// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 8 == 0 $assert ELEMENTS_TILE >= 8 $SIMD_TILE = ELEMENTS_TILE // 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(elements % sizeof(float) == 0); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); $for K in range(ACCUMULATORS): __m256 vacc${K} = _mm256_setzero_ps(); for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); $for N in range(1, SIMD_TILE): const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8}); input += ${ELEMENTS_TILE}; $for N in range(SIMD_TILE): const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max); $for N in range(SIMD_TILE): __m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias); $for N in range(SIMD_TILE): const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23)); $for N in range(SIMD_TILE): vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); $for N in range(SIMD_TILE): __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vx${N}); $for N in range(SIMD_TILE): __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); $for N in range(SIMD_TILE): vt${N} = _mm256_mul_ps(vt${N}, vs${N}); $for N in range(SIMD_TILE): __m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N}); $for N in range(SIMD_TILE): vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N}); _mm256_storeu_ps(output, vf0); $for N in range(1, SIMD_TILE): _mm256_storeu_ps(output + ${N * 8}, vf${N}); output += ${ELEMENTS_TILE}; $for N in range(SIMD_TILE): vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${N}); } $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE}); $ACC_SLICE *= 2 __m256 vacc = vacc0; for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) ¶ms->avx2_rr1_p5.mask_table[7] - elements)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (elements & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (elements & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (elements & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }