// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include void xnn_qu8_requantize_precise__scalar_unsigned64( size_t n, const int32_t* input, float scale, uint8_t zero_point, uint8_t qmin, uint8_t qmax, uint8_t* output) { assert(n % 4 == 0); assert(scale < 1.0f); assert(scale >= 0x1.0p-32f); const uint32_t scale_bits = fp32_to_bits(scale); const uint32_t multiplier = (scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000); const uint32_t shift = 127 + 23 - (scale_bits >> 23); assert(shift >= 24); assert(shift < 56); const uint64_t rounding = UINT64_C(1) << (shift - 1); const int32_t smin = (int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point; const int32_t smax = (int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point; for (; n != 0; n -= 4) { const int32_t x = input[0]; const int32_t y = input[1]; const int32_t z = input[2]; const int32_t w = input[3]; input += 4; // Compute absolute value of input as unsigned 32-bit int. // All further computations will work with unsigned values to avoid undefined behaviour on signed operations. const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x; const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y; const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z; const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w; // Compute full 64-bit product of 32-bit factors. const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier; const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier; const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier; const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier; // Shift the full 64-bit product right with rounding. // Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero). // // Note that although rounding is precomputed, it is dependent on shift value, and on processors with 64-bit // "right shift with rounding" instruction each line below can be represented by just one such instruction // (e.g. VRSHL.U64 on ARM NEON, URSHL in ARM64 Advanced SIMD). const uint32_t x_abs_scaled = (uint32_t)((x_product + rounding) >> shift); const uint32_t y_abs_scaled = (uint32_t)((y_product + rounding) >> shift); const uint32_t z_abs_scaled = (uint32_t)((z_product + rounding) >> shift); const uint32_t w_abs_scaled = (uint32_t)((w_product + rounding) >> shift); // Copy the sign of input to scaled absolute input value. // // On x86 processors with SSSE3 instruction set, this operation nicely maps to PSIGND instruction. const int32_t x_scaled = (int32_t)(x >= 0 ? x_abs_scaled : -x_abs_scaled); const int32_t y_scaled = (int32_t)(y >= 0 ? y_abs_scaled : -y_abs_scaled); const int32_t z_scaled = (int32_t)(z >= 0 ? z_abs_scaled : -z_abs_scaled); const int32_t w_scaled = (int32_t)(w >= 0 ? w_abs_scaled : -w_abs_scaled); // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point). const int32_t x_clamped = x_scaled < smin ? smin : x_scaled > smax ? smax : x_scaled; const int32_t y_clamped = y_scaled < smin ? smin : y_scaled > smax ? smax : y_scaled; const int32_t z_clamped = z_scaled < smin ? smin : z_scaled > smax ? smax : z_scaled; const int32_t w_clamped = w_scaled < smin ? smin : w_scaled > smax ? smax : w_scaled; // Add zero point to clamped value. // The result is guaranteed to be in [qmin, qmax] range. // // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519] // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer. const int32_t x_biased = x_clamped + zero_point; const int32_t y_biased = y_clamped + zero_point; const int32_t z_biased = z_clamped + zero_point; const int32_t w_biased = w_clamped + zero_point; output[0] = (uint8_t) x_biased; output[1] = (uint8_t) y_biased; output[2] = (uint8_t) z_biased; output[3] = (uint8_t) w_biased; output += 4; } }