1))
#else
#define fact(n) ((size_t)lgamma((double)n+1))
#endif


/* Currently these are only internal to this module */
static void
  CalcKernelMetaData(KernelInfo *),
  ExpandMirrorKernelInfo(KernelInfo *),
  ExpandRotateKernelInfo(KernelInfo *, const double),
  RotateKernelInfo(KernelInfo *, double);


/* Quick function to find last kernel in a kernel list */
static inline KernelInfo *LastKernelInfo(KernelInfo *kernel)
{
  while (kernel->next != (KernelInfo *) NULL)
    kernel=kernel->next;
  return(kernel);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     A c q u i r e K e r n e l I n f o                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  AcquireKernelInfo() takes the given string (generally supplied by the
%  user) and converts it into a Morphology/Convolution Kernel.  This allows
%  users to specify a kernel from a number of pre-defined kernels, or to fully
%  specify their own kernel for a specific Convolution or Morphology
%  Operation.
%
%  The kernel so generated can be any rectangular array of floating point
%  values (doubles) with the 'control point' or 'pixel being affected'
%  anywhere within that array of values.
%
%  Previously IM was restricted to a square of odd size using the exact
%  center as origin, this is no longer the case, and any rectangular kernel
%  with any value being declared the origin. This in turn allows the use of
%  highly asymmetrical kernels.
%
%  The floating point values in the kernel can also include a special value
%  known as 'nan' or 'not a number' to indicate that this value is not part
%  of the kernel array. This allows you to shaped the kernel within its
%  rectangular area. That is 'nan' values provide a 'mask' for the kernel
%  shape.  However at least one non-nan value must be provided for correct
%  working of a kernel.
%
%  The returned kernel should be freed using the DestroyKernelInfo() when you
%  are finished with it.  Do not free this memory yourself.
%
%  Input kernel defintion strings can consist of any of three types.
%
%    "name:args[[@><]"
%         Select from one of the built in kernels, using the name and
%         geometry arguments supplied.  See AcquireKernelBuiltIn()
%
%    "WxH[+X+Y][@><]:num, num, num ..."
%         a kernel of size W by H, with W*H floating point numbers following.
%         the 'center' can be optionally be defined at +X+Y (such that +0+0
%         is top left corner). If not defined the pixel in the center, for
%         odd sizes, or to the immediate top or left of center for even sizes
%         is automatically selected.
%
%    "num, num, num, num, ..."
%         list of floating point numbers defining an 'old style' odd sized
%         square kernel.  At least 9 values should be provided for a 3x3
%         square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
%         Values can be space or comma separated.  This is not recommended.
%
%  You can define a 'list of kernels' which can be used by some morphology
%  operators A list is defined as a semi-colon separated list kernels.
%
%     " kernel ; kernel ; kernel ; "
%
%  Any extra ';' characters, at start, end or between kernel defintions are
%  simply ignored.
%
%  The special flags will expand a single kernel, into a list of rotated
%  kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree
%  cyclic rotations, while a '>' will generate a list of 90-degree rotations.
%  The '<' also exands using 90-degree rotates, but giving a 180-degree
%  reflected kernel before the +/- 90-degree rotations, which can be important
%  for Thinning operations.
%
%  Note that 'name' kernels will start with an alphabetic character while the
%  new kernel specification has a ':' character in its specification string.
%  If neither is the case, it is assumed an old style of a simple list of
%  numbers generating a odd-sized square kernel has been given.
%
%  The format of the AcquireKernal method is:
%
%      KernelInfo *AcquireKernelInfo(const char *kernel_string)
%
%  A description of each parameter follows:
%
%    o kernel_string: the Morphology/Convolution kernel wanted.
%
*/

/* This was separated so that it could be used as a separate
** array input handling function, such as for -color-matrix
*/
static KernelInfo *ParseKernelArray(const char *kernel_string)
{
  KernelInfo
    *kernel;

  char
    token[MagickPathExtent];

  const char
    *p,
    *end;

  ssize_t
    i;

  double
    nan = sqrt((double)-1.0);  /* Special Value : Not A Number */

  MagickStatusType
    flags;

  GeometryInfo
    args;

  kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
  if (kernel == (KernelInfo *) NULL)
    return(kernel);
  (void) memset(kernel,0,sizeof(*kernel));
  kernel->minimum = kernel->maximum = kernel->angle = 0.0;
  kernel->negative_range = kernel->positive_range = 0.0;
  kernel->type = UserDefinedKernel;
  kernel->next = (KernelInfo *) NULL;
  kernel->signature=MagickCoreSignature;
  if (kernel_string == (const char *) NULL)
    return(kernel);

  /* find end of this specific kernel definition string */
  end = strchr(kernel_string, ';');
  if ( end == (char *) NULL )
    end = strchr(kernel_string, '\0');

  /* clear flags - for Expanding kernel lists thorugh rotations */
   flags = NoValue;

  /* Has a ':' in argument - New user kernel specification
     FUTURE: this split on ':' could be done by StringToken()
   */
  p = strchr(kernel_string, ':');
  if ( p != (char *) NULL && p < end)
    {
      /* ParseGeometry() needs the geometry separated! -- Arrgghh */
      memcpy(token, kernel_string, (size_t) (p-kernel_string));
      token[p-kernel_string] = '\0';
      SetGeometryInfo(&args);
      flags = ParseGeometry(token, &args);

      /* Size handling and checks of geometry settings */
      if ( (flags & WidthValue) == 0 ) /* if no width then */
        args.rho = args.sigma;         /* then  width = height */
      if ( args.rho < 1.0 )            /* if width too small */
         args.rho = 1.0;               /* then  width = 1 */
      if ( args.sigma < 1.0 )          /* if height too small */
        args.sigma = args.rho;         /* then  height = width */
      kernel->width = (size_t)args.rho;
      kernel->height = (size_t)args.sigma;

      /* Offset Handling and Checks */
      if ( args.xi  < 0.0 || args.psi < 0.0 )
        return(DestroyKernelInfo(kernel));
      kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi
                                        : (ssize_t) (kernel->width-1)/2;
      kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi
                                        : (ssize_t) (kernel->height-1)/2;
      if ( kernel->x >= (ssize_t) kernel->width ||
           kernel->y >= (ssize_t) kernel->height )
        return(DestroyKernelInfo(kernel));

      p++; /* advance beyond the ':' */
    }
  else
    { /* ELSE - Old old specification, forming odd-square kernel */
      /* count up number of values given */
      p=(const char *) kernel_string;
      while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
        p++;  /* ignore "'" chars for convolve filter usage - Cristy */
      for (i=0; p < end; i++)
      {
        (void) GetNextToken(p,&p,MagickPathExtent,token);
        if (*token == ',')
          (void) GetNextToken(p,&p,MagickPathExtent,token);
      }
      /* set the size of the kernel - old sized square */
      kernel->width = kernel->height= (size_t) sqrt((double) i+1.0);
      kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
      p=(const char *) kernel_string;
      while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
        p++;  /* ignore "'" chars for convolve filter usage - Cristy */
    }

  /* Read in the kernel values from rest of input string argument */
  kernel->values=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory(
    kernel->width,kernel->height*sizeof(*kernel->values)));
  if (kernel->values == (MagickRealType *) NULL)
    return(DestroyKernelInfo(kernel));
  kernel->minimum=MagickMaximumValue;
  kernel->maximum=(-MagickMaximumValue);
  kernel->negative_range = kernel->positive_range = 0.0;
  for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++)
  {
    (void) GetNextToken(p,&p,MagickPathExtent,token);
    if (*token == ',')
      (void) GetNextToken(p,&p,MagickPathExtent,token);
    if (    LocaleCompare("nan",token) == 0
        || LocaleCompare("-",token) == 0 ) {
      kernel->values[i] = nan; /* this value is not part of neighbourhood */
    }
    else {
      kernel->values[i] = StringToDouble(token,(char **) NULL);
      ( kernel->values[i] < 0)
          ?  ( kernel->negative_range += kernel->values[i] )
          :  ( kernel->positive_range += kernel->values[i] );
      Minimize(kernel->minimum, kernel->values[i]);
      Maximize(kernel->maximum, kernel->values[i]);
    }
  }

  /* sanity check -- no more values in kernel definition */
  (void) GetNextToken(p,&p,MagickPathExtent,token);
  if ( *token != '\0' && *token != ';' && *token != '\'' )
    return(DestroyKernelInfo(kernel));

#if 0
  /* this was the old method of handling a incomplete kernel */
  if ( i < (ssize_t) (kernel->width*kernel->height) ) {
    Minimize(kernel->minimum, kernel->values[i]);
    Maximize(kernel->maximum, kernel->values[i]);
    for ( ; i < (ssize_t) (kernel->width*kernel->height); i++)
      kernel->values[i]=0.0;
  }
#else
  /* Number of values for kernel was not enough - Report Error */
  if ( i < (ssize_t) (kernel->width*kernel->height) )
    return(DestroyKernelInfo(kernel));
#endif

  /* check that we recieved at least one real (non-nan) value! */
  if (kernel->minimum == MagickMaximumValue)
    return(DestroyKernelInfo(kernel));

  if ( (flags & AreaValue) != 0 )         /* '@' symbol in kernel size */
    ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */
  else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */
    ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */
  else if ( (flags & LessValue) != 0 )    /* '<' symbol in kernel args */
    ExpandMirrorKernelInfo(kernel);       /* 90 degree mirror rotate */

  return(kernel);
}

static KernelInfo *ParseKernelName(const char *kernel_string,
  ExceptionInfo *exception)
{
  char
    token[MagickPathExtent];

  const char
    *p,
    *end;

  GeometryInfo
    args;

  KernelInfo
    *kernel;

  MagickStatusType
    flags;

  ssize_t
    type;

  /* Parse special 'named' kernel */
  (void) GetNextToken(kernel_string,&p,MagickPathExtent,token);
  type=ParseCommandOption(MagickKernelOptions,MagickFalse,token);
  if ( type < 0 || type == UserDefinedKernel )
    return((KernelInfo *) NULL);  /* not a valid named kernel */

  while (((isspace((int) ((unsigned char) *p)) != 0) ||
          (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';'))
    p++;

  end = strchr(p, ';'); /* end of this kernel defintion */
  if ( end == (char *) NULL )
    end = strchr(p, '\0');

  /* ParseGeometry() needs the geometry separated! -- Arrgghh */
  memcpy(token, p, (size_t) (end-p));
  token[end-p] = '\0';
  SetGeometryInfo(&args);
  flags = ParseGeometry(token, &args);

#if 0
  /* For Debugging Geometry Input */
  (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n",
    flags, args.rho, args.sigma, args.xi, args.psi );
#endif

  /* special handling of missing values in input string */
  switch( type ) {
    /* Shape Kernel Defaults */
    case UnityKernel:
      if ( (flags & WidthValue) == 0 )
        args.rho = 1.0;    /* Default scale = 1.0, zero is valid */
      break;
    case SquareKernel:
    case DiamondKernel:
    case OctagonKernel:
    case DiskKernel:
    case PlusKernel:
    case CrossKernel:
      if ( (flags & HeightValue) == 0 )
        args.sigma = 1.0;    /* Default scale = 1.0, zero is valid */
      break;
    case RingKernel:
      if ( (flags & XValue) == 0 )
        args.xi = 1.0;       /* Default scale = 1.0, zero is valid */
      break;
    case RectangleKernel:    /* Rectangle - set size defaults */
      if ( (flags & WidthValue) == 0 ) /* if no width then */
        args.rho = args.sigma;         /* then  width = height */
      if ( args.rho < 1.0 )            /* if width too small */
          args.rho = 3;                /* then  width = 3 */
      if ( args.sigma < 1.0 )          /* if height too small */
        args.sigma = args.rho;         /* then  height = width */
      if ( (flags & XValue) == 0 )     /* center offset if not defined */
        args.xi = (double)(((ssize_t)args.rho-1)/2);
      if ( (flags & YValue) == 0 )
        args.psi = (double)(((ssize_t)args.sigma-1)/2);
      break;
    /* Distance Kernel Defaults */
    case ChebyshevKernel:
    case ManhattanKernel:
    case OctagonalKernel:
    case EuclideanKernel:
      if ( (flags & HeightValue) == 0 )           /* no distance scale */
        args.sigma = 100.0;                       /* default distance scaling */
      else if ( (flags & AspectValue ) != 0 )     /* '!' flag */
        args.sigma = QuantumRange/(args.sigma+1); /* maximum pixel distance */
      else if ( (flags & PercentValue ) != 0 )    /* '%' flag */
        args.sigma *= QuantumRange/100.0;         /* percentage of color range */
      break;
    default:
      break;
  }

  kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args, exception);
  if ( kernel == (KernelInfo *) NULL )
    return(kernel);

  /* global expand to rotated kernel list - only for single kernels */
  if ( kernel->next == (KernelInfo *) NULL ) {
    if ( (flags & AreaValue) != 0 )         /* '@' symbol in kernel args */
      ExpandRotateKernelInfo(kernel, 45.0);
    else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */
      ExpandRotateKernelInfo(kernel, 90.0);
    else if ( (flags & LessValue) != 0 )    /* '<' symbol in kernel args */
      ExpandMirrorKernelInfo(kernel);
  }

  return(kernel);
}

MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string,
  ExceptionInfo *exception)
{
  KernelInfo
    *kernel,
    *new_kernel;

  char
    *kernel_cache,
    token[MagickPathExtent];

  const char
    *p;

  if (kernel_string == (const char *) NULL)
    return(ParseKernelArray(kernel_string));
  p=kernel_string;
  kernel_cache=(char *) NULL;
  if (*kernel_string == '@')
    {
      kernel_cache=FileToString(kernel_string+1,~0UL,exception);
      if (kernel_cache == (char *) NULL)
        return((KernelInfo *) NULL);
      p=(const char *) kernel_cache;
    }
  kernel=NULL;
  while (GetNextToken(p,(const char **) NULL,MagickPathExtent,token), *token != '\0')
  {
    /* ignore extra or multiple ';' kernel separators */
    if (*token != ';')
      {
        /* tokens starting with alpha is a Named kernel */
        if (isalpha((int) ((unsigned char) *token)) != 0)
          new_kernel=ParseKernelName(p,exception);
        else /* otherwise a user defined kernel array */
          new_kernel=ParseKernelArray(p);

        /* Error handling -- this is not proper error handling! */
        if (new_kernel == (KernelInfo *) NULL)
          {
            if (kernel != (KernelInfo *) NULL)
              kernel=DestroyKernelInfo(kernel);
            return((KernelInfo *) NULL);
          }

        /* initialise or append the kernel list */
        if (kernel == (KernelInfo *) NULL)
          kernel=new_kernel;
        else
          LastKernelInfo(kernel)->next=new_kernel;
      }

