aboutsummaryrefslogtreecommitdiff
path: root/src/libANGLE/renderer/vulkan/vk_caps_utils.cpp
blob: 8781e3535c8b39ccf11ca2e35a226cd6d920ed58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_utils:
//    Helper functions for the Vulkan Caps.
//

#include "libANGLE/renderer/vulkan/vk_caps_utils.h"

#include <type_traits>

#include "common/system_utils.h"
#include "common/utilities.h"
#include "libANGLE/Caps.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/vk_cache_utils.h"
#include "vk_format_utils.h"

namespace
{
constexpr unsigned int kComponentsPerVector = 4;
}  // anonymous namespace

namespace rx
{

namespace vk
{
namespace
{
// Checks to see if each format can be reinterpreted to an equivalent format in a different
// colorspace. If all supported formats can be reinterpreted, it returns true. Formats which are not
// supported at all are ignored and not counted as failures.
bool FormatReinterpretationSupported(const std::vector<GLenum> &optionalSizedFormats,
                                     const RendererVk *rendererVk,
                                     bool checkLinearColorspace)
{
    for (GLenum glFormat : optionalSizedFormats)
    {
        const gl::TextureCaps &baseCaps = rendererVk->getNativeTextureCaps().get(glFormat);
        if (baseCaps.texturable && baseCaps.filterable)
        {
            const Format &vkFormat = rendererVk->getFormat(glFormat);
            // For capability query, we use the renderable format since that is what we are capable
            // of when we fallback.
            angle::FormatID imageFormatID = vkFormat.getActualRenderableImageFormatID();

            angle::FormatID reinterpretedFormatID = checkLinearColorspace
                                                        ? ConvertToLinear(imageFormatID)
                                                        : ConvertToSRGB(imageFormatID);

            const Format &reinterpretedVkFormat = rendererVk->getFormat(reinterpretedFormatID);

            if (reinterpretedVkFormat.getActualRenderableImageFormatID() != reinterpretedFormatID)
            {
                return false;
            }

            if (!rendererVk->haveSameFormatFeatureBits(imageFormatID, reinterpretedFormatID))
            {
                return false;
            }
        }
    }

    return true;
}

bool GetTextureSRGBDecodeSupport(const RendererVk *rendererVk)
{
    static constexpr bool kLinearColorspace = true;

    // GL_SRGB and GL_SRGB_ALPHA unsized formats are also required by the spec, but the only valid
    // type for them is GL_UNSIGNED_BYTE, so they are fully included in the sized formats listed
    // here
    std::vector<GLenum> optionalSizedSRGBFormats = {
        GL_SRGB8,
        GL_SRGB8_ALPHA8_EXT,
        GL_COMPRESSED_SRGB_S3TC_DXT1_EXT,
        GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
        GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT,
        GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT,
    };

    if (!FormatReinterpretationSupported(optionalSizedSRGBFormats, rendererVk, kLinearColorspace))
    {
        return false;
    }

    return true;
}

bool GetTextureSRGBOverrideSupport(const RendererVk *rendererVk,
                                   const gl::Extensions &supportedExtensions)
{
    static constexpr bool kNonLinearColorspace = false;

    // If the given linear format is supported, we also need to support its corresponding nonlinear
    // format. If the given linear format is NOT supported, we don't care about its corresponding
    // nonlinear format.
    std::vector<GLenum> optionalLinearFormats     = {GL_RGB8,
                                                     GL_RGBA8,
                                                     GL_COMPRESSED_RGB8_ETC2,
                                                     GL_COMPRESSED_RGBA8_ETC2_EAC,
                                                     GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2,
                                                     GL_COMPRESSED_RGBA_ASTC_4x4,
                                                     GL_COMPRESSED_RGBA_ASTC_5x4,
                                                     GL_COMPRESSED_RGBA_ASTC_5x5,
                                                     GL_COMPRESSED_RGBA_ASTC_6x5,
                                                     GL_COMPRESSED_RGBA_ASTC_6x6,
                                                     GL_COMPRESSED_RGBA_ASTC_8x5,
                                                     GL_COMPRESSED_RGBA_ASTC_8x6,
                                                     GL_COMPRESSED_RGBA_ASTC_8x8,
                                                     GL_COMPRESSED_RGBA_ASTC_10x5,
                                                     GL_COMPRESSED_RGBA_ASTC_10x6,
                                                     GL_COMPRESSED_RGBA_ASTC_10x8,
                                                     GL_COMPRESSED_RGBA_ASTC_10x10,
                                                     GL_COMPRESSED_RGBA_ASTC_12x10,
                                                     GL_COMPRESSED_RGBA_ASTC_12x12};
    std::vector<GLenum> optionalS3TCLinearFormats = {
        GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT,
        GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT};
    std::vector<GLenum> optionalR8LinearFormats   = {GL_R8};
    std::vector<GLenum> optionalRG8LinearFormats  = {GL_RG8};
    std::vector<GLenum> optionalBPTCLinearFormats = {GL_COMPRESSED_RGBA_BPTC_UNORM_EXT};

