aboutsummaryrefslogtreecommitdiff
path: root/src/f32-sigmoid/neon-lut2048-p1.c.in
blob: 14f14ef21ffc7f6f2d5641e1f9f28db334c47ea5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert BATCH_TILE % 4 == 0
$assert BATCH_TILE >= 4
$assert RR_STEPS in [1, 2]
$assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>

#include <arm_neon.h>

#include <xnnpack/common.h>
#include <xnnpack/vunary.h>


extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048];

void xnn_f32_sigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${RR_STEPS}_lut2048_p1_${DIV_ALGO}_x${BATCH_TILE}(
    size_t n,
    const float* x,
    float* y,
    const void* params) XNN_DISABLE_TSAN
{
  assert(n % sizeof(float) == 0);

  const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p12f);
  const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p0f);
  const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
  $if RR_STEPS == 1:
    const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
  $else:
    $if FMA:
      const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
      const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
    $else:
      const float32x4_t vln2_hi = vmovq_n_f32(0x1.600000p-1f);
      const float32x4_t vln2_lo = vmovq_n_f32(0x1.7217F8p-8f);
  const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
  const float32x4_t vone = vmovq_n_f32(1.0f);
  const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);

  $if BATCH_TILE > 4:
    for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4;

      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]});

      $for N in range(0, BATCH_TILE, 4):
        float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e);

      $for N in range(0, BATCH_TILE, 4):
        const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 12);

      $for N in range(0, BATCH_TILE, 4):
        const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask));

      $for N in range(0, BATCH_TILE, 4):
        const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0);
        const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1);
        float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx${ABC[N:N+2]}]);
        float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx${ABC[N+2:N+4]}]);

      $for N in range(0, BATCH_TILE, 4):
        vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1);
        vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1);
        const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]});

      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]}));

      $for N in range(0, BATCH_TILE, 4):
        vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);

      $if RR_STEPS == 1:
        $for N in range(0, BATCH_TILE, 4):
          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2);
      $else:
        $for N in range(0, BATCH_TILE, 4):
          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_hi);

        $for N in range(0, BATCH_TILE, 4):
          vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_lo);

      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc1);

      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vy${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]});

      $for N in range(0, BATCH_TILE, 4):
        const float32x4_t vd${ABC[N:N+4]} = vaddq_f32(vy${ABC[N:N+4]}, vone);

      $if DIV_ALGO == "div":
        $for N in range(0, BATCH_TILE, 4):
          float32x4_t vf${ABC[N:N+4]} = vdivq_f32(vy${ABC[N:N+4]}, vd${ABC[N:N+4]});
      $else:
        $for N in range(0, BATCH_TILE, 4):
          float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]});

        $if DIV_ALGO == "nr2fma":
          $for N in range(0, BATCH_TILE, 4):
            vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
        $else:
          $for N in range(0, BATCH_TILE, 4):
            vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));

        $if DIV_ALGO == "nr2recps":
          $for N in range(0, BATCH_TILE, 4):
            vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
        $else:
          $for N in range(0, BATCH_TILE, 4):
            vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));

        $for N in range(0, BATCH_TILE, 4):
          float32x4_t vf${ABC[N:N+4]} = vmulq_f32(vy${ABC[N:N+4]}, vr${ABC[N:N+4]});

      $for N in range(0, BATCH_TILE, 4):
        vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));

      $for N in range(0, BATCH_TILE, 4):
        const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f));

      $for N in range(0, BATCH_TILE, 4):
        vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]}));

      $for N in range(0, BATCH_TILE, 4):
        vst1q_f32(y, vf${ABC[N:N+4]}); y += 4;
    }
  for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
    const float32x4_t vx = vld1q_f32(x); x += 4;

    const float32x4_t vz = vabsq_f32(vx);

    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
    const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12);

    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]);
    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]);
    vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
    vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);

    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
    vn = vsubq_f32(vn, vmagic_bias);
    $if RR_STEPS == 1:
      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
    $else:
      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
      vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);

    const float32x4_t vp = vmulq_f32(vt, vc1);

    const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
    const float32x4_t vd = vaddq_f32(vy, vone);

    $if DIV_ALGO == "div":
      float32x4_t vf = vdivq_f32(vy, vd);
    $else:
      float32x4_t vr = vrecpeq_f32(vd);
      $if DIV_ALGO == "nr2fma":
        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
      $else:
        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
      $if DIV_ALGO == "nr2recps":
        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
      $else:
        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));

      float32x4_t vf = vmulq_f32(vy, vr);
    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
    const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
    vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));

    vst1q_f32(y, vf); y += 4;
  }
  if XNN_UNLIKELY(n != 0) {
    const float32x4_t vx = vld1q_f32(x);

    const float32x4_t vz = vabsq_f32(vx);

    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
    const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12);

    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]);
    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]);
    vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
    vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);

    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
    vn = vsubq_f32(vn, vmagic_bias);
    $if RR_STEPS == 1:
      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
    $else:
      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
      vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);

    const float32x4_t vp = vmulq_f32(vt, vc1);

    const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
    const float32x4_t vd = vaddq_f32(vy, vone);

    $if DIV_ALGO == "div":
      float32x4_t vf = vdivq_f32(vy, vd);
    $else:
      float32x4_t vr = vrecpeq_f32(vd);
      $if DIV_ALGO == "nr2fma":
        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
      $else:
        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
      $if DIV_ALGO == "nr2recps":
        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
      $else:
        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));

      float32x4_t vf = vmulq_f32(vy, vr);
    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
    const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
    vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));

    float32x2_t vf_lo = vget_low_f32(vf);
    if (n & (2 * sizeof(float))) {
      vst1_f32(y, vf_lo); y += 2;
      vf_lo = vget_high_f32(vf);
    }
    if (n & (1 * sizeof(float))) {
      vst1_lane_f32(y, vf_lo, 0);
    }
  }
}