    /* look for the next kernel in list */
    p=strchr(p,';');
    if (p == (char *) NULL)
      break;
    p++;
  }
  if (kernel_cache != (char *) NULL)
    kernel_cache=DestroyString(kernel_cache);
  return(kernel);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     A c q u i r e K e r n e l B u i l t I n                                 %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  AcquireKernelBuiltIn() returned one of the 'named' built-in types of
%  kernels used for special purposes such as gaussian blurring, skeleton
%  pruning, and edge distance determination.
%
%  They take a KernelType, and a set of geometry style arguments, which were
%  typically decoded from a user supplied string, or from a more complex
%  Morphology Method that was requested.
%
%  The format of the AcquireKernalBuiltIn method is:
%
%      KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
%           const GeometryInfo args)
%
%  A description of each parameter follows:
%
%    o type: the pre-defined type of kernel wanted
%
%    o args: arguments defining or modifying the kernel
%
%  Convolution Kernels
%
%    Unity
%       The a No-Op or Scaling single element kernel.
%
%    Gaussian:{radius},{sigma}
%       Generate a two-dimensional gaussian kernel, as used by -gaussian.
%       The sigma for the curve is required.  The resulting kernel is
%       normalized,
%
%       If 'sigma' is zero, you get a single pixel on a field of zeros.
%
%       NOTE: that the 'radius' is optional, but if provided can limit (clip)
%       the final size of the resulting kernel to a square 2*radius+1 in size.
%       The radius should be at least 2 times that of the sigma value, or
%       sever clipping and aliasing may result.  If not given or set to 0 the
%       radius will be determined so as to produce the best minimal error
%       result, which is usally much larger than is normally needed.
%
%    LoG:{radius},{sigma}
%        "Laplacian of a Gaussian" or "Mexician Hat" Kernel.
%        The supposed ideal edge detection, zero-summing kernel.
%
%        An alturnative to this kernel is to use a "DoG" with a sigma ratio of
%        approx 1.6 (according to wikipedia).
%
%    DoG:{radius},{sigma1},{sigma2}
%        "Difference of Gaussians" Kernel.
%        As "Gaussian" but with a gaussian produced by 'sigma2' subtracted
%        from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1.
%        The result is a zero-summing kernel.
%
%    Blur:{radius},{sigma}[,{angle}]
%       Generates a 1 dimensional or linear gaussian blur, at the angle given
%       (current restricted to orthogonal angles).  If a 'radius' is given the
%       kernel is clipped to a width of 2*radius+1.  Kernel can be rotated
%       by a 90 degree angle.
%
%       If 'sigma' is zero, you get a single pixel on a field of zeros.
%
%       Note that two convolutions with two "Blur" kernels perpendicular to
%       each other, is equivalent to a far larger "Gaussian" kernel with the
%       same sigma value, However it is much faster to apply. This is how the
%       "-blur" operator actually works.
%
%    Comet:{width},{sigma},{angle}
%       Blur in one direction only, much like how a bright object leaves
%       a comet like trail.  The Kernel is actually half a gaussian curve,
%       Adding two such blurs in opposite directions produces a Blur Kernel.
%       Angle can be rotated in multiples of 90 degrees.
%
%       Note that the first argument is the width of the kernel and not the
%       radius of the kernel.
%
%    Binomial:[{radius}]
%       Generate a discrete kernel using a 2 dimentional Pascel's Triangle
%       of values. Used for special forma of image filters.
%
%    # Still to be implemented...
%    #
%    # Filter2D
%    # Filter1D
%    #    Set kernel values using a resize filter, and given scale (sigma)
%    #    Cylindrical or Linear.   Is this possible with an image?
%    #
%
%  Named Constant Convolution Kernels
%
%  All these are unscaled, zero-summing kernels by default. As such for
%  non-HDRI version of ImageMagick some form of normalization, user scaling,
%  and biasing the results is recommended, to prevent the resulting image
%  being 'clipped'.
%
%  The 3x3 kernels (most of these) can be circularly rotated in multiples of
%  45 degrees to generate the 8 angled varients of each of the kernels.
%
%    Laplacian:{type}
%      Discrete Lapacian Kernels, (without normalization)
%        Type 0 :  3x3 with center:8 surounded by -1  (8 neighbourhood)
%        Type 1 :  3x3 with center:4 edge:-1 corner:0 (4 neighbourhood)
%        Type 2 :  3x3 with center:4 edge:1 corner:-2
%        Type 3 :  3x3 with center:4 edge:-2 corner:1
%        Type 5 :  5x5 laplacian
%        Type 7 :  7x7 laplacian
%        Type 15 : 5x5 LoG (sigma approx 1.4)
%        Type 19 : 9x9 LoG (sigma approx 1.4)
%
%    Sobel:{angle}
%      Sobel 'Edge' convolution kernel (3x3)
%          | -1, 0, 1 |
%          | -2, 0,-2 |
%          | -1, 0, 1 |
%
%    Roberts:{angle}
%      Roberts convolution kernel (3x3)
%          |  0, 0, 0 |
%          | -1, 1, 0 |
%          |  0, 0, 0 |
%
%    Prewitt:{angle}
%      Prewitt Edge convolution kernel (3x3)
%          | -1, 0, 1 |
%          | -1, 0, 1 |
%          | -1, 0, 1 |
%
%    Compass:{angle}
%      Prewitt's "Compass" convolution kernel (3x3)
%          | -1, 1, 1 |
%          | -1,-2, 1 |
%          | -1, 1, 1 |
%
%    Kirsch:{angle}
%      Kirsch's "Compass" convolution kernel (3x3)
%          | -3,-3, 5 |
%          | -3, 0, 5 |
%          | -3,-3, 5 |
%
%    FreiChen:{angle}
%      Frei-Chen Edge Detector is based on a kernel that is similar to
%      the Sobel Kernel, but is designed to be isotropic. That is it takes
%      into account the distance of the diagonal in the kernel.
%
%          |   1,     0,   -1     |
%          | sqrt(2), 0, -sqrt(2) |
%          |   1,     0,   -1     |
%
%    FreiChen:{type},{angle}
%
%      Frei-Chen Pre-weighted kernels...
%
%        Type 0:  default un-nomalized version shown above.
%
%        Type 1: Orthogonal Kernel (same as type 11 below)
%          |   1,     0,   -1     |
%          | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2)
%          |   1,     0,   -1     |
%
%        Type 2: Diagonal form of Kernel...
%          |   1,     sqrt(2),    0     |
%          | sqrt(2),   0,     -sqrt(2) | / 2*sqrt(2)
%          |   0,    -sqrt(2)    -1     |
%
%      However this kernel is als at the heart of the FreiChen Edge Detection
%      Process which uses a set of 9 specially weighted kernel.  These 9
%      kernels not be normalized, but directly applied to the image. The
%      results is then added together, to produce the intensity of an edge in
%      a specific direction.  The square root of the pixel value can then be
%      taken as the cosine of the edge, and at least 2 such runs at 90 degrees
%      from each other, both the direction and the strength of the edge can be
%      determined.
%
%        Type 10: All 9 of the following pre-weighted kernels...
%
%        Type 11: |   1,     0,   -1     |
%                 | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2)
%                 |   1,     0,   -1     |
%
%        Type 12: | 1, sqrt(2), 1 |
%                 | 0,   0,     0 | / 2*sqrt(2)
%                 | 1, sqrt(2), 1 |
%
%        Type 13: | sqrt(2), -1,    0     |
%                 |  -1,      0,    1     | / 2*sqrt(2)
%                 |   0,      1, -sqrt(2) |
%
%        Type 14: |    0,     1, -sqrt(2) |
%                 |   -1,     0,     1    | / 2*sqrt(2)
%                 | sqrt(2), -1,     0    |
%
%        Type 15: | 0, -1, 0 |
%                 | 1,  0, 1 | / 2
%                 | 0, -1, 0 |
%
%        Type 16: |  1, 0, -1 |
%                 |  0, 0,  0 | / 2
%                 | -1, 0,  1 |
%
%        Type 17: |  1, -2,  1 |
%                 | -2,  4, -2 | / 6
%                 | -1, -2,  1 |
%
%        Type 18: | -2, 1, -2 |
%                 |  1, 4,  1 | / 6
%                 | -2, 1, -2 |
%
%        Type 19: | 1, 1, 1 |
%                 | 1, 1, 1 | / 3
%                 | 1, 1, 1 |
%
%      The first 4 are for edge detection, the next 4 are for line detection
%      and the last is to add a average component to the results.
%
%      Using a special type of '-1' will return all 9 pre-weighted kernels
%      as a multi-kernel list, so that you can use them directly (without
%      normalization) with the special "-set option:morphology:compose Plus"
%      setting to apply the full FreiChen Edge Detection Technique.
%
%      If 'type' is large it will be taken to be an actual rotation angle for
%      the default FreiChen (type 0) kernel.  As such  FreiChen:45  will look
%      like a  Sobel:45  but with 'sqrt(2)' instead of '2' values.
%
%      WARNING: The above was layed out as per
%          http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf
%      But rotated 90 degrees so direction is from left rather than the top.
%      I have yet to find any secondary confirmation of the above. The only
%      other source found was actual source code at
%          http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf
%      Neigher paper defineds the kernels in a way that looks locical or
%      correct when taken as a whole.
%
%  Boolean Kernels
%
%    Diamond:[{radius}[,{scale}]]
%       Generate a diamond shaped kernel with given radius to the points.
%       Kernel size will again be radius*2+1 square and defaults to radius 1,
%       generating a 3x3 kernel that is slightly larger than a square.
%
%    Square:[{radius}[,{scale}]]
%       Generate a square shaped kernel of size radius*2+1, and defaulting
%       to a 3x3 (radius 1).
%
%    Octagon:[{radius}[,{scale}]]
%       Generate octagonal shaped kernel of given radius and constant scale.
%       Default radius is 3 producing a 7x7 kernel. A radius of 1 will result
%       in "Diamond" kernel.
%
%    Disk:[{radius}[,{scale}]]
%       Generate a binary disk, thresholded at the radius given, the radius
%       may be a float-point value. Final Kernel size is floor(radius)*2+1
%       square. A radius of 5.3 is the default.
%
%       NOTE: That a low radii Disk kernels produce the same results as
%       many of the previously defined kernels, but differ greatly at larger
%       radii.  Here is a table of equivalences...
%          "Disk:1"    => "Diamond", "Octagon:1", or "Cross:1"
%          "Disk:1.5"  => "Square"
%          "Disk:2"    => "Diamond:2"
%          "Disk:2.5"  => "Octagon"
%          "Disk:2.9"  => "Square:2"
%          "Disk:3.5"  => "Octagon:3"
%          "Disk:4.5"  => "Octagon:4"
%          "Disk:5.4"  => "Octagon:5"
%          "Disk:6.4"  => "Octagon:6"
%       All other Disk shapes are unique to this kernel, but because a "Disk"
%       is more circular when using a larger radius, using a larger radius is
%       preferred over iterating the morphological operation.
%
%    Rectangle:{geometry}
%       Simply generate a rectangle of 1's with the size given. You can also
%       specify the location of the 'control point', otherwise the closest
%       pixel to the center of the rectangle is selected.
%
%       Properly centered and odd sized rectangles work the best.
%
%  Symbol Dilation Kernels
%
%    These kernel is not a good general morphological kernel, but is used
%    more for highlighting and marking any single pixels in an image using,
%    a "Dilate" method as appropriate.
%
%    For the same reasons iterating these kernels does not produce the
%    same result as using a larger radius for the symbol.
%
%    Plus:[{radius}[,{scale}]]
%    Cross:[{radius}[,{scale}]]
%       Generate a kernel in the shape of a 'plus' or a 'cross' with
%       a each arm the length of the given radius (default 2).
%
%       NOTE: "plus:1" is equivalent to a "Diamond" kernel.
%
%    Ring:{radius1},{radius2}[,{scale}]
%       A ring of the values given that falls between the two radii.
%       Defaults to a ring of approximataly 3 radius in a 7x7 kernel.
%       This is the 'edge' pixels of the default "Disk" kernel,
%       More specifically, "Ring" -> "Ring:2.5,3.5,1.0"
%
%  Hit and Miss Kernels
%
%    Peak:radius1,radius2
%       Find any peak larger than the pixels the fall between the two radii.
%       The default ring of pixels is as per "Ring".
%    Edges
%       Find flat orthogonal edges of a binary shape
%    Corners
%       Find 90 degree corners of a binary shape
%    Diagonals:type
%       A special kernel to thin the 'outside' of diagonals
%    LineEnds:type
%       Find end points of lines (for pruning a skeletion)
%       Two types of lines ends (default to both) can be searched for
%         Type 0: All line ends
%         Type 1: single kernel for 4-conneected line ends
%         Type 2: single kernel for simple line ends
%    LineJunctions
%       Find three line junctions (within a skeletion)
%         Type 0: all line junctions
%         Type 1: Y Junction kernel
%         Type 2: Diagonal T Junction kernel
%         Type 3: Orthogonal T Junction kernel
%         Type 4: Diagonal X Junction kernel
%         Type 5: Orthogonal + Junction kernel
%    Ridges:type
%       Find single pixel ridges or thin lines
%         Type 1: Fine single pixel thick lines and ridges
%         Type 2: Find two pixel thick lines and ridges
%    ConvexHull
%       Octagonal Thickening Kernel, to generate convex hulls of 45 degrees
%    Skeleton:type
%       Traditional skeleton generating kernels.
%         Type 1: Tradional Skeleton kernel (4 connected skeleton)
%         Type 2: HIPR2 Skeleton kernel (8 connected skeleton)
%         Type 3: Thinning skeleton based on a ressearch paper by
%                 Dan S. Bloomberg (Default Type)
%    ThinSE:type
%       A huge variety of Thinning Kernels designed to preserve conectivity.
%       many other kernel sets use these kernels as source definitions.
%       Type numbers are 41-49, 81-89, 481, and 482 which are based on
%       the super and sub notations used in the source research paper.
%
%  Distance Measuring Kernels
%
%    Different types of distance measuring methods, which are used with the
%    a 'Distance' morphology method for generating a gradient based on
%    distance from an edge of a binary shape, though there is a technique
%    for handling a anti-aliased shape.
%
%    See the 'Distance' Morphological Method, for information of how it is
%    applied.
%
%    Chebyshev:[{radius}][x{scale}[%!]]
%       Chebyshev Distance (also known as Tchebychev or Chessboard distance)
%       is a value of one to any neighbour, orthogonal or diagonal. One why
%       of thinking of it is the number of squares a 'King' or 'Queen' in
%       chess needs to traverse reach any other position on a chess board.
%       It results in a 'square' like distance function, but one where
%       diagonals are given a value that is closer than expected.
%
%    Manhattan:[{radius}][x{scale}[%!]]
%       Manhattan Distance (also known as Rectilinear, City Block, or the Taxi
%       Cab distance metric), it is the distance needed when you can only
%       travel in horizontal or vertical directions only.  It is the
%       distance a 'Rook' in chess would have to travel, and results in a
%       diamond like distances, where diagonals are further than expected.
%
%    Octagonal:[{radius}][x{scale}[%!]]
%       An interleving of Manhatten and Chebyshev metrics producing an
%       increasing octagonally shaped distance.  Distances matches those of
%       the "Octagon" shaped kernel of the same radius.  The minimum radius
%       and default is 2, producing a 5x5 kernel.
%
%    Euclidean:[{radius}][x{scale}[%!]]
%       Euclidean distance is the 'direct' or 'as the crow flys' distance.
%       However by default the kernel size only has a radius of 1, which
%       limits the distance to 'Knight' like moves, with only orthogonal and
%       diagonal measurements being correct.  As such for the default kernel
%       you will get octagonal like distance function.
%
%       However using a larger radius such as "Euclidean:4" you will get a
%       much smoother distance gradient from the edge of the shape. Especially
%       if the image is pre-processed to include any anti-aliasing pixels.
%       Of course a larger kernel is slower to use, and not always needed.
%
%    The first three Distance Measuring Kernels will only generate distances
%    of exact multiples of {scale} in binary images. As such you can use a
%    scale of 1 without loosing any information.  However you also need some
%    scaling when handling non-binary anti-aliased shapes.
%
%    The "Euclidean" Distance Kernel however does generate a non-integer
%    fractional results, and as such scaling is vital even for binary shapes.
%
*/

MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
  const GeometryInfo *args,ExceptionInfo *exception)
{
  KernelInfo
    *kernel;

  ssize_t
    i;

  ssize_t
    u,
    v;

  double
    nan = sqrt((double)-1.0);  /* Special Value : Not A Number */

  /* Generate a new empty kernel if needed */
  kernel=(KernelInfo *) NULL;
  switch(type) {
    case UndefinedKernel:    /* These should not call this function */
    case UserDefinedKernel:
      assert("Should not call this function" != (char *) NULL);
      break;
    case LaplacianKernel:   /* Named Descrete Convolution Kernels */
    case SobelKernel:       /* these are defined using other kernels */
    case RobertsKernel:
    case PrewittKernel:
    case CompassKernel:
    case KirschKernel:
    case FreiChenKernel:
    case EdgesKernel:       /* Hit and Miss kernels */
    case CornersKernel:
    case DiagonalsKernel:
    case LineEndsKernel:
    case LineJunctionsKernel:
    case RidgesKernel:
    case ConvexHullKernel:
    case SkeletonKernel:
    case ThinSEKernel:
      break;               /* A pre-generated kernel is not needed */
#if 0
    /* set to 1 to do a compile-time check that we haven't missed anything */
    case UnityKernel:
    case GaussianKernel:
    case DoGKernel:
    case LoGKernel:
    case BlurKernel:
    case CometKernel:
    case BinomialKernel:
    case DiamondKernel:
    case SquareKernel:
    case RectangleKernel:
    case OctagonKernel:
    case DiskKernel:
    case PlusKernel:
    case CrossKernel:
    case RingKernel:
    case PeaksKernel:
    case ChebyshevKernel:
    case ManhattanKernel:
    case OctangonalKernel:
    case EuclideanKernel:
#else
    default:
#endif
      /* Generate the base Kernel Structure */
      kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
      if (kernel == (KernelInfo *) NULL)
        return(kernel);
      (void) memset(kernel,0,sizeof(*kernel));
      kernel->minimum = kernel->maximum = kernel->angle = 0.0;
      kernel->negative_range = kernel->positive_range = 0.0;
      kernel->type = type;
      kernel->next = (KernelInfo *) NULL;
      kernel->signature=MagickCoreSignature;
      break;
  }

  switch(type) {
    /*
      Convolution Kernels
    */
    case UnityKernel:
      {
        kernel->height = kernel->width = (size_t) 1;
        kernel->x = kernel->y = (ssize_t) 0;
        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(1,sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));
        kernel->maximum = kernel->values[0] = args->rho;
        break;
      }
      break;
    case GaussianKernel:
    case DoGKernel:
    case LoGKernel:
      { double
          sigma = fabs(args->sigma),
          sigma2 = fabs(args->xi),
          A, B, R;

        if ( args->rho >= 1.0 )
          kernel->width = (size_t)args->rho*2+1;
        else if ( (type != DoGKernel) || (sigma >= sigma2) )
          kernel->width = GetOptimalKernelWidth2D(args->rho,sigma);
        else
          kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2);
        kernel->height = kernel->width;
        kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        /* WARNING: The following generates a 'sampled gaussian' kernel.
         * What we really want is a 'discrete gaussian' kernel.
         *
         * How to do this is I don't know, but appears to be basied on the
         * Error Function 'erf()' (intergral of a gaussian)
         */

        if ( type == GaussianKernel || type == DoGKernel )
          { /* Calculate a Gaussian,  OR positive half of a DoG */
            if ( sigma > MagickEpsilon )
              { A = 1.0/(2.0*sigma*sigma);  /* simplify loop expressions */
                B = (double) (1.0/(Magick2PI*sigma*sigma));
                for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
                  for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
                      kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B;
              }
            else /* limiting case - a unity (normalized Dirac) kernel */
              { (void) memset(kernel->values,0, (size_t)
                  kernel->width*kernel->height*sizeof(*kernel->values));
                kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
              }
          }

        if ( type == DoGKernel )
          { /* Subtract a Negative Gaussian for "Difference of Gaussian" */
            if ( sigma2 > MagickEpsilon )
              { sigma = sigma2;                /* simplify loop expressions */
                A = 1.0/(2.0*sigma*sigma);
                B = (double) (1.0/(Magick2PI*sigma*sigma));
                for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
                  for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
                    kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B;
              }
            else /* limiting case - a unity (normalized Dirac) kernel */
              kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0;
          }

        if ( type == LoGKernel )
          { /* Calculate a Laplacian of a Gaussian - Or Mexician Hat */
            if ( sigma > MagickEpsilon )
              { A = 1.0/(2.0*sigma*sigma);  /* simplify loop expressions */
                B = (double) (1.0/(MagickPI*sigma*sigma*sigma*sigma));
                for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
                  for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
                    { R = ((double)(u*u+v*v))*A;
                      kernel->values[i] = (1-R)*exp(-R)*B;
                    }
              }
            else /* special case - generate a unity kernel */
              { (void) memset(kernel->values,0, (size_t)
                  kernel->width*kernel->height*sizeof(*kernel->values));
                kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
              }
          }

        /* Note the above kernels may have been 'clipped' by a user defined
        ** radius, producing a smaller (darker) kernel.  Also for very small
        ** sigma's (> 0.1) the central value becomes larger than one, and thus
        ** producing a very bright kernel.
        **
        ** Normalization will still be needed.
        */

        /* Normalize the 2D Gaussian Kernel
        **
        ** NB: a CorrelateNormalize performs a normal Normalize if
        ** there are no negative values.
        */
        CalcKernelMetaData(kernel);  /* the other kernel meta-data */
        ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue);

        break;
      }
    case BlurKernel:
      { double
          sigma = fabs(args->sigma),
          alpha, beta;

        if ( args->rho >= 1.0 )
          kernel->width = (size_t)args->rho*2+1;
        else
          kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
        kernel->height = 1;
        kernel->x = (ssize_t) (kernel->width-1)/2;
        kernel->y = 0;
        kernel->negative_range = kernel->positive_range = 0.0;
        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

#if 1
#define KernelRank 3
        /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
        ** It generates a gaussian 3 times the width, and compresses it into
        ** the expected range.  This produces a closer normalization of the
        ** resulting kernel, especially for very low sigma values.
        ** As such while wierd it is prefered.
        **
        ** I am told this method originally came from Photoshop.
        **
        ** A properly normalized curve is generated (apart from edge clipping)
        ** even though we later normalize the result (for edge clipping)
        ** to allow the correct generation of a "Difference of Blurs".
        */

        /* initialize */
        v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
        (void) memset(kernel->values,0, (size_t)
          kernel->width*kernel->height*sizeof(*kernel->values));
        /* Calculate a Positive 1D Gaussian */
        if ( sigma > MagickEpsilon )
          { sigma *= KernelRank;               /* simplify loop expressions */
            alpha = 1.0/(2.0*sigma*sigma);
            beta= (double) (1.0/(MagickSQ2PI*sigma ));
            for ( u=-v; u <= v; u++) {
              kernel->values[(u+v)/KernelRank] +=
                              exp(-((double)(u*u))*alpha)*beta;
            }
          }
        else /* special case - generate a unity kernel */
          kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
#else
        /* Direct calculation without curve averaging
           This is equivelent to a KernelRank of 1 */

        /* Calculate a Positive Gaussian */
        if ( sigma > MagickEpsilon )
          { alpha = 1.0/(2.0*sigma*sigma);    /* simplify loop expressions */
            beta = 1.0/(MagickSQ2PI*sigma);
            for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              kernel->values[i] = exp(-((double)(u*u))*alpha)*beta;
          }
        else /* special case - generate a unity kernel */
          { (void) memset(kernel->values,0, (size_t)
              kernel->width*kernel->height*sizeof(*kernel->values));
            kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
          }
#endif
        /* Note the above kernel may have been 'clipped' by a user defined
        ** radius, producing a smaller (darker) kernel.  Also for very small
        ** sigma's (> 0.1) the central value becomes larger than one, as a
        ** result of not generating a actual 'discrete' kernel, and thus
        ** producing a very bright 'impulse'.
        **
        ** Becuase of these two factors Normalization is required!
        */

        /* Normalize the 1D Gaussian Kernel
        **
        ** NB: a CorrelateNormalize performs a normal Normalize if
        ** there are no negative values.
        */
        CalcKernelMetaData(kernel);  /* the other kernel meta-data */
        ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue);

        /* rotate the 1D kernel by given angle */
        RotateKernelInfo(kernel, args->xi );
        break;
      }
    case CometKernel:
      { double
          sigma = fabs(args->sigma),
          A;

        if ( args->rho < 1.0 )
          kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1;
        else
          kernel->width = (size_t)args->rho;
        kernel->x = kernel->y = 0;
        kernel->height = 1;
        kernel->negative_range = kernel->positive_range = 0.0;
        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        /* A comet blur is half a 1D gaussian curve, so that the object is
        ** blurred in one direction only.  This may not be quite the right
        ** curve to use so may change in the future. The function must be
        ** normalised after generation, which also resolves any clipping.
        **
        ** As we are normalizing and not subtracting gaussians,
        ** there is no need for a divisor in the gaussian formula
        **
        ** It is less comples
        */
        if ( sigma > MagickEpsilon )
          {
#if 1
#define KernelRank 3
            v = (ssize_t) kernel->width*KernelRank; /* start/end points */
            (void) memset(kernel->values,0, (size_t)
              kernel->width*sizeof(*kernel->values));
            sigma *= KernelRank;            /* simplify the loop expression */
            A = 1.0/(2.0*sigma*sigma);
            /* B = 1.0/(MagickSQ2PI*sigma); */
            for ( u=0; u < v; u++) {
              kernel->values[u/KernelRank] +=
                  exp(-((double)(u*u))*A);
              /*  exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */
            }
            for (i=0; i < (ssize_t) kernel->width; i++)
              kernel->positive_range += kernel->values[i];
#else
            A = 1.0/(2.0*sigma*sigma);     /* simplify the loop expression */
            /* B = 1.0/(MagickSQ2PI*sigma); */
            for ( i=0; i < (ssize_t) kernel->width; i++)
              kernel->positive_range +=
                kernel->values[i] = exp(-((double)(i*i))*A);
                /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */
#endif
          }
        else /* special case - generate a unity kernel */
          { (void) memset(kernel->values,0, (size_t)
              kernel->width*kernel->height*sizeof(*kernel->values));
            kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
            kernel->positive_range = 1.0;
          }

        kernel->minimum = 0.0;
        kernel->maximum = kernel->values[0];
        kernel->negative_range = 0.0;

        ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */
        RotateKernelInfo(kernel, args->xi); /* Rotate by angle */
        break;
      }
    case BinomialKernel:
      {
        size_t
          order_f;

        if (args->rho < 1.0)
          kernel->width = kernel->height = 3;  /* default radius = 1 */
        else
          kernel->width = kernel->height = ((size_t)args->rho)*2+1;
        kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

        order_f = fact(kernel->width-1);

        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        /* set all kernel values within diamond area to scale given */
        for ( i=0, v=0; v < (ssize_t)kernel->height; v++)
          { size_t
              alpha = order_f / ( fact((size_t) v) * fact(kernel->height-v-1) );
            for ( u=0; u < (ssize_t)kernel->width; u++, i++)
              kernel->positive_range += kernel->values[i] = (double)
                (alpha * order_f / ( fact((size_t) u) * fact(kernel->height-u-1) ));
          }
        kernel->minimum = 1.0;
        kernel->maximum = kernel->values[kernel->x+kernel->y*kernel->width];
        kernel->negative_range = 0.0;
        break;
      }

    /*
      Convolution Kernels - Well Known Named Constant Kernels
    */
    case LaplacianKernel:
      { switch ( (int) args->rho ) {
          case 0:
          default: /* laplacian square filter -- default */
            kernel=ParseKernelArray("3: -1,-1,-1  -1,8,-1  -1,-1,-1");
            break;
          case 1:  /* laplacian diamond filter */
            kernel=ParseKernelArray("3: 0,-1,0  -1,4,-1  0,-1,0");
            break;
          case 2:
            kernel=ParseKernelArray("3: -2,1,-2  1,4,1  -2,1,-2");
            break;
          case 3:
            kernel=ParseKernelArray("3: 1,-2,1  -2,4,-2  1,-2,1");
            break;
          case 5:   /* a 5x5 laplacian */
            kernel=ParseKernelArray(
              "5: -4,-1,0,-1,-4  -1,2,3,2,-1  0,3,4,3,0  -1,2,3,2,-1  -4,-1,0,-1,-4");
            break;
          case 7:   /* a 7x7 laplacian */
            kernel=ParseKernelArray(
              "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" );
            break;
          case 15:  /* a 5x5 LoG (sigma approx 1.4) */
            kernel=ParseKernelArray(
              "5: 0,0,-1,0,0  0,-1,-2,-1,0  -1,-2,16,-2,-1  0,-1,-2,-1,0  0,0,-1,0,0");
            break;
          case 19:  /* a 9x9 LoG (sigma approx 1.4) */
            /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */
            kernel=ParseKernelArray(
              "9: 0,-1,-1,-2,-2,-2,-1,-1,0  -1,-2,-4,-5,-5,-5,-4,-2,-1  -1,-4,-5,-3,-0,-3,-5,-4,-1  -2,-5,-3,12,24,12,-3,-5,-2  -2,-5,-0,24,40,24,-0,-5,-2  -2,-5,-3,12,24,12,-3,-5,-2  -1,-4,-5,-3,-0,-3,-5,-4,-1  -1,-2,-4,-5,-5,-5,-4,-2,-1  0,-1,-1,-2,-2,-2,-1,-1,0");
            break;
        }
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        break;
      }
    case SobelKernel:
      { /* Simple Sobel Kernel */
        kernel=ParseKernelArray("3: 1,0,-1  2,0,-2  1,0,-1");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        RotateKernelInfo(kernel, args->rho);
        break;
      }
    case RobertsKernel:
      {
        kernel=ParseKernelArray("3: 0,0,0  1,-1,0  0,0,0");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        RotateKernelInfo(kernel, args->rho);
        break;
      }
    case PrewittKernel:
      {
        kernel=ParseKernelArray("3: 1,0,-1  1,0,-1  1,0,-1");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        RotateKernelInfo(kernel, args->rho);
        break;
      }
    case CompassKernel:
      {
        kernel=ParseKernelArray("3: 1,1,-1  1,-2,-1  1,1,-1");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        RotateKernelInfo(kernel, args->rho);
        break;
      }
    case KirschKernel:
      {
        kernel=ParseKernelArray("3: 5,-3,-3  5,0,-3  5,-3,-3");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = type;
        RotateKernelInfo(kernel, args->rho);
        break;
      }
    case FreiChenKernel:
      /* Direction is set to be left to right positive */
      /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */
      /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */
      { switch ( (int) args->rho ) {
          default:
          case 0:
            kernel=ParseKernelArray("3: 1,0,-1  2,0,-2  1,0,-1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[3] = +(MagickRealType) MagickSQ2;
            kernel->values[5] = -(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);     /* recalculate meta-data */
            break;
          case 2:
            kernel=ParseKernelArray("3: 1,2,0  2,0,-2  0,-2,-1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[1] = kernel->values[3]= +(MagickRealType) MagickSQ2;
            kernel->values[5] = kernel->values[7]= -(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);     /* recalculate meta-data */
            ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
            break;
          case 10:
          {
            kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19",exception);
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            break;
          }
          case 1:
          case 11:
            kernel=ParseKernelArray("3: 1,0,-1  2,0,-2  1,0,-1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[3] = +(MagickRealType) MagickSQ2;
            kernel->values[5] = -(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);     /* recalculate meta-data */
            ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
            break;
          case 12:
            kernel=ParseKernelArray("3: 1,2,1  0,0,0  1,2,1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[1] = +(MagickRealType) MagickSQ2;
            kernel->values[7] = +(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);
            ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
            break;
          case 13:
            kernel=ParseKernelArray("3: 2,-1,0  -1,0,1  0,1,-2");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[0] = +(MagickRealType) MagickSQ2;
            kernel->values[8] = -(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);
            ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
            break;
          case 14:
            kernel=ParseKernelArray("3: 0,1,-2  -1,0,1  2,-1,0");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            kernel->values[2] = -(MagickRealType) MagickSQ2;
            kernel->values[6] = +(MagickRealType) MagickSQ2;
            CalcKernelMetaData(kernel);
            ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
            break;
          case 15:
            kernel=ParseKernelArray("3: 0,-1,0  1,0,1  0,-1,0");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            ScaleKernelInfo(kernel, 1.0/2.0, NoValue);
            break;
          case 16:
            kernel=ParseKernelArray("3: 1,0,-1  0,0,0  -1,0,1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            ScaleKernelInfo(kernel, 1.0/2.0, NoValue);
            break;
          case 17:
            kernel=ParseKernelArray("3: 1,-2,1  -2,4,-2  -1,-2,1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            ScaleKernelInfo(kernel, 1.0/6.0, NoValue);
            break;
          case 18:
            kernel=ParseKernelArray("3: -2,1,-2  1,4,1  -2,1,-2");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            ScaleKernelInfo(kernel, 1.0/6.0, NoValue);
            break;
          case 19:
            kernel=ParseKernelArray("3: 1,1,1  1,1,1  1,1,1");
            if (kernel == (KernelInfo *) NULL)
              return(kernel);
            kernel->type = type;
            ScaleKernelInfo(kernel, 1.0/3.0, NoValue);
            break;
        }
        if ( fabs(args->sigma) >= MagickEpsilon )
          /* Rotate by correctly supplied 'angle' */
          RotateKernelInfo(kernel, args->sigma);
        else if ( args->rho > 30.0 || args->rho < -30.0 )
          /* Rotate by out of bounds 'type' */
          RotateKernelInfo(kernel, args->rho);
        break;
      }