    if (!FormatReinterpretationSupported(optionalLinearFormats, rendererVk, kNonLinearColorspace))
    {
        return false;
    }

    if (supportedExtensions.textureCompressionS3tcSrgbEXT)
    {
        if (!FormatReinterpretationSupported(optionalS3TCLinearFormats, rendererVk,
                                             kNonLinearColorspace))
        {
            return false;
        }
    }

    if (supportedExtensions.textureSRGBR8EXT)
    {
        if (!FormatReinterpretationSupported(optionalR8LinearFormats, rendererVk,
                                             kNonLinearColorspace))
        {
            return false;
        }
    }

    if (supportedExtensions.textureSRGBRG8EXT)
    {
        if (!FormatReinterpretationSupported(optionalRG8LinearFormats, rendererVk,
                                             kNonLinearColorspace))
        {
            return false;
        }
    }

    if (supportedExtensions.textureCompressionBptcEXT)
    {
        if (!FormatReinterpretationSupported(optionalBPTCLinearFormats, rendererVk,
                                             kNonLinearColorspace))
        {
            return false;
        }
    }

    return true;
}

bool CanSupportYuvInternalFormat(const RendererVk *rendererVk)
{
    // The following formats are not mandatory in Vulkan, even when VK_KHR_sampler_ycbcr_conversion
    // is supported. GL_ANGLE_yuv_internal_format requires support for sampling only the
    // 8-bit 2-plane YUV format (VK_FORMAT_G8_B8R8_2PLANE_420_UNORM), if the ICD supports that we
    // can expose the extension.
    //
    // Various test cases need multiple YUV formats. It would be preferrable to have support for the
    // 3 plane 8 bit YUV format (VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM) as well.

    const Format &twoPlane8bitYuvFormat = rendererVk->getFormat(GL_G8_B8R8_2PLANE_420_UNORM_ANGLE);
    bool twoPlane8bitYuvFormatSupported = rendererVk->hasImageFormatFeatureBits(
        twoPlane8bitYuvFormat.getActualImageFormatID(vk::ImageAccess::SampleOnly),
        VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);

    const Format &threePlane8bitYuvFormat =
        rendererVk->getFormat(GL_G8_B8_R8_3PLANE_420_UNORM_ANGLE);
    bool threePlane8bitYuvFormatSupported = rendererVk->hasImageFormatFeatureBits(
        threePlane8bitYuvFormat.getActualImageFormatID(vk::ImageAccess::SampleOnly),
        VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);

    return twoPlane8bitYuvFormatSupported && threePlane8bitYuvFormatSupported;
}

uint32_t GetTimestampValidBits(const std::vector<VkQueueFamilyProperties> &queueFamilyProperties,
                               uint32_t queueFamilyIndex)
{
    ASSERT(!queueFamilyProperties.empty());

    if (queueFamilyIndex < queueFamilyProperties.size())
    {
        // If a queue family is already selected (which is only currently the case if there is only
        // one family), get the timestamp valid bits from that queue.
        return queueFamilyProperties[queueFamilyIndex].timestampValidBits;
    }

    // If a queue family is not already selected, we cannot know which queue family will end up
    // being used until a surface is used.  Take the minimum valid bits from all queues as a safe
    // measure.
    uint32_t timestampValidBits = queueFamilyProperties[0].timestampValidBits;
    for (const VkQueueFamilyProperties &properties : queueFamilyProperties)
    {
        timestampValidBits = std::min(timestampValidBits, properties.timestampValidBits);
    }
    return timestampValidBits;
}
}  // namespace
}  // namespace vk

template <typename LargerInt>
GLint LimitToInt(const LargerInt physicalDeviceValue)
{
    static_assert(sizeof(LargerInt) >= sizeof(int32_t), "Incorrect usage of LimitToInt");

    // Limit to INT_MAX / 2 instead of INT_MAX.  If the limit is queried as float, the imprecision
    // in floating point can cause the value to exceed INT_MAX.  This trips dEQP up.
    return static_cast<GLint>(std::min(
        physicalDeviceValue, static_cast<LargerInt>(std::numeric_limits<int32_t>::max() / 2)));
}

void RendererVk::ensureCapsInitialized() const
{
    if (mCapsInitialized)
        return;
    mCapsInitialized = true;

    const VkPhysicalDeviceLimits &limitsVk = mPhysicalDeviceProperties.limits;

    mNativeExtensions.setTextureExtensionSupport(mNativeTextureCaps);

    // Enable GL_EXT_buffer_storage
    mNativeExtensions.bufferStorageEXT = true;

    // When ETC2/EAC formats are natively supported, enable ANGLE-specific extension string to
    // expose them to WebGL. In other case, mark potentially-available ETC1 extension as emulated.
    if ((mPhysicalDeviceFeatures.textureCompressionETC2 == VK_TRUE) &&
        gl::DetermineCompressedTextureETCSupport(mNativeTextureCaps))
    {
        mNativeExtensions.compressedTextureEtcANGLE = true;
    }
    else
    {
        mNativeLimitations.emulatedEtc1 = true;
    }

