// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x16_acc4( size_t elements, const float* input, float* output, float* sum, float max) XNN_DISABLE_TSAN { assert(elements % sizeof(float) == 0); const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f); const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f); // Last 7 bits are zeroes const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f); const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f); const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f); const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f); const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f); const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f); const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f); const v128_t vi_max = wasm_f32x4_splat(max); v128_t vacc0 = wasm_f32x4_splat(0.0f); v128_t vacc1 = vacc0; v128_t vacc2 = vacc0; v128_t vacc3 = vacc0; for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { // Load 16 (4x4) inputs at a time. const v128_t vi0123 = wasm_v128_load(input); const v128_t vi4567 = wasm_v128_load(input + 4); const v128_t vi89AB = wasm_v128_load(input + 8); const v128_t viCDEF = wasm_v128_load(input + 12); input += 16; // Subtract maximum input x := i - i_max. This implies x <= 0. const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max); const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max); const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max); const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max); // Compute reduced argument elements := round(x / log(2)). v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e)); v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e)); v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e)); v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e)); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23); const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23); const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23); const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23); // Subtract the large number back to get final elements := round(x / log(2)). vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias); vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias); vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias); vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi)); v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi)); v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi)); v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi)); vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo)); vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo)); vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo)); vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123)); v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567)); v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB)); v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF)); vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123)); vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567)); vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB)); vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF)); vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123)); vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567)); vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB)); vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF)); vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123)); vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567)); vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB)); vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF)); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0123 = wasm_f32x4_mul(vt0123, vs0123); vt4567 = wasm_f32x4_mul(vt4567, vs4567); vt89AB = wasm_f32x4_mul(vt89AB, vs89AB); vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF); v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123)); v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567)); v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB)); v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF)); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff)); vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff)); vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff)); vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff)); // Store 16 (4x4) outputs at a time. wasm_v128_store(output, vf0123); wasm_v128_store(output + 4, vf4567); wasm_v128_store(output + 8, vf89AB); wasm_v128_store(output + 12, vfCDEF); output += 16; // Accumulate computed exponents. vacc0 = wasm_f32x4_add(vacc0, vf0123); vacc0 = wasm_f32x4_add(vacc0, vf4567); vacc0 = wasm_f32x4_add(vacc0, vf89AB); vacc0 = wasm_f32x4_add(vacc0, vfCDEF); } // Add up all accumulators to vacc0 vacc0 = wasm_f32x4_add(vacc0, vacc1); vacc2 = wasm_f32x4_add(vacc2, vacc3); vacc0 = wasm_f32x4_add(vacc0, vacc2); v128_t vacc = vacc0; for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) { // Load 4 inputs at a time. const v128_t vi = wasm_v128_load(input); input += 4; // Subtract maximum input x := i - i_max. This implies x <= 0. const v128_t vx = wasm_f32x4_sub(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e)); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. const v128_t vs = wasm_i32x4_shl(vn, 23); // Subtract the large number back to get final elements := round(x / log(2)). vn = wasm_f32x4_sub(vn, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi)); vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt)); vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt)); vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt)); vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt)); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = wasm_f32x4_mul(vt, vs); v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp)); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff)); // Store 4 outputs at a time. wasm_v128_store(output, vf); output += 4; // Accumulate computed exponents. vacc = wasm_f32x4_add(vacc, vf); } vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3)); float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1); if (elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 3 * sizeof(float)); // Load 4 inputs at a time. const v128_t vi = wasm_v128_load(input); // Subtract maximum input x := i - i_max. This implies x <= 0. const v128_t vx = wasm_f32x4_sub(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e)); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. const v128_t vs = wasm_i32x4_shl(vn, 23); // Subtract the large number back to get final elements := round(x / log(2)). vn = wasm_f32x4_sub(vn, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi)); vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt)); vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt)); vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt)); vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt)); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = wasm_f32x4_mul(vt, vs); v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp)); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff)); if (elements & (2 * sizeof(float))) { // Store and accumulate 2 outputs at a time. const float vf0 = wasm_f32x4_extract_lane(vf, 0); output[0] = vf0; vsum += vf0; const float vf1 = wasm_f32x4_extract_lane(vf, 1); output[1] = vf1; vsum += vf1; vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3); output += 2; } if (elements & (1 * sizeof(float))) { // Store 1 output at a time. const float vf0 = wasm_f32x4_extract_lane(vf, 0); *output = vf0; vsum += vf0; } } // Reduce 4 elements in the SIMD register *sum = vsum; }