    /*
      Boolean or Shaped Kernels
    */
    case DiamondKernel:
      {
        if (args->rho < 1.0)
          kernel->width = kernel->height = 3;  /* default radius = 1 */
        else
          kernel->width = kernel->height = ((size_t)args->rho)*2+1;
        kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        /* set all kernel values within diamond area to scale given */
        for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
          for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
            if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x)
              kernel->positive_range += kernel->values[i] = args->sigma;
            else
              kernel->values[i] = nan;
        kernel->minimum = kernel->maximum = args->sigma;   /* a flat shape */
        break;
      }
    case SquareKernel:
    case RectangleKernel:
      { double
          scale;
        if ( type == SquareKernel )
          {
            if (args->rho < 1.0)
              kernel->width = kernel->height = 3;  /* default radius = 1 */
            else
              kernel->width = kernel->height = (size_t) (2*args->rho+1);
            kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
            scale = args->sigma;
          }
        else {
            /* NOTE: user defaults set in "AcquireKernelInfo()" */
            if ( args->rho < 1.0 || args->sigma < 1.0 )
              return(DestroyKernelInfo(kernel));    /* invalid args given */
            kernel->width = (size_t)args->rho;
            kernel->height = (size_t)args->sigma;
            if ( args->xi  < 0.0 || args->xi  > (double)kernel->width ||
                 args->psi < 0.0 || args->psi > (double)kernel->height )
              return(DestroyKernelInfo(kernel));    /* invalid args given */
            kernel->x = (ssize_t) args->xi;
            kernel->y = (ssize_t) args->psi;
            scale = 1.0;
          }
        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        /* set all kernel values to scale given */
        u=(ssize_t) (kernel->width*kernel->height);
        for ( i=0; i < u; i++)
            kernel->values[i] = scale;
        kernel->minimum = kernel->maximum = scale;   /* a flat shape */
        kernel->positive_range = scale*u;
        break;
      }
      case OctagonKernel:
        {
          if (args->rho < 1.0)
            kernel->width = kernel->height = 5;  /* default radius = 2 */
          else
            kernel->width = kernel->height = ((size_t)args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              if ( (labs((long) u)+labs((long) v)) <=
                        ((long)kernel->x + (long)(kernel->x/2)) )
                kernel->positive_range += kernel->values[i] = args->sigma;
              else
                kernel->values[i] = nan;
          kernel->minimum = kernel->maximum = args->sigma;  /* a flat shape */
          break;
        }
      case DiskKernel:
        {
          ssize_t
            limit = (ssize_t)(args->rho*args->rho);

          if (args->rho < 0.4)           /* default radius approx 4.3 */
            kernel->width = kernel->height = 9L, limit = 18L;
          else
            kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              if ((u*u+v*v) <= limit)
                kernel->positive_range += kernel->values[i] = args->sigma;
              else
                kernel->values[i] = nan;
          kernel->minimum = kernel->maximum = args->sigma;   /* a flat shape */
          break;
        }
      case PlusKernel:
        {
          if (args->rho < 1.0)
            kernel->width = kernel->height = 5;  /* default radius 2 */
          else
            kernel->width = kernel->height = ((size_t)args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          /* set all kernel values along axises to given scale */
          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan;
          kernel->minimum = kernel->maximum = args->sigma;   /* a flat shape */
          kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0);
          break;
        }
      case CrossKernel:
        {
          if (args->rho < 1.0)
            kernel->width = kernel->height = 5;  /* default radius 2 */
          else
            kernel->width = kernel->height = ((size_t)args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          /* set all kernel values along axises to given scale */
          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              kernel->values[i] = (u == v || u == -v) ? args->sigma : nan;
          kernel->minimum = kernel->maximum = args->sigma;   /* a flat shape */
          kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0);
          break;
        }
      /*
        HitAndMiss Kernels
      */
      case RingKernel:
      case PeaksKernel:
        {
          ssize_t
            limit1,
            limit2,
            scale;

          if (args->rho < args->sigma)
            {
              kernel->width = ((size_t)args->sigma)*2+1;
              limit1 = (ssize_t)(args->rho*args->rho);
              limit2 = (ssize_t)(args->sigma*args->sigma);
            }
          else
            {
              kernel->width = ((size_t)args->rho)*2+1;
              limit1 = (ssize_t)(args->sigma*args->sigma);
              limit2 = (ssize_t)(args->rho*args->rho);
            }
          if ( limit2 <= 0 )
            kernel->width = 7L, limit1 = 7L, limit2 = 11L;

          kernel->height = kernel->width;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */
          scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi);
          for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              { ssize_t radius=u*u+v*v;
                if (limit1 < radius && radius <= limit2)
                  kernel->positive_range += kernel->values[i] = (double) scale;
                else
                  kernel->values[i] = nan;
              }
          kernel->minimum = kernel->maximum = (double) scale;
          if ( type == PeaksKernel ) {
            /* set the central point in the middle */
            kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
            kernel->positive_range = 1.0;
            kernel->maximum = 1.0;
          }
          break;
        }
      case EdgesKernel:
        {
          kernel=AcquireKernelInfo("ThinSE:482",exception);
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          ExpandMirrorKernelInfo(kernel); /* mirror expansion of kernels */
          break;
        }
      case CornersKernel:
        {
          kernel=AcquireKernelInfo("ThinSE:87",exception);
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */
          break;
        }
      case DiagonalsKernel:
        {
          switch ( (int) args->rho ) {
            case 0:
            default:
              { KernelInfo
                  *new_kernel;
                kernel=ParseKernelArray("3: 0,0,0  0,-,1  1,1,-");
                if (kernel == (KernelInfo *) NULL)
                  return(kernel);
                kernel->type = type;
                new_kernel=ParseKernelArray("3: 0,0,1  0,-,1  0,1,-");
                if (new_kernel == (KernelInfo *) NULL)
                  return(DestroyKernelInfo(kernel));
                new_kernel->type = type;
                LastKernelInfo(kernel)->next = new_kernel;
                ExpandMirrorKernelInfo(kernel);
                return(kernel);
              }
            case 1:
              kernel=ParseKernelArray("3: 0,0,0  0,-,1  1,1,-");
              break;
            case 2:
              kernel=ParseKernelArray("3: 0,0,1  0,-,1  0,1,-");
              break;
          }
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          RotateKernelInfo(kernel, args->sigma);
          break;
        }
      case LineEndsKernel:
        { /* Kernels for finding the end of thin lines */
          switch ( (int) args->rho ) {
            case 0:
            default:
              /* set of kernels to find all end of lines */
              return(AcquireKernelInfo("LineEnds:1>;LineEnds:2>",exception));
            case 1:
              /* kernel for 4-connected line ends - no rotation */
              kernel=ParseKernelArray("3: 0,0,-  0,1,1  0,0,-");
              break;
          case 2:
              /* kernel to add for 8-connected lines - no rotation */
              kernel=ParseKernelArray("3: 0,0,0  0,1,0  0,0,1");
              break;
          case 3:
              /* kernel to add for orthogonal line ends - does not find corners */
              kernel=ParseKernelArray("3: 0,0,0  0,1,1  0,0,0");
              break;
          case 4:
              /* traditional line end - fails on last T end */
              kernel=ParseKernelArray("3: 0,0,0  0,1,-  0,0,-");
              break;
          }
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          RotateKernelInfo(kernel, args->sigma);
          break;
        }
      case LineJunctionsKernel:
        { /* kernels for finding the junctions of multiple lines */
          switch ( (int) args->rho ) {
            case 0:
            default:
              /* set of kernels to find all line junctions */
              return(AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>",exception));
            case 1:
              /* Y Junction */
              kernel=ParseKernelArray("3: 1,-,1  -,1,-  -,1,-");
              break;
            case 2:
              /* Diagonal T Junctions */
              kernel=ParseKernelArray("3: 1,-,-  -,1,-  1,-,1");
              break;
            case 3:
              /* Orthogonal T Junctions */
              kernel=ParseKernelArray("3: -,-,-  1,1,1  -,1,-");
              break;
            case 4:
              /* Diagonal X Junctions */
              kernel=ParseKernelArray("3: 1,-,1  -,1,-  1,-,1");
              break;
            case 5:
              /* Orthogonal X Junctions - minimal diamond kernel */
              kernel=ParseKernelArray("3: -,1,-  1,1,1  -,1,-");
              break;
          }
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          RotateKernelInfo(kernel, args->sigma);
          break;
        }
      case RidgesKernel:
        { /* Ridges - Ridge finding kernels */
          KernelInfo
            *new_kernel;
          switch ( (int) args->rho ) {
            case 1:
            default:
              kernel=ParseKernelArray("3x1:0,1,0");
              if (kernel == (KernelInfo *) NULL)
                return(kernel);
              kernel->type = type;
              ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */
              break;
            case 2:
              kernel=ParseKernelArray("4x1:0,1,1,0");
              if (kernel == (KernelInfo *) NULL)
                return(kernel);
              kernel->type = type;
              ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */

              /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */
              /* Unfortunatally we can not yet rotate a non-square kernel */
              /* But then we can't flip a non-symetrical kernel either */
              new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-");
              if (new_kernel == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              new_kernel->type = type;
              LastKernelInfo(kernel)->next = new_kernel;
              break;
          }
          break;
        }
      case ConvexHullKernel:
        {
          KernelInfo
            *new_kernel;
          /* first set of 8 kernels */
          kernel=ParseKernelArray("3: 1,1,-  1,0,-  1,-,0");
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          ExpandRotateKernelInfo(kernel, 90.0);
          /* append the mirror versions too - no flip function yet */
          new_kernel=ParseKernelArray("3: 1,1,1  1,0,-  -,-,0");
          if (new_kernel == (KernelInfo *) NULL)
            return(DestroyKernelInfo(kernel));
          new_kernel->type = type;
          ExpandRotateKernelInfo(new_kernel, 90.0);
          LastKernelInfo(kernel)->next = new_kernel;
          break;
        }
      case SkeletonKernel:
        {
          switch ( (int) args->rho ) {
            case 1:
            default:
              /* Traditional Skeleton...
              ** A cyclically rotated single kernel
              */
              kernel=AcquireKernelInfo("ThinSE:482",exception);
              if (kernel == (KernelInfo *) NULL)
                return(kernel);
              kernel->type = type;
              ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */
              break;
            case 2:
              /* HIPR Variation of the cyclic skeleton
              ** Corners of the traditional method made more forgiving,
              ** but the retain the same cyclic order.
              */
              kernel=AcquireKernelInfo("ThinSE:482; ThinSE:87x90;",exception);
              if (kernel == (KernelInfo *) NULL)
                return(kernel);
              if (kernel->next == (KernelInfo *) NULL)
                return(DestroyKernelInfo(kernel));
              kernel->type = type;
              kernel->next->type = type;
              ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */
              break;
            case 3:
              /* Dan Bloomberg Skeleton, from his paper on 3x3 thinning SE's
              ** "Connectivity-Preserving Morphological Image Thransformations"
              ** by Dan S. Bloomberg, available on Leptonica, Selected Papers,
              **   http://www.leptonica.com/papers/conn.pdf
              */
              kernel=AcquireKernelInfo("ThinSE:41; ThinSE:42; ThinSE:43",
                exception);
              if (kernel == (KernelInfo *) NULL)
                return(kernel);
              kernel->type = type;
              kernel->next->type = type;
              kernel->next->next->type = type;
              ExpandMirrorKernelInfo(kernel); /* 12 kernels total */
              break;
           }
          break;
        }
      case ThinSEKernel:
        { /* Special kernels for general thinning, while preserving connections
          ** "Connectivity-Preserving Morphological Image Thransformations"
          ** by Dan S. Bloomberg, available on Leptonica, Selected Papers,
          **   http://www.leptonica.com/papers/conn.pdf
          ** And
          **   http://tpgit.github.com/Leptonica/ccthin_8c_source.html
          **
          ** Note kernels do not specify the origin pixel, allowing them
          ** to be used for both thickening and thinning operations.
          */
          switch ( (int) args->rho ) {
            /* SE for 4-connected thinning */
            case 41: /* SE_4_1 */
              kernel=ParseKernelArray("3: -,-,1  0,-,1  -,-,1");
              break;
            case 42: /* SE_4_2 */
              kernel=ParseKernelArray("3: -,-,1  0,-,1  -,0,-");
              break;
            case 43: /* SE_4_3 */
              kernel=ParseKernelArray("3: -,0,-  0,-,1  -,-,1");
              break;
            case 44: /* SE_4_4 */
              kernel=ParseKernelArray("3: -,0,-  0,-,1  -,0,-");
              break;
            case 45: /* SE_4_5 */
              kernel=ParseKernelArray("3: -,0,1  0,-,1  -,0,-");
              break;
            case 46: /* SE_4_6 */
              kernel=ParseKernelArray("3: -,0,-  0,-,1  -,0,1");
              break;
            case 47: /* SE_4_7 */
              kernel=ParseKernelArray("3: -,1,1  0,-,1  -,0,-");
              break;
            case 48: /* SE_4_8 */
              kernel=ParseKernelArray("3: -,-,1  0,-,1  0,-,1");
              break;
            case 49: /* SE_4_9 */
              kernel=ParseKernelArray("3: 0,-,1  0,-,1  -,-,1");
              break;
            /* SE for 8-connected thinning - negatives of the above */
            case 81: /* SE_8_0 */
              kernel=ParseKernelArray("3: -,1,-  0,-,1  -,1,-");
              break;
            case 82: /* SE_8_2 */
              kernel=ParseKernelArray("3: -,1,-  0,-,1  0,-,-");
              break;
            case 83: /* SE_8_3 */
              kernel=ParseKernelArray("3: 0,-,-  0,-,1  -,1,-");
              break;
            case 84: /* SE_8_4 */
              kernel=ParseKernelArray("3: 0,-,-  0,-,1  0,-,-");
              break;
            case 85: /* SE_8_5 */
              kernel=ParseKernelArray("3: 0,-,1  0,-,1  0,-,-");
              break;
            case 86: /* SE_8_6 */
              kernel=ParseKernelArray("3: 0,-,-  0,-,1  0,-,1");
              break;
            case 87: /* SE_8_7 */
              kernel=ParseKernelArray("3: -,1,-  0,-,1  0,0,-");
              break;
            case 88: /* SE_8_8 */
              kernel=ParseKernelArray("3: -,1,-  0,-,1  0,1,-");
              break;
            case 89: /* SE_8_9 */
              kernel=ParseKernelArray("3: 0,1,-  0,-,1  -,1,-");
              break;
            /* Special combined SE kernels */
            case 423: /* SE_4_2 , SE_4_3 Combined Kernel */
              kernel=ParseKernelArray("3: -,-,1  0,-,-  -,0,-");
              break;
            case 823: /* SE_8_2 , SE_8_3 Combined Kernel */
              kernel=ParseKernelArray("3: -,1,-  -,-,1  0,-,-");
              break;
            case 481: /* SE_48_1 - General Connected Corner Kernel */
              kernel=ParseKernelArray("3: -,1,1  0,-,1  0,0,-");
              break;
            default:
            case 482: /* SE_48_2 - General Edge Kernel */
              kernel=ParseKernelArray("3: 0,-,1  0,-,1  0,-,1");
              break;
          }
          if (kernel == (KernelInfo *) NULL)
            return(kernel);
          kernel->type = type;
          RotateKernelInfo(kernel, args->sigma);
          break;
        }
      /*
        Distance Measuring Kernels
      */
      case ChebyshevKernel:
        {
          if (args->rho < 1.0)
            kernel->width = kernel->height = 3;  /* default radius = 1 */
          else
            kernel->width = kernel->height = ((size_t)args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              kernel->positive_range += ( kernel->values[i] =
                  args->sigma*MagickMax(fabs((double)u),fabs((double)v)) );
          kernel->maximum = kernel->values[0];
          break;
        }
      case ManhattanKernel:
        {
          if (args->rho < 1.0)
            kernel->width = kernel->height = 3;  /* default radius = 1 */
          else
            kernel->width = kernel->height = ((size_t)args->rho)*2+1;
          kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

          kernel->values=(MagickRealType *) MagickAssumeAligned(
            AcquireAlignedMemory(kernel->width,kernel->height*
            sizeof(*kernel->values)));
          if (kernel->values == (MagickRealType *) NULL)
            return(DestroyKernelInfo(kernel));

          for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
            for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
              kernel->positive_range += ( kernel->values[i] =
                  args->sigma*(labs((long) u)+labs((long) v)) );
          kernel->maximum = kernel->values[0];
          break;
        }
      case OctagonalKernel:
      {
        if (args->rho < 2.0)
          kernel->width = kernel->height = 5;  /* default/minimum radius = 2 */
        else
          kernel->width = kernel->height = ((size_t)args->rho)*2+1;
        kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
          for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
            {
              double
                r1 = MagickMax(fabs((double)u),fabs((double)v)),
                r2 = floor((double)(labs((long)u)+labs((long)v)+1)/1.5);
              kernel->positive_range += kernel->values[i] =
                        args->sigma*MagickMax(r1,r2);
            }
        kernel->maximum = kernel->values[0];
        break;
      }
    case EuclideanKernel:
      {
        if (args->rho < 1.0)
          kernel->width = kernel->height = 3;  /* default radius = 1 */
        else
          kernel->width = kernel->height = ((size_t)args->rho)*2+1;
        kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;

        kernel->values=(MagickRealType *) MagickAssumeAligned(
          AcquireAlignedMemory(kernel->width,kernel->height*
          sizeof(*kernel->values)));
        if (kernel->values == (MagickRealType *) NULL)
          return(DestroyKernelInfo(kernel));

        for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
          for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
            kernel->positive_range += ( kernel->values[i] =
              args->sigma*sqrt((double)(u*u+v*v)) );
        kernel->maximum = kernel->values[0];
        break;
      }
    default:
      {
        /* No-Op Kernel - Basically just a single pixel on its own */
        kernel=ParseKernelArray("1:1");
        if (kernel == (KernelInfo *) NULL)
          return(kernel);
        kernel->type = UndefinedKernel;
        break;
      }
      break;
  }
  return(kernel);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     C l o n e K e r n e l I n f o                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  CloneKernelInfo() creates a new clone of the given Kernel List so that its
%  can be modified without effecting the original.  The cloned kernel should
%  be destroyed using DestoryKernelInfo() when no longer needed.
%
%  The format of the CloneKernelInfo method is:
%
%      KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel to be cloned
%
*/
MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
{
  ssize_t
    i;

  KernelInfo
    *new_kernel;

  assert(kernel != (KernelInfo *) NULL);
  new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
  if (new_kernel == (KernelInfo *) NULL)
    return(new_kernel);
  *new_kernel=(*kernel); /* copy values in structure */

  /* replace the values with a copy of the values */
  new_kernel->values=(MagickRealType *) MagickAssumeAligned(
    AcquireAlignedMemory(kernel->width,kernel->height*sizeof(*kernel->values)));
  if (new_kernel->values == (MagickRealType *) NULL)
    return(DestroyKernelInfo(new_kernel));
  for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++)
    new_kernel->values[i]=kernel->values[i];