    // When ASTC formats are not natively supported
    // mark potentially-available ASTC extension as emulated.
    if (mPhysicalDeviceFeatures.textureCompressionASTC_LDR == VK_FALSE)
    {
        mNativeLimitations.emulatedAstc = true;
    }

    // Vulkan doesn't support ASTC 3D block textures, which are required by
    // GL_OES_texture_compression_astc.
    mNativeExtensions.textureCompressionAstcOES = false;
    // Vulkan does not support sliced 3D ASTC textures either.
    mNativeExtensions.textureCompressionAstcSliced3dKHR = false;

    // Vulkan doesn't guarantee HDR blocks decoding without VK_EXT_texture_compression_astc_hdr.
    mNativeExtensions.textureCompressionAstcHdrKHR = false;

    // Enable EXT_compressed_ETC1_RGB8_sub_texture
    mNativeExtensions.compressedETC1RGB8SubTextureEXT =
        mNativeExtensions.compressedETC1RGB8TextureOES;

    // Enable this for simple buffer readback testing, but some functionality is missing.
    // TODO(jmadill): Support full mapBufferRangeEXT extension.
    mNativeExtensions.mapbufferOES                = true;
    mNativeExtensions.mapBufferRangeEXT           = true;
    mNativeExtensions.textureStorageEXT           = true;
    mNativeExtensions.drawBuffersEXT              = true;
    mNativeExtensions.fragDepthEXT                = true;
    mNativeExtensions.conservativeDepthEXT        = true;
    mNativeExtensions.framebufferBlitANGLE        = true;
    mNativeExtensions.framebufferBlitNV           = true;
    mNativeExtensions.framebufferMultisampleANGLE = true;
    mNativeExtensions.textureMultisampleANGLE     = true;
    mNativeExtensions.multisampledRenderToTextureEXT =
        getFeatures().enableMultisampledRenderToTexture.enabled;
    mNativeExtensions.multisampledRenderToTexture2EXT =
        getFeatures().enableMultisampledRenderToTexture.enabled;
    mNativeExtensions.textureStorageMultisample2dArrayOES =
        (limitsVk.standardSampleLocations == VK_TRUE);
    mNativeExtensions.copyTextureCHROMIUM           = true;
    mNativeExtensions.copyTexture3dANGLE            = true;
    mNativeExtensions.copyCompressedTextureCHROMIUM = true;
    mNativeExtensions.debugMarkerEXT                = true;
    mNativeExtensions.robustnessEXT                 = true;
    mNativeExtensions.discardFramebufferEXT         = true;
    mNativeExtensions.stencilTexturingANGLE         = true;
    mNativeExtensions.packReverseRowOrderANGLE      = true;
    mNativeExtensions.textureBorderClampOES = getFeatures().supportsCustomBorderColor.enabled;
    mNativeExtensions.textureBorderClampEXT = getFeatures().supportsCustomBorderColor.enabled;
    mNativeExtensions.polygonModeNV         = mPhysicalDeviceFeatures.fillModeNonSolid == VK_TRUE;
    mNativeExtensions.polygonModeANGLE      = mPhysicalDeviceFeatures.fillModeNonSolid == VK_TRUE;
    mNativeExtensions.polygonOffsetClampEXT = mPhysicalDeviceFeatures.depthBiasClamp == VK_TRUE;
    mNativeExtensions.depthClampEXT         = mPhysicalDeviceFeatures.depthClamp == VK_TRUE;
    // Enable EXT_texture_type_2_10_10_10_REV
    mNativeExtensions.textureType2101010REVEXT = true;

    // Enable EXT_texture_mirror_clamp_to_edge
    mNativeExtensions.textureMirrorClampToEdgeEXT =
        getFeatures().supportsSamplerMirrorClampToEdge.enabled;

    // Enable EXT_multi_draw_indirect
    mNativeExtensions.multiDrawIndirectEXT = true;

    // Enable EXT_base_instance
    mNativeExtensions.baseInstanceEXT = true;

    // Enable ANGLE_base_vertex_base_instance
    mNativeExtensions.baseVertexBaseInstanceANGLE              = true;
    mNativeExtensions.baseVertexBaseInstanceShaderBuiltinANGLE = true;

    // Enable OES/EXT_draw_elements_base_vertex
    mNativeExtensions.drawElementsBaseVertexOES = true;
    mNativeExtensions.drawElementsBaseVertexEXT = true;

    // Enable EXT_blend_minmax
    mNativeExtensions.blendMinmaxEXT = true;

