// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 4 == 0 $assert ELEMENTS_TILE >= 4 $SIMD_TILE = ELEMENTS_TILE // 4 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" #include #include #include #include extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64]; $PARAMS_STRUCT = "neonfma_rr1_lut64_p2" if FMA else "neon_rr2_lut64_p2" void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_lut64_p2_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(elements % sizeof(float) == 0); const float32x4_t vi_max = vld1q_dup_f32(max); const float32x4_t vlog2e = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.log2e); const float32x4_t vmagic_bias = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.magic_bias); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); $if FMA: const float32x4_t vminus_ln2 = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.minus_ln2); $else: const float32x4_t vminus_ln2_hi = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.minus_ln2_hi); const float32x4_t vminus_ln2_lo = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.minus_ln2_lo); const float32x4_t vc2 = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.c2); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.denorm_cutoff); $if ELEMENTS_TILE > 4: $for K in range(ACCUMULATORS): float32x4_t vacc${K} = vmovq_n_f32(0.0f); for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { $for N in range(0, ELEMENTS_TILE, 4): const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4; $for N in range(0, ELEMENTS_TILE, 4): const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max); $for N in range(0, ELEMENTS_TILE, 4): float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e); $for N in range(0, ELEMENTS_TILE, 4): const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vmovq_n_s32(INT32_C(0x3F))), 17); $for N in range(0, ELEMENTS_TILE, 4): const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask)); const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0); const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1); $for N in range(0, ELEMENTS_TILE, 4): float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N:N+2]}]); float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N+2:N+4]}]); $for N in range(0, ELEMENTS_TILE, 4): vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1); vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1); const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]}); $for N in range(0, ELEMENTS_TILE, 4): const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]})); $for N in range(0, ELEMENTS_TILE, 4): vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias); $if FMA: $for N in range(0, ELEMENTS_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2); $else: $for N in range(0, ELEMENTS_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi); $for N in range(0, ELEMENTS_TILE, 4): vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo); $for N in range(0, ELEMENTS_TILE, 4): float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc2); $for N in range(0, ELEMENTS_TILE, 4): vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vt${ABC[N:N+4]}, vp${ABC[N:N+4]}); $for N in range(0, ELEMENTS_TILE, 4): float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]}); $for N in range(0, ELEMENTS_TILE, 4): vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff))); $for N in range(0, ELEMENTS_TILE, 4): vst1q_f32(output, vf${ABC[N:N+4]}); output += 4; $for N in range(0, ELEMENTS_TILE, 4): vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]}); } $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE}); $ACC_SLICE *= 2 float32x4_t vacc = vacc0; $else: float32x4_t vacc = vmovq_n_f32(0.0f); for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) { const float32x4_t vi = vld1q_f32(input); input += 4; const float32x4_t vx = vsubq_f32(vi, vi_max); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e); const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULADDQ_F32}(vt, vt, vp); float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); vst1q_f32(output, vf); output += 4; vacc = vaddq_f32(vacc, vf); } #if XNN_ARCH_ARM64 float vacc_lo = vaddvq_f32(vacc); #else float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc)); #endif if (elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 3 * sizeof(float)); const float32x4_t vi = vld1q_f32(input); input += 4; const float32x4_t vx = vsubq_f32(vi, vi_max); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e); const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULADDQ_F32}(vt, vt, vp); float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); float32x2_t vf_lo = vget_low_f32(vf); if (elements & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; #if XNN_ARCH_ARM64 vacc_lo += vaddv_f32(vf_lo); #else vacc_lo = vadd_f32(vacc_lo, vf_lo); #endif vf_lo = vget_high_f32(vf); } if (elements & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); #if XNN_ARCH_ARM64 vacc_lo += vget_lane_f32(vf_lo, 0); #else vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32))); #endif } } #if XNN_ARCH_ARM64 *sum = vacc_lo; #else vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0); #endif }