  /* Also clone the next kernel in the kernel list */
  if ( kernel->next != (KernelInfo *) NULL ) {
    new_kernel->next = CloneKernelInfo(kernel->next);
    if ( new_kernel->next == (KernelInfo *) NULL )
      return(DestroyKernelInfo(new_kernel));
  }

  return(new_kernel);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     D e s t r o y K e r n e l I n f o                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  DestroyKernelInfo() frees the memory used by a Convolution/Morphology
%  kernel.
%
%  The format of the DestroyKernelInfo method is:
%
%      KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel to be destroyed
%
*/
MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
{
  assert(kernel != (KernelInfo *) NULL);
  if (kernel->next != (KernelInfo *) NULL)
    kernel->next=DestroyKernelInfo(kernel->next);
  kernel->values=(MagickRealType *) RelinquishAlignedMemory(kernel->values);
  kernel=(KernelInfo *) RelinquishMagickMemory(kernel);
  return(kernel);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+     E x p a n d M i r r o r K e r n e l I n f o                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ExpandMirrorKernelInfo() takes a single kernel, and expands it into a
%  sequence of 90-degree rotated kernels but providing a reflected 180
%  rotatation, before the -/+ 90-degree rotations.
%
%  This special rotation order produces a better, more symetrical thinning of
%  objects.
%
%  The format of the ExpandMirrorKernelInfo method is:
%
%      void ExpandMirrorKernelInfo(KernelInfo *kernel)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
% This function is only internel to this module, as it is not finalized,
% especially with regard to non-orthogonal angles, and rotation of larger
% 2D kernels.
*/

#if 0
static void FlopKernelInfo(KernelInfo *kernel)
    { /* Do a Flop by reversing each row. */
      size_t
        y;
      ssize_t
        x,r;
      double
        *k,t;

      for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width)
        for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
          t=k[x],  k[x]=k[r],  k[r]=t;

      kernel->x = kernel->width - kernel->x - 1;
      angle = fmod(angle+180.0, 360.0);
    }
#endif

static void ExpandMirrorKernelInfo(KernelInfo *kernel)
{
  KernelInfo
    *clone,
    *last;

  last = kernel;

  clone = CloneKernelInfo(last);
  if (clone == (KernelInfo *) NULL)
    return;
  RotateKernelInfo(clone, 180);   /* flip */
  LastKernelInfo(last)->next = clone;
  last = clone;

  clone = CloneKernelInfo(last);
  if (clone == (KernelInfo *) NULL)
    return;
  RotateKernelInfo(clone, 90);   /* transpose */
  LastKernelInfo(last)->next = clone;
  last = clone;

  clone = CloneKernelInfo(last);
  if (clone == (KernelInfo *) NULL)
    return;
  RotateKernelInfo(clone, 180);  /* flop */
  LastKernelInfo(last)->next = clone;

  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+     E x p a n d R o t a t e K e r n e l I n f o                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating
%  incrementally by the angle given, until the kernel repeats.
%
%  WARNING: 45 degree rotations only works for 3x3 kernels.
%  While 90 degree roatations only works for linear and square kernels
%
%  The format of the ExpandRotateKernelInfo method is:
%
%      void ExpandRotateKernelInfo(KernelInfo *kernel, double angle)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
%    o angle: angle to rotate in degrees
%
% This function is only internel to this module, as it is not finalized,
% especially with regard to non-orthogonal angles, and rotation of larger
% 2D kernels.
*/

/* Internal Routine - Return true if two kernels are the same */
static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1,
     const KernelInfo *kernel2)
{
  size_t
    i;

  /* check size and origin location */
  if (    kernel1->width != kernel2->width
       || kernel1->height != kernel2->height
       || kernel1->x != kernel2->x
       || kernel1->y != kernel2->y )
    return MagickFalse;

  /* check actual kernel values */
  for (i=0; i < (kernel1->width*kernel1->height); i++) {
    /* Test for Nan equivalence */
    if ( IsNaN(kernel1->values[i]) && !IsNaN(kernel2->values[i]) )
      return MagickFalse;
    if ( IsNaN(kernel2->values[i]) && !IsNaN(kernel1->values[i]) )
      return MagickFalse;
    /* Test actual values are equivalent */
    if ( fabs(kernel1->values[i] - kernel2->values[i]) >= MagickEpsilon )
      return MagickFalse;
  }

  return MagickTrue;
}

static void ExpandRotateKernelInfo(KernelInfo *kernel,const double angle)
{
  KernelInfo
    *clone_info,
    *last;

  clone_info=(KernelInfo *) NULL;
  last=kernel;
DisableMSCWarning(4127)
  while (1) {
RestoreMSCWarning
    clone_info=CloneKernelInfo(last);
    if (clone_info == (KernelInfo *) NULL)
      break;
    RotateKernelInfo(clone_info,angle);
    if (SameKernelInfo(kernel,clone_info) != MagickFalse)
      break;
    LastKernelInfo(last)->next=clone_info;
    last=clone_info;
  }
  if (clone_info != (KernelInfo *) NULL)
    clone_info=DestroyKernelInfo(clone_info);  /* kernel repeated - junk */
  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+     C a l c M e t a K e r n a l I n f o                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only,
%  using the kernel values.  This should only ne used if it is not possible to
%  calculate that meta-data in some easier way.
%
%  It is important that the meta-data is correct before ScaleKernelInfo() is
%  used to perform kernel normalization.
%
%  The format of the CalcKernelMetaData method is:
%
%      void CalcKernelMetaData(KernelInfo *kernel, const double scale )
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel to modify
%
%  WARNING: Minimum and Maximum values are assumed to include zero, even if
%  zero is not part of the kernel (as in Gaussian Derived kernels). This
%  however is not true for flat-shaped morphological kernels.
%
%  WARNING: Only the specific kernel pointed to is modified, not a list of
%  multiple kernels.
%
% This is an internal function and not expected to be useful outside this
% module.  This could change however.
*/
static void CalcKernelMetaData(KernelInfo *kernel)
{
  size_t
    i;

  kernel->minimum = kernel->maximum = 0.0;
  kernel->negative_range = kernel->positive_range = 0.0;
  for (i=0; i < (kernel->width*kernel->height); i++)
    {
      if ( fabs(kernel->values[i]) < MagickEpsilon )
        kernel->values[i] = 0.0;
      ( kernel->values[i] < 0)
          ?  ( kernel->negative_range += kernel->values[i] )
          :  ( kernel->positive_range += kernel->values[i] );
      Minimize(kernel->minimum, kernel->values[i]);
      Maximize(kernel->maximum, kernel->values[i]);
    }

  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     M o r p h o l o g y A p p l y                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  MorphologyApply() applies a morphological method, multiple times using
%  a list of multiple kernels.  This is the method that should be called by
%  other 'operators' that internally use morphology operations as part of
%  their processing.
%
%  It is basically equivalent to as MorphologyImage() (see below) but without
%  any user controls.  This allows internel programs to use this method to
%  perform a specific task without possible interference by any API user
%  supplied settings.
%
%  It is MorphologyImage() task to extract any such user controls, and
%  pass them to this function for processing.
%
%  More specifically all given kernels should already be scaled, normalised,
%  and blended appropriatally before being parred to this routine. The
%  appropriate bias, and compose (typically 'UndefinedComposeOp') given.
%
%  The format of the MorphologyApply method is:
%
%      Image *MorphologyApply(const Image *image,MorphologyMethod method,
%        const ssize_t iterations,const KernelInfo *kernel,
%        const CompositeMethod compose,const double bias,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the source image
%
%    o method: the morphology method to be applied.
%
%    o iterations: apply the operation this many times (or no change).
%                  A value of -1 means loop until no change found.
%                  How this is applied may depend on the morphology method.
%                  Typically this is a value of 1.
%
%    o channel: the channel type.
%
%    o kernel: An array of double representing the morphology kernel.
%
%    o compose: How to handle or merge multi-kernel results.
%          If 'UndefinedCompositeOp' use default for the Morphology method.
%          If 'NoCompositeOp' force image to be re-iterated by each kernel.
%          Otherwise merge the results using the compose method given.
%
%    o bias: Convolution Output Bias.
%
%    o exception: return any errors or warnings in this structure.
%
*/
static ssize_t MorphologyPrimitive(const Image *image,Image *morphology_image,
  const MorphologyMethod method,const KernelInfo *kernel,const double bias,
  ExceptionInfo *exception)
{
#define MorphologyTag  "Morphology/Image"

  CacheView
    *image_view,
    *morphology_view;

  OffsetInfo
    offset;

  ssize_t
    j,
    y;

  size_t
    *changes,
    changed,
    width;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  assert(morphology_image != (Image *) NULL);
  assert(morphology_image->signature == MagickCoreSignature);
  assert(kernel != (KernelInfo *) NULL);
  assert(kernel->signature == MagickCoreSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickCoreSignature);
  status=MagickTrue;
  progress=0;
  image_view=AcquireVirtualCacheView(image,exception);
  morphology_view=AcquireAuthenticCacheView(morphology_image,exception);
  width=image->columns+kernel->width-1;
  offset.x=0;
  offset.y=0;
  switch (method)
  {
    case ConvolveMorphology:
    case DilateMorphology:
    case DilateIntensityMorphology:
    case IterativeDistanceMorphology:
    {
      /*
        Kernel needs to used with reflection about origin.
      */
      offset.x=(ssize_t) kernel->width-kernel->x-1;
      offset.y=(ssize_t) kernel->height-kernel->y-1;
      break;
    }
    case ErodeMorphology:
    case ErodeIntensityMorphology:
    case HitAndMissMorphology:
    case ThinningMorphology:
    case ThickenMorphology:
    {
      offset.x=kernel->x;
      offset.y=kernel->y;
      break;
    }
    default:
    {
      assert("Not a Primitive Morphology Method" != (char *) NULL);
      break;
    }
  }
  changed=0;
  changes=(size_t *) AcquireQuantumMemory(GetOpenMPMaximumThreads(),
    sizeof(*changes));
  if (changes == (size_t *) NULL)
    ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
  for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++)
    changes[j]=0;

  if ((method == ConvolveMorphology) && (kernel->width == 1))
    {
      ssize_t
        x;

      /*
        Special handling (for speed) of vertical (blur) kernels.  This performs
        its handling in columns rather than in rows.  This is only done
        for convolve as it is the only method that generates very large 1-D
        vertical kernels (such as a 'BlurKernel')
     */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
     #pragma omp parallel for schedule(static) shared(progress,status) \
       magick_number_threads(image,morphology_image,image->columns,1)
#endif
      for (x=0; x < (ssize_t) image->columns; x++)
      {
        const int
          id = GetOpenMPThreadId();

        const Quantum
          *magick_restrict p;

        Quantum
          *magick_restrict q;

        ssize_t
          r;

        ssize_t
          center;

        if (status == MagickFalse)
          continue;
        p=GetCacheViewVirtualPixels(image_view,x,-offset.y,1,image->rows+
          kernel->height-1,exception);
        q=GetCacheViewAuthenticPixels(morphology_view,x,0,1,
          morphology_image->rows,exception);
        if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
          {
            status=MagickFalse;
            continue;
          }
        center=(ssize_t) GetPixelChannels(image)*offset.y;
        for (r=0; r < (ssize_t) image->rows; r++)
        {
          ssize_t
            i;

          for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
          {
            double
              alpha,
              gamma,
              pixel;

            PixelChannel
              channel;

            PixelTrait
              morphology_traits,
              traits;

            const MagickRealType
              *magick_restrict k;

            const Quantum
              *magick_restrict pixels;

            ssize_t
              v;

            size_t
              count;

            channel=GetPixelChannelChannel(image,i);
            traits=GetPixelChannelTraits(image,channel);
            morphology_traits=GetPixelChannelTraits(morphology_image,channel);
            if ((traits == UndefinedPixelTrait) ||
                (morphology_traits == UndefinedPixelTrait))
              continue;
            if ((traits & CopyPixelTrait) != 0)
              {
                SetPixelChannel(morphology_image,channel,p[center+i],q);
                continue;
              }
            k=(&kernel->values[kernel->height-1]);
            pixels=p;
            pixel=bias;
            gamma=1.0;
            count=0;
            if (((image->alpha_trait & BlendPixelTrait) == 0) ||
                ((morphology_traits & BlendPixelTrait) == 0))
              for (v=0; v < (ssize_t) kernel->height; v++)
              {
                if (!IsNaN(*k))
                  {
                    pixel+=(*k)*pixels[i];
                    count++;
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
            else
              {
                gamma=0.0;
                for (v=0; v < (ssize_t) kernel->height; v++)
                {
                  if (!IsNaN(*k))
                    {
                      alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels));
                      pixel+=alpha*(*k)*pixels[i];
                      gamma+=alpha*(*k);
                      count++;
                    }
                  k--;
                  pixels+=GetPixelChannels(image);
                }
              }
            if (fabs(pixel-p[center+i]) > MagickEpsilon)
              changes[id]++;
            gamma=PerceptibleReciprocal(gamma);
            if (count != 0)
              gamma*=(double) kernel->height/count;
            SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma*
              pixel),q);
          }
          p+=GetPixelChannels(image);
          q+=GetPixelChannels(morphology_image);
        }
        if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse)
          status=MagickFalse;
        if (image->progress_monitor != (MagickProgressMonitor) NULL)
          {
            MagickBooleanType
              proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
            #pragma omp atomic
#endif
            progress++;
            proceed=SetImageProgress(image,MorphologyTag,progress,image->rows);
            if (proceed == MagickFalse)
              status=MagickFalse;
          }
      }
      morphology_image->type=image->type;
      morphology_view=DestroyCacheView(morphology_view);
      image_view=DestroyCacheView(image_view);
      for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++)
        changed+=changes[j];
      changes=(size_t *) RelinquishMagickMemory(changes);
      return(status ? (ssize_t) changed : 0);
    }
  /*
    Normal handling of horizontal or rectangular kernels (row by row).
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static) shared(progress,status) \
    magick_number_threads(image,morphology_image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    const int
      id = GetOpenMPThreadId();

    const Quantum
      *magick_restrict p;

    Quantum
      *magick_restrict q;

    ssize_t
      x;

    ssize_t
      center;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width,
      kernel->height,exception);
    q=GetCacheViewAuthenticPixels(morphology_view,0,y,morphology_image->columns,
      1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    center=(ssize_t) (GetPixelChannels(image)*width*offset.y+
      GetPixelChannels(image)*offset.x);
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      ssize_t
        i;

      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        double
          alpha,
          gamma,
          intensity,
          maximum,
          minimum,
          pixel;

        PixelChannel
          channel;

        PixelTrait
          morphology_traits,
          traits;

        const MagickRealType
          *magick_restrict k;

        const Quantum
          *magick_restrict pixels,
          *magick_restrict quantum_pixels;

        ssize_t
          u;

        size_t
          count;

        ssize_t
          v;

        channel=GetPixelChannelChannel(image,i);
        traits=GetPixelChannelTraits(image,channel);
        morphology_traits=GetPixelChannelTraits(morphology_image,channel);
        if ((traits == UndefinedPixelTrait) ||
            (morphology_traits == UndefinedPixelTrait))
          continue;
        if ((traits & CopyPixelTrait) != 0)
          {
            SetPixelChannel(morphology_image,channel,p[center+i],q);
            continue;
          }
        pixels=p;
        quantum_pixels=(const Quantum *) NULL;
        maximum=0.0;
        minimum=(double) QuantumRange;
        switch (method)
        {
          case ConvolveMorphology:
          {
            pixel=bias;
            break;
          }
          case DilateMorphology:
          case ErodeIntensityMorphology:
          {
            pixel=0.0;
            break;
          }
          case HitAndMissMorphology:
          case ErodeMorphology:
          {
            pixel=QuantumRange;
            break;
          }
          default:
          {
            pixel=(double) p[center+i];
            break;
          }
        }
        count=0;
        gamma=1.0;
        switch (method)
        {
          case ConvolveMorphology:
          {
            /*
               Weighted Average of pixels using reflected kernel

               For correct working of this operation for asymetrical kernels,
               the kernel needs to be applied in its reflected form.  That is
               its values needs to be reversed.

               Correlation is actually the same as this but without reflecting
               the kernel, and thus 'lower-level' that Convolution.  However as
               Convolution is the more common method used, and it does not
               really cost us much in terms of processing to use a reflected
               kernel, so it is Convolution that is implemented.

               Correlation will have its kernel reflected before calling this
               function to do a Convolve.

               For more details of Correlation vs Convolution see
                 http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
            */
            k=(&kernel->values[kernel->width*kernel->height-1]);
            if (((image->alpha_trait & BlendPixelTrait) == 0) ||
                ((morphology_traits & BlendPixelTrait) == 0))
              {
                /*
                  No alpha blending.
                */
                for (v=0; v < (ssize_t) kernel->height; v++)
                {
                  for (u=0; u < (ssize_t) kernel->width; u++)
                  {
                    if (!IsNaN(*k))
                      {
                        pixel+=(*k)*pixels[i];
                        count++;
                      }
                    k--;
                    pixels+=GetPixelChannels(image);
                  }
                  pixels+=(image->columns-1)*GetPixelChannels(image);
                }
                break;
              }
            /*
              Alpha blending.
            */
            gamma=0.0;
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels));
                    pixel+=alpha*(*k)*pixels[i];
                    gamma+=alpha*(*k);
                    count++;
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case ErodeMorphology:
          {
            /*
              Minimum value within kernel neighbourhood.