    // Enable OES/EXT_draw_buffers_indexed
    mNativeExtensions.drawBuffersIndexedOES = mPhysicalDeviceFeatures.independentBlend == VK_TRUE;
    mNativeExtensions.drawBuffersIndexedEXT = mNativeExtensions.drawBuffersIndexedOES;

    mNativeExtensions.EGLImageOES                  = true;
    mNativeExtensions.EGLImageExternalOES          = true;
    mNativeExtensions.EGLImageExternalWrapModesEXT = true;
    mNativeExtensions.EGLImageExternalEssl3OES     = true;
    mNativeExtensions.EGLImageArrayEXT             = true;
    mNativeExtensions.EGLImageStorageEXT           = true;
    mNativeExtensions.memoryObjectEXT              = true;
    mNativeExtensions.memoryObjectFdEXT            = getFeatures().supportsExternalMemoryFd.enabled;
    mNativeExtensions.memoryObjectFlagsANGLE       = true;
    mNativeExtensions.memoryObjectFuchsiaANGLE =
        getFeatures().supportsExternalMemoryFuchsia.enabled;

    mNativeExtensions.semaphoreEXT   = true;
    mNativeExtensions.semaphoreFdEXT = getFeatures().supportsExternalSemaphoreFd.enabled;
    mNativeExtensions.semaphoreFuchsiaANGLE =
        getFeatures().supportsExternalSemaphoreFuchsia.enabled;

    mNativeExtensions.vertexHalfFloatOES = true;

    // Enabled in HW if VK_EXT_vertex_attribute_divisor available, otherwise emulated
    mNativeExtensions.instancedArraysANGLE = true;
    mNativeExtensions.instancedArraysEXT   = true;

    // Only expose robust buffer access if the physical device supports it.
    mNativeExtensions.robustBufferAccessBehaviorKHR =
        (mPhysicalDeviceFeatures.robustBufferAccess == VK_TRUE);

    mNativeExtensions.EGLSyncOES = true;

    mNativeExtensions.vertexType1010102OES = true;

    // Occlusion queries are natively supported in Vulkan.  ANGLE only issues this query inside a
    // render pass, so there is no dependency to `inheritedQueries`.
    mNativeExtensions.occlusionQueryBooleanEXT = true;

    // From the Vulkan specs:
    // > The number of valid bits in a timestamp value is determined by the
    // > VkQueueFamilyProperties::timestampValidBits property of the queue on which the timestamp is
    // > written. Timestamps are supported on any queue which reports a non-zero value for
    // > timestampValidBits via vkGetPhysicalDeviceQueueFamilyProperties.
    //
    // This query is applicable to render passes, but the `inheritedQueries` feature may not be
    // present.  The extension is not exposed in that case.
    // We use secondary command buffers almost everywhere and they require a feature to be
    // able to execute in the presence of queries.  As a result, we won't support timestamp queries
    // unless that feature is available.
    if (vk::OutsideRenderPassCommandBuffer::SupportsQueries(mPhysicalDeviceFeatures) &&
        vk::RenderPassCommandBuffer::SupportsQueries(mPhysicalDeviceFeatures))
    {
        const uint32_t timestampValidBits =
            vk::GetTimestampValidBits(mQueueFamilyProperties, mCurrentQueueFamilyIndex);

        mNativeExtensions.disjointTimerQueryEXT = timestampValidBits > 0;
        mNativeCaps.queryCounterBitsTimeElapsed = timestampValidBits;
        mNativeCaps.queryCounterBitsTimestamp   = timestampValidBits;
    }

    mNativeExtensions.textureFilterAnisotropicEXT =
        mPhysicalDeviceFeatures.samplerAnisotropy && limitsVk.maxSamplerAnisotropy > 1.0f;
    mNativeCaps.maxTextureAnisotropy =
        mNativeExtensions.textureFilterAnisotropicEXT ? limitsVk.maxSamplerAnisotropy : 0.0f;

    // Vulkan natively supports non power-of-two textures
    mNativeExtensions.textureNpotOES = true;

    mNativeExtensions.texture3DOES = true;

    // Vulkan natively supports standard derivatives
    mNativeExtensions.standardDerivativesOES = true;

    // Vulkan natively supports texture LOD
    mNativeExtensions.shaderTextureLodEXT = true;

    // Vulkan natively supports noperspective interpolation
    mNativeExtensions.shaderNoperspectiveInterpolationNV = true;

    // Vulkan natively supports 32-bit indices, entry in kIndexTypeMap
    mNativeExtensions.elementIndexUintOES = true;

    mNativeExtensions.fboRenderMipmapOES = true;

    // We support getting image data for Textures and Renderbuffers.
    mNativeExtensions.getImageANGLE = true;

    // Implemented in the translator
    mNativeExtensions.shaderNonConstantGlobalInitializersEXT = true;

    // Implemented in the front end
    mNativeExtensions.separateShaderObjectsEXT = true;

    // Vulkan has no restrictions of the format of cubemaps, so if the proper formats are supported,
    // creating a cube of any of these formats should be implicitly supported.
    mNativeExtensions.depthTextureCubeMapOES =
        mNativeExtensions.depthTextureOES && mNativeExtensions.packedDepthStencilOES;

    // Vulkan natively supports format reinterpretation, but we still require support for all
    // formats we may reinterpret to
    mNativeExtensions.textureFormatSRGBOverrideEXT =
        vk::GetTextureSRGBOverrideSupport(this, mNativeExtensions);
    mNativeExtensions.textureSRGBDecodeEXT = vk::GetTextureSRGBDecodeSupport(this);

    // EXT_srgb_write_control requires image_format_list
    mNativeExtensions.sRGBWriteControlEXT = getFeatures().supportsImageFormatList.enabled;

    // Vulkan natively supports io interface block.
    mNativeExtensions.shaderIoBlocksOES = true;
    mNativeExtensions.shaderIoBlocksEXT = true;

    mNativeExtensions.gpuShader5EXT = vk::CanSupportGPUShader5EXT(mPhysicalDeviceFeatures);

    mNativeExtensions.textureFilteringHintCHROMIUM =
        getFeatures().supportsFilteringPrecision.enabled;

    // Only expose texture cubemap array if the physical device supports it.
    mNativeExtensions.textureCubeMapArrayOES = getFeatures().supportsImageCubeArray.enabled;
    mNativeExtensions.textureCubeMapArrayEXT = mNativeExtensions.textureCubeMapArrayOES;

    mNativeExtensions.shadowSamplersEXT = true;

    // Enable EXT_external_buffer on Andoid. External buffers are implemented using Android hadware
    // buffer (struct AHardwareBuffer).
    mNativeExtensions.externalBufferEXT = IsAndroid() && GetAndroidSDKVersion() >= 26;

    // From the Vulkan specs:
    // sampleRateShading specifies whether Sample Shading and multisample interpolation are
    // supported. If this feature is not enabled, the sampleShadingEnable member of the
    // VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE and the
    // minSampleShading member is ignored. This also specifies whether shader modules can declare
    // the SampleRateShading capability
    bool supportSampleRateShading      = mPhysicalDeviceFeatures.sampleRateShading == VK_TRUE;
    mNativeExtensions.sampleShadingOES = supportSampleRateShading;

    // From the SPIR-V spec at 3.21. BuiltIn, SampleId and SamplePosition needs
    // SampleRateShading. https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html
    // To replace non-constant index to constant 0 index, this extension assumes that ANGLE only
    // supports the number of samples less than or equal to 32.
    constexpr unsigned int kNotSupportedSampleCounts = VK_SAMPLE_COUNT_64_BIT;
    mNativeExtensions.sampleVariablesOES =
        supportSampleRateShading && vk_gl::GetMaxSampleCount(kNotSupportedSampleCounts) == 0;

    // EXT_multisample_compatibility is necessary for GLES1 conformance so calls like
    // glDisable(GL_MULTISAMPLE) don't fail.  This is not actually implemented in Vulkan.  However,
    // no CTS tests actually test this extension.  GL_SAMPLE_ALPHA_TO_ONE requires the Vulkan
    // alphaToOne feature.
    mNativeExtensions.multisampleCompatibilityEXT =
        mPhysicalDeviceFeatures.alphaToOne ||
        mFeatures.exposeNonConformantExtensionsAndVersions.enabled;

    // GL_KHR_blend_equation_advanced.  According to the spec, only color attachment zero can be
    // used with advanced blend:
    //
    // > Advanced blending equations are supported only when rendering to a single
    // > color buffer using fragment color zero.
    //
    // Vulkan requires advancedBlendMaxColorAttachments to be at least one, so we can support
    // advanced blend as long as the Vulkan extension is supported.  Otherwise, the extension is
    // emulated where possible.
    mNativeExtensions.blendEquationAdvancedKHR = mFeatures.supportsBlendOperationAdvanced.enabled ||
                                                 mFeatures.emulateAdvancedBlendEquations.enabled;

    // Enable EXT_unpack_subimage
    mNativeExtensions.unpackSubimageEXT = true;

    // Enable NV_pack_subimage
    mNativeExtensions.packSubimageNV = true;

    mNativeCaps.minInterpolationOffset          = limitsVk.minInterpolationOffset;
    mNativeCaps.maxInterpolationOffset          = limitsVk.maxInterpolationOffset;
    mNativeCaps.subPixelInterpolationOffsetBits = limitsVk.subPixelInterpolationOffsetBits;

    // Enable GL_ANGLE_robust_fragment_shader_output
    mNativeExtensions.robustFragmentShaderOutputANGLE = true;

    // From the Vulkan spec:
    //
    // > The values minInterpolationOffset and maxInterpolationOffset describe the closed interval
    // > of supported interpolation offsets : [ minInterpolationOffset, maxInterpolationOffset ].
    // > The ULP is determined by subPixelInterpolationOffsetBits. If
    // > subPixelInterpolationOffsetBits is 4, this provides increments of(1 / 2^4) = 0.0625, and
    // > thus the range of supported interpolation offsets would be[-0.5, 0.4375]
    //
    // OES_shader_multisample_interpolation requires a maximum value of -0.5 for
    // MIN_FRAGMENT_INTERPOLATION_OFFSET_OES and minimum 0.5 for
    // MAX_FRAGMENT_INTERPOLATION_OFFSET_OES.  Vulkan has an identical limit for
    // minInterpolationOffset, but its limit for maxInterpolationOffset is 0.5-(1/ULP).
    // OES_shader_multisample_interpolation is therefore only supported if
    // maxInterpolationOffset is at least 0.5.
    //
    // The GL spec is not as precise as Vulkan's in this regard and that the requirements really
    // meant to match.  This is rectified in the GL spec.
    // https://gitlab.khronos.org/opengl/API/-/issues/149
    mNativeExtensions.shaderMultisampleInterpolationOES = mNativeExtensions.sampleVariablesOES;

    // Always enable ANGLE_rgbx_internal_format to expose GL_RGBX8_ANGLE.
    mNativeExtensions.rgbxInternalFormatANGLE = true;

    // https://vulkan.lunarg.com/doc/view/1.0.30.0/linux/vkspec.chunked/ch31s02.html
    mNativeCaps.maxElementIndex  = std::numeric_limits<GLuint>::max() - 1;
    mNativeCaps.max3DTextureSize = LimitToInt(limitsVk.maxImageDimension3D);
    mNativeCaps.max2DTextureSize =
        std::min(limitsVk.maxFramebufferWidth, limitsVk.maxImageDimension2D);
    mNativeCaps.maxArrayTextureLayers = LimitToInt(limitsVk.maxImageArrayLayers);
    mNativeCaps.maxLODBias            = limitsVk.maxSamplerLodBias;
    mNativeCaps.maxCubeMapTextureSize = LimitToInt(limitsVk.maxImageDimensionCube);
    mNativeCaps.maxRenderbufferSize =
        std::min({limitsVk.maxImageDimension2D, limitsVk.maxFramebufferWidth,
                  limitsVk.maxFramebufferHeight});
    mNativeCaps.minAliasedPointSize = std::max(1.0f, limitsVk.pointSizeRange[0]);
    mNativeCaps.maxAliasedPointSize = limitsVk.pointSizeRange[1];

    if (mPhysicalDeviceFeatures.wideLines && mFeatures.bresenhamLineRasterization.enabled)
    {
        mNativeCaps.minAliasedLineWidth = std::max(1.0f, limitsVk.lineWidthRange[0]);
        mNativeCaps.maxAliasedLineWidth = limitsVk.lineWidthRange[1];
    }
    else
    {
        mNativeCaps.minAliasedLineWidth = 1.0f;
        mNativeCaps.maxAliasedLineWidth = 1.0f;
    }

    mNativeCaps.maxDrawBuffers =
        std::min(limitsVk.maxColorAttachments, limitsVk.maxFragmentOutputAttachments);
    mNativeCaps.maxFramebufferWidth  = LimitToInt(limitsVk.maxFramebufferWidth);
    mNativeCaps.maxFramebufferHeight = LimitToInt(limitsVk.maxFramebufferHeight);
    mNativeCaps.maxColorAttachments  = LimitToInt(limitsVk.maxColorAttachments);
    mNativeCaps.maxViewportWidth     = LimitToInt(limitsVk.maxViewportDimensions[0]);
    mNativeCaps.maxViewportHeight    = LimitToInt(limitsVk.maxViewportDimensions[1]);
    mNativeCaps.maxSampleMaskWords   = LimitToInt(limitsVk.maxSampleMaskWords);
    mNativeCaps.maxColorTextureSamples =
        vk_gl::GetMaxSampleCount(limitsVk.sampledImageColorSampleCounts);
    mNativeCaps.maxDepthTextureSamples =
        vk_gl::GetMaxSampleCount(limitsVk.sampledImageDepthSampleCounts);
    mNativeCaps.maxIntegerSamples =
        vk_gl::GetMaxSampleCount(limitsVk.sampledImageIntegerSampleCounts);

    mNativeCaps.maxVertexAttributes     = LimitToInt(limitsVk.maxVertexInputAttributes);
    mNativeCaps.maxVertexAttribBindings = LimitToInt(limitsVk.maxVertexInputBindings);
    // Offset and stride are stored as uint16_t in PackedAttribDesc.
    mNativeCaps.maxVertexAttribRelativeOffset =
        std::min((1u << kAttributeOffsetMaxBits) - 1, limitsVk.maxVertexInputAttributeOffset);
    mNativeCaps.maxVertexAttribStride =
        std::min(static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()),
                 limitsVk.maxVertexInputBindingStride);

    mNativeCaps.maxElementsIndices  = std::numeric_limits<GLint>::max();
    mNativeCaps.maxElementsVertices = std::numeric_limits<GLint>::max();

    // Looks like all floats are IEEE according to the docs here:
    // https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#spirvenv-precision-operation
    mNativeCaps.vertexHighpFloat.setIEEEFloat();
    mNativeCaps.vertexMediumpFloat.setIEEEHalfFloat();
    mNativeCaps.vertexLowpFloat.setIEEEHalfFloat();
    mNativeCaps.fragmentHighpFloat.setIEEEFloat();
    mNativeCaps.fragmentMediumpFloat.setIEEEHalfFloat();
    mNativeCaps.fragmentLowpFloat.setIEEEHalfFloat();

    // Vulkan doesn't provide such information.  We provide the spec-required minimum here.
    mNativeCaps.vertexHighpInt.setTwosComplementInt(32);
    mNativeCaps.vertexMediumpInt.setTwosComplementInt(16);
    mNativeCaps.vertexLowpInt.setTwosComplementInt(16);
    mNativeCaps.fragmentHighpInt.setTwosComplementInt(32);
    mNativeCaps.fragmentMediumpInt.setTwosComplementInt(16);
    mNativeCaps.fragmentLowpInt.setTwosComplementInt(16);

    // Compute shader limits.
    mNativeCaps.maxComputeWorkGroupCount[0] = LimitToInt(limitsVk.maxComputeWorkGroupCount[0]);
    mNativeCaps.maxComputeWorkGroupCount[1] = LimitToInt(limitsVk.maxComputeWorkGroupCount[1]);
    mNativeCaps.maxComputeWorkGroupCount[2] = LimitToInt(limitsVk.maxComputeWorkGroupCount[2]);
    mNativeCaps.maxComputeWorkGroupSize[0]  = LimitToInt(limitsVk.maxComputeWorkGroupSize[0]);
    mNativeCaps.maxComputeWorkGroupSize[1]  = LimitToInt(limitsVk.maxComputeWorkGroupSize[1]);
    mNativeCaps.maxComputeWorkGroupSize[2]  = LimitToInt(limitsVk.maxComputeWorkGroupSize[2]);
    mNativeCaps.maxComputeWorkGroupInvocations =
        LimitToInt(limitsVk.maxComputeWorkGroupInvocations);
    mNativeCaps.maxComputeSharedMemorySize = LimitToInt(limitsVk.maxComputeSharedMemorySize);

    GLuint maxUniformBlockSize = limitsVk.maxUniformBufferRange;

    // Clamp the maxUniformBlockSize to 64KB (majority of devices support up to this size
    // currently), on AMD the maxUniformBufferRange is near uint32_t max.
    maxUniformBlockSize = std::min(0x10000u, maxUniformBlockSize);

    const GLuint maxUniformVectors = maxUniformBlockSize / (sizeof(GLfloat) * kComponentsPerVector);
    const GLuint maxUniformComponents = maxUniformVectors * kComponentsPerVector;

    // Uniforms are implemented using a uniform buffer, so the max number of uniforms we can
    // support is the max buffer range divided by the size of a single uniform (4X float).
    mNativeCaps.maxVertexUniformVectors   = maxUniformVectors;
    mNativeCaps.maxFragmentUniformVectors = maxUniformVectors;
    for (gl::ShaderType shaderType : gl::AllShaderTypes())
    {
        mNativeCaps.maxShaderUniformComponents[shaderType] = maxUniformComponents;
    }
    mNativeCaps.maxUniformLocations = maxUniformVectors;

    const int32_t maxPerStageUniformBuffers = LimitToInt(
        limitsVk.maxPerStageDescriptorUniformBuffers - kReservedPerStageDefaultUniformBindingCount);
    for (gl::ShaderType shaderType : gl::AllShaderTypes())
    {
        mNativeCaps.maxShaderUniformBlocks[shaderType] = maxPerStageUniformBuffers;
    }

    // Reserved uniform buffer count depends on number of stages.  Vertex and fragment shaders are
    // always supported.  The limit needs to be adjusted based on whether geometry and tessellation
    // is supported.
    int32_t maxCombinedUniformBuffers = LimitToInt(limitsVk.maxDescriptorSetUniformBuffers) -
                                        2 * kReservedPerStageDefaultUniformBindingCount;

    mNativeCaps.maxUniformBlockSize = maxUniformBlockSize;
    mNativeCaps.uniformBufferOffsetAlignment =
        static_cast<GLint>(limitsVk.minUniformBufferOffsetAlignment);

    // Note that Vulkan currently implements textures as combined image+samplers, so the limit is
    // the minimum of supported samplers and sampled images.
    const uint32_t maxPerStageTextures = std::min(limitsVk.maxPerStageDescriptorSamplers,
                                                  limitsVk.maxPerStageDescriptorSampledImages);
    const uint32_t maxCombinedTextures =
        std::min(limitsVk.maxDescriptorSetSamplers, limitsVk.maxDescriptorSetSampledImages);
    for (gl::ShaderType shaderType : gl::AllShaderTypes())
    {
        mNativeCaps.maxShaderTextureImageUnits[shaderType] = LimitToInt(maxPerStageTextures);
    }
    mNativeCaps.maxCombinedTextureImageUnits = LimitToInt(maxCombinedTextures);

    uint32_t maxPerStageStorageBuffers    = limitsVk.maxPerStageDescriptorStorageBuffers;
    uint32_t maxVertexStageStorageBuffers = maxPerStageStorageBuffers;
    uint32_t maxCombinedStorageBuffers    = limitsVk.maxDescriptorSetStorageBuffers;