              The kernel is not reflected for this operation.  In normal
              Greyscale Morphology, the kernel value should be added
              to the real value, this is currently not done, due to the
              nature of the boolean kernels being used.
            */
            k=kernel->values;
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k) && (*k >= 0.5))
                  {
                    if ((double) pixels[i] < pixel)
                      pixel=(double) pixels[i];
                  }
                k++;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case DilateMorphology:
          {
            /*
               Maximum value within kernel neighbourhood.

               For correct working of this operation for asymetrical kernels,
               the kernel needs to be applied in its reflected form.  That is
               its values needs to be reversed.

               In normal Greyscale Morphology, the kernel value should be
               added to the real value, this is currently not done, due to the
               nature of the boolean kernels being used.
            */
            k=(&kernel->values[kernel->width*kernel->height-1]);
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k) && (*k > 0.5))
                  {
                    if ((double) pixels[i] > pixel)
                      pixel=(double) pixels[i];
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case HitAndMissMorphology:
          case ThinningMorphology:
          case ThickenMorphology:
          {
            /*
               Minimum of foreground pixel minus maxumum of background pixels.

               The kernel is not reflected for this operation, and consists
               of both foreground and background pixel neighbourhoods, 0.0 for
               background, and 1.0 for foreground with either Nan or 0.5 values
               for don't care.

               This never produces a meaningless negative result.  Such results
               cause Thinning/Thicken to not work correctly when used against a
               greyscale image.
            */
            k=kernel->values;
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if (*k > 0.7)
                      {
                        if ((double) pixels[i] < pixel)
                          pixel=(double) pixels[i];
                      }
                    else
                      if (*k < 0.3)
                        {
                          if ((double) pixels[i] > maximum)
                            maximum=(double) pixels[i];
                        }
                    count++;
                  }
                k++;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            pixel-=maximum;
            if (pixel < 0.0)
              pixel=0.0;
            if (method == ThinningMorphology)
              pixel=(double) p[center+i]-pixel;
            else
              if (method == ThickenMorphology)
                pixel+=(double) p[center+i]+pixel;
            break;
          }
          case ErodeIntensityMorphology:
          {
            /*
              Select pixel with minimum intensity within kernel neighbourhood.

              The kernel is not reflected for this operation.
            */
            k=kernel->values;
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k) && (*k >= 0.5))
                  {
                    intensity=(double) GetPixelIntensity(image,pixels);
                    if (intensity < minimum)
                      {
                        quantum_pixels=pixels;
                        pixel=(double) pixels[i];
                        minimum=intensity;
                      }
                    count++;
                  }
                k++;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case DilateIntensityMorphology:
          {
            /*
              Select pixel with maximum intensity within kernel neighbourhood.

              The kernel is not reflected for this operation.
            */
            k=(&kernel->values[kernel->width*kernel->height-1]);
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k) && (*k >= 0.5))
                  {
                    intensity=(double) GetPixelIntensity(image,pixels);
                    if (intensity > maximum)
                      {
                        pixel=(double) pixels[i];
                        quantum_pixels=pixels;
                        maximum=intensity;
                      }
                    count++;
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case IterativeDistanceMorphology:
          {
            /*
               Compute th iterative distance from black edge of a white image
               shape.  Essentially white values are decreased to the smallest
               'distance from edge' it can find.

               It works by adding kernel values to the neighbourhood, and
               select the minimum value found. The kernel is rotated before
               use, so kernel distances match resulting distances, when a user
               provided asymmetric kernel is applied.

               This code is nearly identical to True GrayScale Morphology but
               not quite.

               GreyDilate Kernel values added, maximum value found Kernel is
               rotated before use.

               GrayErode:  Kernel values subtracted and minimum value found No
               kernel rotation used.

               Note the Iterative Distance method is essentially a
               GrayErode, but with negative kernel values, and kernel rotation
               applied.
            */
            k=(&kernel->values[kernel->width*kernel->height-1]);
            for (v=0; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if ((pixels[i]+(*k)) < pixel)
                      pixel=(double) pixels[i]+(*k);
                    count++;
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            break;
          }
          case UndefinedMorphology:
          default:
            break;
        }
        if (fabs(pixel-p[center+i]) > MagickEpsilon)
          changes[id]++;
        if (quantum_pixels != (const Quantum *) NULL)
          {
            SetPixelChannel(morphology_image,channel,quantum_pixels[i],q);
            continue;
          }
        gamma=PerceptibleReciprocal(gamma);
        if (count != 0)
          gamma*=(double) kernel->height*kernel->width/count;
        SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma*pixel),q);
      }
      p+=GetPixelChannels(image);
      q+=GetPixelChannels(morphology_image);
    }
    if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp atomic
#endif
        progress++;
        proceed=SetImageProgress(image,MorphologyTag,progress,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  morphology_view=DestroyCacheView(morphology_view);
  image_view=DestroyCacheView(image_view);
  for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++)
    changed+=changes[j];
  changes=(size_t *) RelinquishMagickMemory(changes);
  return(status ? (ssize_t) changed : -1);
}

/*
  This is almost identical to the MorphologyPrimative() function above, but
  applies the primitive directly to the actual image using two passes, once in
  each direction, with the results of the previous (and current) row being
  re-used.

  That is after each row is 'Sync'ed' into the image, the next row makes use of
  those values as part of the calculation of the next row.  It repeats, but
  going in the oppisite (bottom-up) direction.

  Because of this 're-use of results' this function can not make use of multi-
  threaded, parellel processing.
*/
static ssize_t MorphologyPrimitiveDirect(Image *image,
  const MorphologyMethod method,const KernelInfo *kernel,
  ExceptionInfo *exception)
{
  CacheView
    *morphology_view,
    *image_view;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  OffsetInfo
    offset;

  size_t
    width,
    changed;

  ssize_t
    y;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  assert(kernel != (KernelInfo *) NULL);
  assert(kernel->signature == MagickCoreSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickCoreSignature);
  status=MagickTrue;
  changed=0;
  progress=0;
  switch(method)
  {
    case DistanceMorphology:
    case VoronoiMorphology:
    {
      /*
        Kernel reflected about origin.
      */
      offset.x=(ssize_t) kernel->width-kernel->x-1;
      offset.y=(ssize_t) kernel->height-kernel->y-1;
      break;
    }
    default:
    {
      offset.x=kernel->x;
      offset.y=kernel->y;
      break;
    }
  }
  /*
    Two views into same image, do not thread.
  */
  image_view=AcquireVirtualCacheView(image,exception);
  morphology_view=AcquireAuthenticCacheView(image,exception);
  width=image->columns+kernel->width-1;
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    const Quantum
      *magick_restrict p;

    Quantum
      *magick_restrict q;

    ssize_t
      x;

    /*
      Read virtual pixels, and authentic pixels, from the same image!  We read
      using virtual to get virtual pixel handling, but write back into the same
      image.

      Only top half of kernel is processed as we do a single pass downward
      through the image iterating the distance function as we go.
    */
    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width,(size_t)
      offset.y+1,exception);
    q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      ssize_t
        i;

      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        double
          pixel;

        PixelChannel
          channel;

        PixelTrait
          traits;

        const MagickRealType
          *magick_restrict k;

        const Quantum
          *magick_restrict pixels;

        ssize_t
          u;

        ssize_t
          v;

        channel=GetPixelChannelChannel(image,i);
        traits=GetPixelChannelTraits(image,channel);
        if (traits == UndefinedPixelTrait)
          continue;
        if ((traits & CopyPixelTrait) != 0)
          continue;
        pixels=p;
        pixel=(double) QuantumRange;
        switch (method)
        {
          case DistanceMorphology:
          {
            k=(&kernel->values[kernel->width*kernel->height-1]);
            for (v=0; v <= offset.y; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if ((pixels[i]+(*k)) < pixel)
                      pixel=(double) pixels[i]+(*k);
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            k=(&kernel->values[kernel->width*(kernel->y+1)-1]);
            pixels=q-offset.x*GetPixelChannels(image);
            for (u=0; u < offset.x; u++)
            {
              if (!IsNaN(*k) && ((x+u-offset.x) >= 0))
                {
                  if ((pixels[i]+(*k)) < pixel)
                    pixel=(double) pixels[i]+(*k);
                }
              k--;
              pixels+=GetPixelChannels(image);
            }
            break;
          }
          case VoronoiMorphology:
          {
            k=(&kernel->values[kernel->width*kernel->height-1]);
            for (v=0; v < offset.y; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if ((pixels[i]+(*k)) < pixel)
                      pixel=(double) pixels[i]+(*k);
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            k=(&kernel->values[kernel->width*(kernel->y+1)-1]);
            pixels=q-offset.x*GetPixelChannels(image);
            for (u=0; u < offset.x; u++)
            {
              if (!IsNaN(*k) && ((x+u-offset.x) >= 0))
                {
                  if ((pixels[i]+(*k)) < pixel)
                    pixel=(double) pixels[i]+(*k);
                }
              k--;
              pixels+=GetPixelChannels(image);
            }
            break;
          }
          default:
            break;
        }
        if (fabs(pixel-q[i]) > MagickEpsilon)
          changed++;
        q[i]=ClampToQuantum(pixel);
      }
      p+=GetPixelChannels(image);
      q+=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp atomic
#endif
        progress++;
        proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  morphology_view=DestroyCacheView(morphology_view);
  image_view=DestroyCacheView(image_view);
  /*
    Do the reverse pass through the image.
  */
  image_view=AcquireVirtualCacheView(image,exception);
  morphology_view=AcquireAuthenticCacheView(image,exception);
  for (y=(ssize_t) image->rows-1; y >= 0; y--)
  {
    const Quantum
      *magick_restrict p;

    Quantum
      *magick_restrict q;

    ssize_t
      x;

    /*
       Read virtual pixels, and authentic pixels, from the same image.  We
       read using virtual to get virtual pixel handling, but write back
       into the same image.

       Only the bottom half of the kernel is processed as we up the image.
    */
    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,-offset.x,y,width,(size_t)
      kernel->y+1,exception);
    q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    p+=(image->columns-1)*GetPixelChannels(image);
    q+=(image->columns-1)*GetPixelChannels(image);
    for (x=(ssize_t) image->columns-1; x >= 0; x--)
    {
      ssize_t
        i;

      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        double
          pixel;

        PixelChannel
          channel;

        PixelTrait
          traits;

        const MagickRealType
          *magick_restrict k;

        const Quantum
          *magick_restrict pixels;

        ssize_t
          u;

        ssize_t
          v;

        channel=GetPixelChannelChannel(image,i);
        traits=GetPixelChannelTraits(image,channel);
        if (traits == UndefinedPixelTrait)
          continue;
        if ((traits & CopyPixelTrait) != 0)
          continue;
        pixels=p;
        pixel=(double) QuantumRange;
        switch (method)
        {
          case DistanceMorphology:
          {
            k=(&kernel->values[kernel->width*(kernel->y+1)-1]);
            for (v=offset.y; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if ((pixels[i]+(*k)) < pixel)
                      pixel=(double) pixels[i]+(*k);
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            k=(&kernel->values[kernel->width*kernel->y+kernel->x-1]);
            pixels=q;
            for (u=offset.x+1; u < (ssize_t) kernel->width; u++)
            {
              pixels+=GetPixelChannels(image);
              if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns))
                {
                  if ((pixels[i]+(*k)) < pixel)
                    pixel=(double) pixels[i]+(*k);
                }
              k--;
            }
            break;
          }
          case VoronoiMorphology:
          {
            k=(&kernel->values[kernel->width*(kernel->y+1)-1]);
            for (v=offset.y; v < (ssize_t) kernel->height; v++)
            {
              for (u=0; u < (ssize_t) kernel->width; u++)
              {
                if (!IsNaN(*k))
                  {
                    if ((pixels[i]+(*k)) < pixel)
                      pixel=(double) pixels[i]+(*k);
                  }
                k--;
                pixels+=GetPixelChannels(image);
              }
              pixels+=(image->columns-1)*GetPixelChannels(image);
            }
            k=(&kernel->values[kernel->width*(kernel->y+1)-1]);
            pixels=q;
            for (u=offset.x+1; u < (ssize_t) kernel->width; u++)
            {
              pixels+=GetPixelChannels(image);
              if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns))
                {
                  if ((pixels[i]+(*k)) < pixel)
                    pixel=(double) pixels[i]+(*k);
                }
              k--;
            }
            break;
          }
          default:
            break;
        }
        if (fabs(pixel-q[i]) > MagickEpsilon)
          changed++;
        q[i]=ClampToQuantum(pixel);
      }
      p-=GetPixelChannels(image);
      q-=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp atomic
#endif
        progress++;
        proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  morphology_view=DestroyCacheView(morphology_view);
  image_view=DestroyCacheView(image_view);
  return(status ? (ssize_t) changed : -1);
}

/*
  Apply a Morphology by calling one of the above low level primitive
  application functions.  This function handles any iteration loops,
  composition or re-iteration of results, and compound morphology methods that
  is based on multiple low-level (staged) morphology methods.

  Basically this provides the complex glue between the requested morphology
  method and raw low-level implementation (above).
*/
MagickPrivate Image *MorphologyApply(const Image *image,
  const MorphologyMethod method, const ssize_t iterations,
  const KernelInfo *kernel, const CompositeOperator compose,const double bias,
  ExceptionInfo *exception)
{
  CompositeOperator
    curr_compose;

  Image
    *curr_image,    /* Image we are working with or iterating */
    *work_image,    /* secondary image for primitive iteration */
    *save_image,    /* saved image - for 'edge' method only */
    *rslt_image;    /* resultant image - after multi-kernel handling */

  KernelInfo
    *reflected_kernel, /* A reflected copy of the kernel (if needed) */
    *norm_kernel,      /* the current normal un-reflected kernel */
    *rflt_kernel,      /* the current reflected kernel (if needed) */
    *this_kernel;      /* the kernel being applied */

  MorphologyMethod
    primitive;      /* the current morphology primitive being applied */

  CompositeOperator
    rslt_compose;   /* multi-kernel compose method for results to use */

  MagickBooleanType
    special,        /* do we use a direct modify function? */
    verbose;        /* verbose output of results */

  size_t
    method_loop,    /* Loop 1: number of compound method iterations (norm 1) */
    method_limit,   /*         maximum number of compound method iterations */
    kernel_number,  /* Loop 2: the kernel number being applied */
    stage_loop,     /* Loop 3: primitive loop for compound morphology */
    stage_limit,    /*         how many primitives are in this compound */
    kernel_loop,    /* Loop 4: iterate the kernel over image */
    kernel_limit,   /*         number of times to iterate kernel */
    count,          /* total count of primitive steps applied */
    kernel_changed, /* total count of changed using iterated kernel */
    method_changed; /* total count of changed over method iteration */

  ssize_t
    changed;        /* number pixels changed by last primitive operation */

  char
    v_info[MagickPathExtent];

  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  assert(kernel != (KernelInfo *) NULL);
  assert(kernel->signature == MagickCoreSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickCoreSignature);

  count = 0;      /* number of low-level morphology primitives performed */
  if ( iterations == 0 )
    return((Image *) NULL);   /* null operation - nothing to do! */

  kernel_limit = (size_t) iterations;
  if ( iterations < 0 )  /* negative interations = infinite (well alomst) */
     kernel_limit = image->columns>image->rows ? image->columns : image->rows;

  verbose = IsStringTrue(GetImageArtifact(image,"debug"));

  /* initialise for cleanup */
  curr_image = (Image *) image;
  curr_compose = image->compose;
  (void) curr_compose;
  work_image = save_image = rslt_image = (Image *) NULL;
  reflected_kernel = (KernelInfo *) NULL;

  /* Initialize specific methods
   * + which loop should use the given iteratations
   * + how many primitives make up the compound morphology
   * + multi-kernel compose method to use (by default)
   */
  method_limit = 1;       /* just do method once, unless otherwise set */
  stage_limit = 1;        /* assume method is not a compound */
  special = MagickFalse;   /* assume it is NOT a direct modify primitive */
  rslt_compose = compose; /* and we are composing multi-kernels as given */
  switch( method ) {
    case SmoothMorphology:  /* 4 primitive compound morphology */
      stage_limit = 4;
      break;
    case OpenMorphology:    /* 2 primitive compound morphology */
    case OpenIntensityMorphology:
    case TopHatMorphology:
    case CloseMorphology:
    case CloseIntensityMorphology:
    case BottomHatMorphology:
    case EdgeMorphology:
      stage_limit = 2;
      break;
    case HitAndMissMorphology:
      rslt_compose = LightenCompositeOp;  /* Union of multi-kernel results */
      /* FALL THUR */
    case ThinningMorphology:
    case ThickenMorphology:
      method_limit = kernel_limit;  /* iterate the whole method */
      kernel_limit = 1;             /* do not do kernel iteration  */
      break;
    case DistanceMorphology:
    case VoronoiMorphology:
      special = MagickTrue;         /* use special direct primative */
      break;
    default:
      break;
  }

  /* Apply special methods with special requirments
  ** For example, single run only, or post-processing requirements
  */
  if ( special != MagickFalse )
    {
      rslt_image=CloneImage(image,0,0,MagickTrue,exception);
      if (rslt_image == (Image *) NULL)
        goto error_cleanup;
      if (SetImageStorageClass(rslt_image,DirectClass,exception) == MagickFalse)
        goto error_cleanup;

      changed=MorphologyPrimitiveDirect(rslt_image,method,kernel,exception);

      if (verbose != MagickFalse)
        (void) (void) FormatLocaleFile(stderr,
          "%s:%.20g.%.20g #%.20g => Changed %.20g\n",
          CommandOptionToMnemonic(MagickMorphologyOptions, method),
          1.0,0.0,1.0, (double) changed);

      if ( changed < 0 )
        goto error_cleanup;

      if ( method == VoronoiMorphology ) {
        /* Preserve the alpha channel of input image - but turned it off */
        (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel,
          exception);
        (void) CompositeImage(rslt_image,image,CopyAlphaCompositeOp,
          MagickTrue,0,0,exception);
        (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel,
          exception);
      }
      goto exit_cleanup;
    }

  /* Handle user (caller) specified multi-kernel composition method */
  if ( compose != UndefinedCompositeOp )
    rslt_compose = compose;  /* override default composition for method */
  if ( rslt_compose == UndefinedCompositeOp )
    rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */

  /* Some methods require a reflected kernel to use with primitives.
   * Create the reflected kernel for those methods. */
  switch ( method ) {
    case CorrelateMorphology:
    case CloseMorphology:
    case CloseIntensityMorphology:
    case BottomHatMorphology:
    case SmoothMorphology:
      reflected_kernel = CloneKernelInfo(kernel);
      if (reflected_kernel == (KernelInfo *) NULL)
        goto error_cleanup;
      RotateKernelInfo(reflected_kernel,180);
      break;
    default:
      break;
  }

  /* Loops around more primitive morpholgy methods
  **  erose, dilate, open, close, smooth, edge, etc...
  */
  /* Loop 1:  iterate the compound method */
  method_loop = 0;
  method_changed = 1;
  while ( method_loop < method_limit && method_changed > 0 ) {
    method_loop++;
    method_changed = 0;

    /* Loop 2:  iterate over each kernel in a multi-kernel list */
    norm_kernel = (KernelInfo *) kernel;
    this_kernel = (KernelInfo *) kernel;
    rflt_kernel = reflected_kernel;

    kernel_number = 0;
    while ( norm_kernel != NULL ) {

      /* Loop 3: Compound Morphology Staging - Select Primative to apply */
      stage_loop = 0;          /* the compound morphology stage number */
      while ( stage_loop < stage_limit ) {
        stage_loop++;   /* The stage of the compound morphology */

        /* Select primitive morphology for this stage of compound method */
        this_kernel = norm_kernel; /* default use unreflected kernel */
        primitive = method;        /* Assume method is a primitive */
        switch( method ) {
          case ErodeMorphology:      /* just erode */
          case EdgeInMorphology:     /* erode and image difference */
            primitive = ErodeMorphology;
            break;
          case DilateMorphology:     /* just dilate */
          case EdgeOutMorphology:    /* dilate and image difference */
            primitive = DilateMorphology;
            break;
          case OpenMorphology:       /* erode then dialate */
          case TopHatMorphology:     /* open and image difference */
            primitive = ErodeMorphology;
            if ( stage_loop == 2 )
              primitive = DilateMorphology;
            break;
          case OpenIntensityMorphology:
            primitive = ErodeIntensityMorphology;
            if ( stage_loop == 2 )
              primitive = DilateIntensityMorphology;
            break;
          case CloseMorphology:      /* dilate, then erode */
          case BottomHatMorphology:  /* close and image difference */
            this_kernel = rflt_kernel; /* use the reflected kernel */
            primitive = DilateMorphology;
            if ( stage_loop == 2 )
              primitive = ErodeMorphology;
            break;
          case CloseIntensityMorphology:
            this_kernel = rflt_kernel; /* use the reflected kernel */
            primitive = DilateIntensityMorphology;
            if ( stage_loop == 2 )
              primitive = ErodeIntensityMorphology;
            break;
          case SmoothMorphology:         /* open, close */
            switch ( stage_loop ) {
              case 1: /* start an open method, which starts with Erode */
                primitive = ErodeMorphology;
                break;
              case 2:  /* now Dilate the Erode */
                primitive = DilateMorphology;
                break;
              case 3:  /* Reflect kernel a close */
                this_kernel = rflt_kernel; /* use the reflected kernel */
                primitive = DilateMorphology;
                break;
              case 4:  /* Finish the Close */
                this_kernel = rflt_kernel; /* use the reflected kernel */
                primitive = ErodeMorphology;
                break;
            }
            break;
          case EdgeMorphology:        /* dilate and erode difference */
            primitive = DilateMorphology;
            if ( stage_loop == 2 ) {
              save_image = curr_image;      /* save the image difference */
              curr_image = (Image *) image;
              primitive = ErodeMorphology;
            }
            break;
          case CorrelateMorphology:
            /* A Correlation is a Convolution with a reflected kernel.
            ** However a Convolution is a weighted sum using a reflected
            ** kernel.  It may seem stange to convert a Correlation into a
            ** Convolution as the Correlation is the simplier method, but
            ** Convolution is much more commonly used, and it makes sense to
            ** implement it directly so as to avoid the need to duplicate the
            ** kernel when it is not required (which is typically the
            ** default).
            */
            this_kernel = rflt_kernel; /* use the reflected kernel */
            primitive = ConvolveMorphology;
            break;
          default:
            break;
        }
        assert( this_kernel != (KernelInfo *) NULL );

        /* Extra information for debugging compound operations */
        if (verbose != MagickFalse) {
          if ( stage_limit > 1 )
            (void) FormatLocaleString(v_info,MagickPathExtent,"%s:%.20g.%.20g -> ",
             CommandOptionToMnemonic(MagickMorphologyOptions,method),(double)
             method_loop,(double) stage_loop);
          else if ( primitive != method )
            (void) FormatLocaleString(v_info, MagickPathExtent, "%s:%.20g -> ",
              CommandOptionToMnemonic(MagickMorphologyOptions, method),(double)
              method_loop);
          else
            v_info[0] = '\0';
        }

        /* Loop 4: Iterate the kernel with primitive */
        kernel_loop = 0;
        kernel_changed = 0;
        changed = 1;
        while ( kernel_loop < kernel_limit && changed > 0 ) {
          kernel_loop++;     /* the iteration of this kernel */

          /* Create a clone as the destination image, if not yet defined */
          if ( work_image == (Image *) NULL )
            {
              work_image=CloneImage(image,0,0,MagickTrue,exception);
              if (work_image == (Image *) NULL)
                goto error_cleanup;
              if (SetImageStorageClass(work_image,DirectClass,exception) == MagickFalse)
                goto error_cleanup;
            }

          /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */
          count++;
          changed = MorphologyPrimitive(curr_image, work_image, primitive,
                       this_kernel, bias, exception);
          if (verbose != MagickFalse) {
            if ( kernel_loop > 1 )
              (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line from previous */
            (void) (void) FormatLocaleFile(stderr,
              "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g",
              v_info,CommandOptionToMnemonic(MagickMorphologyOptions,
              primitive),(this_kernel == rflt_kernel ) ? "*" : "",
              (double) (method_loop+kernel_loop-1),(double) kernel_number,
              (double) count,(double) changed);
          }
          if ( changed < 0 )
            goto error_cleanup;
          kernel_changed += changed;
          method_changed += changed;

          /* prepare next loop */
          { Image *tmp = work_image;   /* swap images for iteration */
            work_image = curr_image;
            curr_image = tmp;
          }
          if ( work_image == image )
            work_image = (Image *) NULL; /* replace input 'image' */

        } /* End Loop 4: Iterate the kernel with primitive */

        if (verbose != MagickFalse && kernel_changed != (size_t)changed)
          (void) FormatLocaleFile(stderr, "   Total %.20g",(double) kernel_changed);
        if (verbose != MagickFalse && stage_loop < stage_limit)
          (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line before looping */

#if 0
    (void) FormatLocaleFile(stderr, "--E-- image=0x%lx\n", (unsigned long)image);
    (void) FormatLocaleFile(stderr, "      curr =0x%lx\n", (unsigned long)curr_image);
    (void) FormatLocaleFile(stderr, "      work =0x%lx\n", (unsigned long)work_image);
    (void) FormatLocaleFile(stderr, "      save =0x%lx\n", (unsigned long)save_image);
    (void) FormatLocaleFile(stderr, "      union=0x%lx\n", (unsigned long)rslt_image);
#endif

      } /* End Loop 3: Primative (staging) Loop for Coumpound Methods */

      /*  Final Post-processing for some Compound Methods
      **
      ** The removal of any 'Sync' channel flag in the Image Compositon
      ** below ensures the methematical compose method is applied in a
      ** purely mathematical way, and only to the selected channels.
      ** Turn off SVG composition 'alpha blending'.
      */
      switch( method ) {
        case EdgeOutMorphology:
        case EdgeInMorphology:
        case TopHatMorphology:
        case BottomHatMorphology:
          if (verbose != MagickFalse)
            (void) FormatLocaleFile(stderr,
              "\n%s: Difference with original image",CommandOptionToMnemonic(
              MagickMorphologyOptions, method) );
          (void) CompositeImage(curr_image,image,DifferenceCompositeOp,
            MagickTrue,0,0,exception);
          break;
        case EdgeMorphology:
          if (verbose != MagickFalse)
            (void) FormatLocaleFile(stderr,
              "\n%s: Difference of Dilate and Erode",CommandOptionToMnemonic(
              MagickMorphologyOptions, method) );
          (void) CompositeImage(curr_image,save_image,DifferenceCompositeOp,
            MagickTrue,0,0,exception);
          save_image = DestroyImage(save_image); /* finished with save image */
          break;
        default:
          break;
      }

      /* multi-kernel handling:  re-iterate, or compose results */
      if ( kernel->next == (KernelInfo *) NULL )
        rslt_image = curr_image;   /* just return the resulting image */
      else if ( rslt_compose == NoCompositeOp )
        { if (verbose != MagickFalse) {
            if ( this_kernel->next != (KernelInfo *) NULL )
              (void) FormatLocaleFile(stderr, " (re-iterate)");
            else
              (void) FormatLocaleFile(stderr, " (done)");
          }
          rslt_image = curr_image; /* return result, and re-iterate */
        }
      else if ( rslt_image == (Image *) NULL)
        { if (verbose != MagickFalse)
            (void) FormatLocaleFile(stderr, " (save for compose)");
          rslt_image = curr_image;
          curr_image = (Image *) image;  /* continue with original image */
        }
      else
        { /* Add the new 'current' result to the composition
          **
          ** The removal of any 'Sync' channel flag in the Image Compositon
          ** below ensures the methematical compose method is applied in a
          ** purely mathematical way, and only to the selected channels.
          ** IE: Turn off SVG composition 'alpha blending'.
          */
          if (verbose != MagickFalse)
            (void) FormatLocaleFile(stderr, " (compose \"%s\")",
              CommandOptionToMnemonic(MagickComposeOptions, rslt_compose) );
          (void) CompositeImage(rslt_image,curr_image,rslt_compose,MagickTrue,
            0,0,exception);
          curr_image = DestroyImage(curr_image);
          curr_image = (Image *) image;  /* continue with original image */
        }
      if (verbose != MagickFalse)
        (void) FormatLocaleFile(stderr, "\n");

      /* loop to the next kernel in a multi-kernel list */
      norm_kernel = norm_kernel->next;
      if ( rflt_kernel != (KernelInfo *) NULL )
        rflt_kernel = rflt_kernel->next;
      kernel_number++;
    } /* End Loop 2: Loop over each kernel */

  } /* End Loop 1: compound method interation */

  goto exit_cleanup;

  /* Yes goto's are bad, but it makes cleanup lot more efficient */
error_cleanup:
  if ( curr_image == rslt_image )
    curr_image = (Image *) NULL;
  if ( rslt_image != (Image *) NULL )
    rslt_image = DestroyImage(rslt_image);
exit_cleanup:
  if ( curr_image == rslt_image || curr_image == image )
    curr_image = (Image *) NULL;
  if ( curr_image != (Image *) NULL )
    curr_image = DestroyImage(curr_image);
  if ( work_image != (Image *) NULL )
    work_image = DestroyImage(work_image);
  if ( save_image != (Image *) NULL )
    save_image = DestroyImage(save_image);
  if ( reflected_kernel != (KernelInfo *) NULL )
    reflected_kernel = DestroyKernelInfo(reflected_kernel);
  return(rslt_image);
}


/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     M o r p h o l o g y I m a g e                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  MorphologyImage() applies a user supplied kernel to the image according to
%  the given mophology method.
%
%  This function applies any and all user defined settings before calling
%  the above internal function MorphologyApply().
%
%  User defined settings include...
%    * Output Bias for Convolution and correlation ("-define convolve:bias=??")
%    * Kernel Scale/normalize settings            ("-define convolve:scale=??")
%      This can also includes the addition of a scaled unity kernel.
%    * Show Kernel being applied            ("-define morphology:showKernel=1")
%
%  Other operators that do not want user supplied options interfering,
%  especially "convolve:bias" and "morphology:showKernel" should use
%  MorphologyApply() directly.
%
%  The format of the MorphologyImage method is:
%
%      Image *MorphologyImage(const Image *image,MorphologyMethod method,
%        const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o method: the morphology method to be applied.
%
%    o iterations: apply the operation this many times (or no change).
%                  A value of -1 means loop until no change found.
%                  How this is applied may depend on the morphology method.
%                  Typically this is a value of 1.
%
%    o kernel: An array of double representing the morphology kernel.
%              Warning: kernel may be normalized for the Convolve method.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *MorphologyImage(const Image *image,
  const MorphologyMethod method,const ssize_t iterations,
  const KernelInfo *kernel,ExceptionInfo *exception)
{
  const char
    *artifact;

  CompositeOperator
    compose;

  double
    bias;

  Image
    *morphology_image;

  KernelInfo
    *curr_kernel;

  curr_kernel = (KernelInfo *) kernel;
  bias=0.0;
  compose = UndefinedCompositeOp;  /* use default for method */

  /* Apply Convolve/Correlate Normalization and Scaling Factors.
   * This is done BEFORE the ShowKernelInfo() function is called so that
   * users can see the results of the 'option:convolve:scale' option.
   */
  if ( method == ConvolveMorphology || method == CorrelateMorphology ) {
      /* Get the bias value as it will be needed */
      artifact = GetImageArtifact(image,"convolve:bias");
      if ( artifact != (const char *) NULL) {
        if (IsGeometry(artifact) == MagickFalse)
          (void) ThrowMagickException(exception,GetMagickModule(),
               OptionWarning,"InvalidSetting","'%s' '%s'",
               "convolve:bias",artifact);
        else
          bias=StringToDoubleInterval(artifact,(double) QuantumRange+1.0);
      }

      /* Scale kernel according to user wishes */
      artifact = GetImageArtifact(image,"convolve:scale");
      if ( artifact != (const char *) NULL ) {
        if (IsGeometry(artifact) == MagickFalse)
          (void) ThrowMagickException(exception,GetMagickModule(),
               OptionWarning,"InvalidSetting","'%s' '%s'",
               "convolve:scale",artifact);
        else {
          if ( curr_kernel == kernel )
            curr_kernel = CloneKernelInfo(kernel);
          if (curr_kernel == (KernelInfo *) NULL)
            return((Image *) NULL);
          ScaleGeometryKernelInfo(curr_kernel, artifact);
        }
      }
    }

  /* display the (normalized) kernel via stderr */
  artifact=GetImageArtifact(image,"morphology:showKernel");
  if (IsStringTrue(artifact) != MagickFalse)
    ShowKernelInfo(curr_kernel);

  /* Override the default handling of multi-kernel morphology results
   * If 'Undefined' use the default method
   * If 'None' (default for 'Convolve') re-iterate previous result
   * Otherwise merge resulting images using compose method given.
   * Default for 'HitAndMiss' is 'Lighten'.
   */
  {
    ssize_t
      parse;

    artifact = GetImageArtifact(image,"morphology:compose");
    if ( artifact != (const char *) NULL) {
      parse=ParseCommandOption(MagickComposeOptions,
        MagickFalse,artifact);
      if ( parse < 0 )
        (void) ThrowMagickException(exception,GetMagickModule(),
             OptionWarning,"UnrecognizedComposeOperator","'%s' '%s'",
             "morphology:compose",artifact);
      else
        compose=(CompositeOperator)parse;
    }
  }
  /* Apply the Morphology */
  morphology_image = MorphologyApply(image,method,iterations,
    curr_kernel,compose,bias,exception);

  /* Cleanup and Exit */
  if ( curr_kernel != kernel )
    curr_kernel=DestroyKernelInfo(curr_kernel);
  return(morphology_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+     R o t a t e K e r n e l I n f o                                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  RotateKernelInfo() rotates the kernel by the angle given.
%
%  Currently it is restricted to 90 degree angles, of either 1D kernels
%  or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels.
%  It will ignore usless rotations for specific 'named' built-in kernels.
%
%  The format of the RotateKernelInfo method is:
%
%      void RotateKernelInfo(KernelInfo *kernel, double angle)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
%    o angle: angle to rotate in degrees
%
% This function is currently internal to this module only, but can be exported
% to other modules if needed.
*/
static void RotateKernelInfo(KernelInfo *kernel, double angle)
{
  /* angle the lower kernels first */
  if ( kernel->next != (KernelInfo *) NULL)
    RotateKernelInfo(kernel->next, angle);

  /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical
  **
  ** TODO: expand beyond simple 90 degree rotates, flips and flops
  */

  /* Modulus the angle */
  angle = fmod(angle, 360.0);
  if ( angle < 0 )
    angle += 360.0;

  if ( 337.5 < angle || angle <= 22.5 )
    return;   /* Near zero angle - no change! - At least not at this time */

  /* Handle special cases */
  switch (kernel->type) {
    /* These built-in kernels are cylindrical kernels, rotating is useless */
    case GaussianKernel:
    case DoGKernel:
    case LoGKernel:
    case DiskKernel:
    case PeaksKernel:
    case LaplacianKernel:
    case ChebyshevKernel:
    case ManhattanKernel:
    case EuclideanKernel:
      return;

    /* These may be rotatable at non-90 angles in the future */
    /* but simply rotating them in multiples of 90 degrees is useless */
    case SquareKernel:
    case DiamondKernel:
    case PlusKernel:
    case CrossKernel:
      return;

    /* These only allows a +/-90 degree rotation (by transpose) */
    /* A 180 degree rotation is useless */
    case BlurKernel:
      if ( 135.0 < angle && angle <= 225.0 )
        return;
      if ( 225.0 < angle && angle <= 315.0 )
        angle -= 180;
      break;

    default:
      break;
  }
  /* Attempt rotations by 45 degrees  -- 3x3 kernels only */
  if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 )
    {
      if ( kernel->width == 3 && kernel->height == 3 )
        { /* Rotate a 3x3 square by 45 degree angle */
          double t  = kernel->values[0];
          kernel->values[0] = kernel->values[3];
          kernel->values[3] = kernel->values[6];
          kernel->values[6] = kernel->values[7];
          kernel->values[7] = kernel->values[8];
          kernel->values[8] = kernel->values[5];
          kernel->values[5] = kernel->values[2];
          kernel->values[2] = kernel->values[1];
          kernel->values[1] = t;
          /* rotate non-centered origin */
          if ( kernel->x != 1 || kernel->y != 1 ) {
            ssize_t x,y;
            x = (ssize_t) kernel->x-1;
            y = (ssize_t) kernel->y-1;
                 if ( x == y  ) x = 0;
            else if ( x == 0  ) x = -y;
            else if ( x == -y ) y = 0;
            else if ( y == 0  ) y = x;
            kernel->x = (ssize_t) x+1;
            kernel->y = (ssize_t) y+1;
          }
          angle = fmod(angle+315.0, 360.0);  /* angle reduced 45 degrees */
          kernel->angle = fmod(kernel->angle+45.0, 360.0);
        }
      else
        perror("Unable to rotate non-3x3 kernel by 45 degrees");
    }
  if ( 45.0 < fmod(angle, 180.0)  && fmod(angle,180.0) <= 135.0 )
    {
      if ( kernel->width == 1 || kernel->height == 1 )
        { /* Do a transpose of a 1 dimensional kernel,
          ** which results in a fast 90 degree rotation of some type.
          */
          ssize_t
            t;
          t = (ssize_t) kernel->width;
          kernel->width = kernel->height;
          kernel->height = (size_t) t;
          t = kernel->x;
          kernel->x = kernel->y;
          kernel->y = t;
          if ( kernel->width == 1 ) {
            angle = fmod(angle+270.0, 360.0);     /* angle reduced 90 degrees */
            kernel->angle = fmod(kernel->angle+90.0, 360.0);
          } else {
            angle = fmod(angle+90.0, 360.0);   /* angle increased 90 degrees */
            kernel->angle = fmod(kernel->angle+270.0, 360.0);
          }
        }
      else if ( kernel->width == kernel->height )
        { /* Rotate a square array of values by 90 degrees */
          { ssize_t
              i,j,x,y;

            MagickRealType
              *k,t;

            k=kernel->values;
            for( i=0, x=(ssize_t) kernel->width-1;  i<=x;   i++, x--)
              for( j=0, y=(ssize_t) kernel->height-1;  j<y;   j++, y--)
                { t                    = k[i+j*kernel->width];
                  k[i+j*kernel->width] = k[j+x*kernel->width];
                  k[j+x*kernel->width] = k[x+y*kernel->width];
                  k[x+y*kernel->width] = k[y+i*kernel->width];
                  k[y+i*kernel->width] = t;
                }
          }
          /* rotate the origin - relative to center of array */
          { ssize_t x,y;
            x = (ssize_t) (kernel->x*2-kernel->width+1);
            y = (ssize_t) (kernel->y*2-kernel->height+1);
            kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2;
            kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2;
          }
          angle = fmod(angle+270.0, 360.0);     /* angle reduced 90 degrees */
          kernel->angle = fmod(kernel->angle+90.0, 360.0);
        }
      else
        perror("Unable to rotate a non-square, non-linear kernel 90 degrees");
    }
  if ( 135.0 < angle && angle <= 225.0 )
    {
      /* For a 180 degree rotation - also know as a reflection
       * This is actually a very very common operation!
       * Basically all that is needed is a reversal of the kernel data!
       * And a reflection of the origon
       */
      MagickRealType
        t;

      MagickRealType
        *k;

      ssize_t
        i,
        j;

      k=kernel->values;
      j=(ssize_t) (kernel->width*kernel->height-1);
      for (i=0;  i < j;  i++, j--)
        t=k[i],  k[i]=k[j],  k[j]=t;

      kernel->x = (ssize_t) kernel->width  - kernel->x - 1;
      kernel->y = (ssize_t) kernel->height - kernel->y - 1;
      angle = fmod(angle-180.0, 360.0);   /* angle+180 degrees */
      kernel->angle = fmod(kernel->angle+180.0, 360.0);
    }
  /* At this point angle should at least between -45 (315) and +45 degrees
   * In the future some form of non-orthogonal angled rotates could be
   * performed here, posibily with a linear kernel restriction.
   */

  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     S c a l e G e o m e t r y K e r n e l I n f o                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ScaleGeometryKernelInfo() takes a geometry argument string, typically
%  provided as a  "-set option:convolve:scale {geometry}" user setting,
%  and modifies the kernel according to the parsed arguments of that setting.
%
%  The first argument (and any normalization flags) are passed to
%  ScaleKernelInfo() to scale/normalize the kernel.  The second argument
%  is then passed to UnityAddKernelInfo() to add a scled unity kernel
%  into the scaled/normalized kernel.
%
%  The format of the ScaleGeometryKernelInfo method is:
%
%      void ScaleGeometryKernelInfo(KernelInfo *kernel,
%        const double scaling_factor,const MagickStatusType normalize_flags)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel to modify
%
%    o geometry:
%             The geometry string to parse, typically from the user provided
%             "-set option:convolve:scale {geometry}" setting.
%
*/
MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel,
  const char *geometry)
{
  MagickStatusType
    flags;

  GeometryInfo
    args;

  SetGeometryInfo(&args);
  flags = ParseGeometry(geometry, &args);

#if 0
  /* For Debugging Geometry Input */
  (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n",
       flags, args.rho, args.sigma, args.xi, args.psi );
#endif

  if ( (flags & PercentValue) != 0 )      /* Handle Percentage flag*/
    args.rho *= 0.01,  args.sigma *= 0.01;

  if ( (flags & RhoValue) == 0 )          /* Set Defaults for missing args */
    args.rho = 1.0;
  if ( (flags & SigmaValue) == 0 )
    args.sigma = 0.0;

  /* Scale/Normalize the input kernel */
  ScaleKernelInfo(kernel, args.rho, (GeometryFlags) flags);

  /* Add Unity Kernel, for blending with original */
  if ( (flags & SigmaValue) != 0 )
    UnityAddKernelInfo(kernel, args.sigma);

  return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     S c a l e K e r n e l I n f o                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ScaleKernelInfo() scales the given kernel list by the given amount, with or
%  without normalization of the sum of the kernel values (as per given flags).
%
%  By default (no flags given) the values within the kernel is scaled
%  directly using given scaling factor without change.
%
%  If either of the two 'normalize_flags' are given the kernel will first be
%  normalized and then further scaled by the scaling factor value given.
%
%  Kernel normalization ('normalize_flags' given) is designed to ensure that
%  any use of the kernel scaling factor with 'Convolve' or 'Correlate'
%  morphology methods will fall into -1.0 to +1.0 range.  Note that for
%  non-HDRI versions of IM this may cause images to have any negative results
%  clipped, unless some 'bias' is used.
%
%  More specifically.  Kernels which only contain positive values (such as a
%  'Gaussian' kernel) will be scaled so that those values sum to +1.0,
%  ensuring a 0.0 to +1.0 output range for non-HDRI images.
%
%  For Kernels that contain some negative values, (such as 'Sharpen' kernels)
%  the kernel will be scaled by the absolute of the sum of kernel values, so
%  that it will generally fall within the +/- 1.0 range.
%
%  For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel
%  will be scaled by just the sum of the postive values, so that its output
%  range will again fall into the  +/- 1.0 range.
%
%  For special kernels designed for locating shapes using 'Correlate', (often
%  only containing +1 and -1 values, representing foreground/brackground
%  matching) a special normalization method is provided to scale the positive
%  values separately to those of the negative values, so the kernel will be
%  forced to become a zero-sum kernel better suited to such searches.
%
%  WARNING: Correct normalization of the kernel assumes that the '*_range'
%  attributes within the kernel structure have been correctly set during the
%  kernels creation.
%
%  NOTE: The values used for 'normalize_flags' have been selected specifically
%  to match the use of geometry options, so that '!' means NormalizeValue, '^'
%  means CorrelateNormalizeValue.  All other GeometryFlags values are ignored.
%
%  The format of the ScaleKernelInfo method is:
%
%      void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,
%               const MagickStatusType normalize_flags )
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
%    o scaling_factor:
%             multiply all values (after normalization) by this factor if not
%             zero.  If the kernel is normalized regardless of any flags.
%
%    o normalize_flags:
%             GeometryFlags defining normalization method to use.
%             specifically: NormalizeValue, CorrelateNormalizeValue,
%                           and/or PercentValue
%
*/
MagickExport void ScaleKernelInfo(KernelInfo *kernel,
  const double scaling_factor,const GeometryFlags normalize_flags)
{
  double
    pos_scale,
    neg_scale;

  ssize_t
    i;

  /* do the other kernels in a multi-kernel list first */
  if ( kernel->next != (KernelInfo *) NULL)
    ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags);

  /* Normalization of Kernel */
  pos_scale = 1.0;
  if ( (normalize_flags&NormalizeValue) != 0 ) {
    if ( fabs(kernel->positive_range + kernel->negative_range) >= MagickEpsilon )
      /* non-zero-summing kernel (generally positive) */
      pos_scale = fabs(kernel->positive_range + kernel->negative_range);
    else
      /* zero-summing kernel */
      pos_scale = kernel->positive_range;
  }
  /* Force kernel into a normalized zero-summing kernel */
  if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) {
    pos_scale = ( fabs(kernel->positive_range) >= MagickEpsilon )
                 ? kernel->positive_range : 1.0;
    neg_scale = ( fabs(kernel->negative_range) >= MagickEpsilon )
                 ? -kernel->negative_range : 1.0;
  }
  else
    neg_scale = pos_scale;

  /* finialize scaling_factor for positive and negative components */
  pos_scale = scaling_factor/pos_scale;
  neg_scale = scaling_factor/neg_scale;

  for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++)
    if (!IsNaN(kernel->values[i]))
      kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale;

  /* convolution output range */
  kernel->positive_range *= pos_scale;
  kernel->negative_range *= neg_scale;
  /* maximum and minimum values in kernel */
  kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale;
  kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale;

  /* swap kernel settings if user's scaling factor is negative */
  if ( scaling_factor < MagickEpsilon ) {
    double t;
    t = kernel->positive_range;
    kernel->positive_range = kernel->negative_range;
    kernel->negative_range = t;
    t = kernel->maximum;
    kernel->maximum = kernel->minimum;
    kernel->minimum = 1;
  }

  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     S h o w K e r n e l I n f o                                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ShowKernelInfo() outputs the details of the given kernel defination to
%  standard error, generally due to a users 'morphology:showKernel' option
%  request.
%
%  The format of the ShowKernel method is:
%
%      void ShowKernelInfo(const KernelInfo *kernel)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
*/
MagickPrivate void ShowKernelInfo(const KernelInfo *kernel)
{
  const KernelInfo
    *k;

  size_t
    c, i, u, v;

  for (c=0, k=kernel;  k != (KernelInfo *) NULL;  c++, k=k->next ) {

    (void) FormatLocaleFile(stderr, "Kernel");
    if ( kernel->next != (KernelInfo *) NULL )
      (void) FormatLocaleFile(stderr, " #%lu", (unsigned long) c );
    (void) FormatLocaleFile(stderr, " \"%s",
          CommandOptionToMnemonic(MagickKernelOptions, k->type) );
    if ( fabs(k->angle) >= MagickEpsilon )
      (void) FormatLocaleFile(stderr, "@%lg", k->angle);
    (void) FormatLocaleFile(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long)
      k->width,(unsigned long) k->height,(long) k->x,(long) k->y);
    (void) FormatLocaleFile(stderr,
          " with values from %.*lg to %.*lg\n",
          GetMagickPrecision(), k->minimum,
          GetMagickPrecision(), k->maximum);
    (void) FormatLocaleFile(stderr, "Forming a output range from %.*lg to %.*lg",
          GetMagickPrecision(), k->negative_range,
          GetMagickPrecision(), k->positive_range);
    if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon )
      (void) FormatLocaleFile(stderr, " (Zero-Summing)\n");
    else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon )
      (void) FormatLocaleFile(stderr, " (Normalized)\n");
    else
      (void) FormatLocaleFile(stderr, " (Sum %.*lg)\n",
          GetMagickPrecision(), k->positive_range+k->negative_range);
    for (i=v=0; v < k->height; v++) {
      (void) FormatLocaleFile(stderr, "%2lu:", (unsigned long) v );
      for (u=0; u < k->width; u++, i++)
        if (IsNaN(k->values[i]))
          (void) FormatLocaleFile(stderr," %*s", GetMagickPrecision()+3, "nan");
        else
          (void) FormatLocaleFile(stderr," %*.*lg", GetMagickPrecision()+3,
              GetMagickPrecision(), (double) k->values[i]);
      (void) FormatLocaleFile(stderr,"\n");
    }
  }
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     U n i t y A d d K e r n a l I n f o                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel
%  to the given pre-scaled and normalized Kernel.  This in effect adds that
%  amount of the original image into the resulting convolution kernel.  This
%  value is usually provided by the user as a percentage value in the
%  'convolve:scale' setting.
%
%  The resulting effect is to convert the defined kernels into blended
%  soft-blurs, unsharp kernels or into sharpening kernels.
%
%  The format of the UnityAdditionKernelInfo method is:
%
%      void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale )
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
%    o scale:
%             scaling factor for the unity kernel to be added to
%             the given kernel.
%
*/
MagickExport void UnityAddKernelInfo(KernelInfo *kernel,
  const double scale)
{
  /* do the other kernels in a multi-kernel list first */
  if ( kernel->next != (KernelInfo *) NULL)
    UnityAddKernelInfo(kernel->next, scale);

  /* Add the scaled unity kernel to the existing kernel */
  kernel->values[kernel->x+kernel->y*kernel->width] += scale;
  CalcKernelMetaData(kernel);  /* recalculate the meta-data */

  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     Z e r o K e r n e l N a n s                                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ZeroKernelNans() replaces any special 'nan' value that may be present in
%  the kernel with a zero value.  This is typically done when the kernel will
%  be used in special hardware (GPU) convolution processors, to simply
%  matters.
%
%  The format of the ZeroKernelNans method is:
%
%      void ZeroKernelNans (KernelInfo *kernel)
%
%  A description of each parameter follows:
%
%    o kernel: the Morphology/Convolution kernel
%
*/
MagickPrivate void ZeroKernelNans(KernelInfo *kernel)
{
  size_t
    i;

  /* do the other kernels in a multi-kernel list first */
  if (kernel->next != (KernelInfo *) NULL)
    ZeroKernelNans(kernel->next);

  for (i=0; i < (kernel->width*kernel->height); i++)
    if (IsNaN(kernel->values[i]))
      kernel->values[i]=0.0;

  return;
}