    // A number of storage buffer slots are used in the vertex shader to emulate transform feedback.
    // Note that Vulkan requires maxPerStageDescriptorStorageBuffers to be at least 4 (i.e. the same
    // as gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS).
    // TODO(syoussefi): This should be conditioned to transform feedback extension not being
    // present.  http://anglebug.com/3206.
    // TODO(syoussefi): If geometry shader is supported, emulation will be done at that stage, and
    // so the reserved storage buffers should be accounted in that stage.  http://anglebug.com/3606
    static_assert(
        gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS == 4,
        "Limit to ES2.0 if supported SSBO count < supporting transform feedback buffer count");
    if (mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
    {
        ASSERT(maxVertexStageStorageBuffers >= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
        maxVertexStageStorageBuffers -= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS;
        maxCombinedStorageBuffers -= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS;

        // Cap the per-stage limit of the other stages to the combined limit, in case the combined
        // limit is now lower than that.
        maxPerStageStorageBuffers = std::min(maxPerStageStorageBuffers, maxCombinedStorageBuffers);
    }

    // Reserve up to IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS storage buffers in the fragment and
    // compute stages for atomic counters.  This is only possible if the number of per-stage storage
    // buffers is greater than 4, which is the required GLES minimum for compute.
    //
    // For each stage, we'll either not support atomic counter buffers, or support exactly
    // IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS.  This is due to restrictions in the shader
    // translator where we can't know how many atomic counter buffers we would really need after
    // linking so we can't create a packed buffer array.
    //
    // For the vertex stage, we could support atomic counters without storage buffers, but that's
    // likely not very useful, so we use the same limit (4 + MAX_ATOMIC_COUNTER_BUFFERS) for the
    // vertex stage to determine if we would want to add support for atomic counter buffers.
    constexpr uint32_t kMinimumStorageBuffersForAtomicCounterBufferSupport =
        gl::limits::kMinimumComputeStorageBuffers +
        gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS;
    uint32_t maxVertexStageAtomicCounterBuffers = 0;
    uint32_t maxPerStageAtomicCounterBuffers    = 0;
    uint32_t maxCombinedAtomicCounterBuffers    = 0;

    if (maxPerStageStorageBuffers >= kMinimumStorageBuffersForAtomicCounterBufferSupport)
    {
        maxPerStageAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS;
        maxCombinedAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS;
    }

    if (maxVertexStageStorageBuffers >= kMinimumStorageBuffersForAtomicCounterBufferSupport)
    {
        maxVertexStageAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS;
    }

    maxVertexStageStorageBuffers -= maxVertexStageAtomicCounterBuffers;
    maxPerStageStorageBuffers -= maxPerStageAtomicCounterBuffers;
    maxCombinedStorageBuffers -= maxCombinedAtomicCounterBuffers;

    mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Vertex] =
        mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics
            ? LimitToInt(maxVertexStageStorageBuffers)
            : 0;
    mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Fragment] =
        mPhysicalDeviceFeatures.fragmentStoresAndAtomics ? LimitToInt(maxPerStageStorageBuffers)
                                                         : 0;
    mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Compute] =
        LimitToInt(maxPerStageStorageBuffers);
    mNativeCaps.maxCombinedShaderStorageBlocks = LimitToInt(maxCombinedStorageBuffers);

    mNativeCaps.maxShaderStorageBufferBindings = LimitToInt(maxCombinedStorageBuffers);
    mNativeCaps.maxShaderStorageBlockSize      = limitsVk.maxStorageBufferRange;
    mNativeCaps.shaderStorageBufferOffsetAlignment =
        LimitToInt(static_cast<uint32_t>(limitsVk.minStorageBufferOffsetAlignment));

    mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Vertex] =
        mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics
            ? LimitToInt(maxVertexStageAtomicCounterBuffers)
            : 0;
    mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Fragment] =
        mPhysicalDeviceFeatures.fragmentStoresAndAtomics
            ? LimitToInt(maxPerStageAtomicCounterBuffers)
            : 0;
    mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Compute] =
        LimitToInt(maxPerStageAtomicCounterBuffers);
    mNativeCaps.maxCombinedAtomicCounterBuffers = LimitToInt(maxCombinedAtomicCounterBuffers);

    mNativeCaps.maxAtomicCounterBufferBindings = LimitToInt(maxCombinedAtomicCounterBuffers);
    // Emulated as storage buffers, atomic counter buffers have the same size limit.  However, the
    // limit is a signed integer and values above int max will end up as a negative size.
    mNativeCaps.maxAtomicCounterBufferSize = LimitToInt(limitsVk.maxStorageBufferRange);

    // There is no particular limit to how many atomic counters there can be, other than the size of
    // a storage buffer.  We nevertheless limit this to something reasonable (4096 arbitrarily).
    const int32_t maxAtomicCounters =
        std::min<int32_t>(4096, limitsVk.maxStorageBufferRange / sizeof(uint32_t));
    for (gl::ShaderType shaderType : gl::AllShaderTypes())
    {
        mNativeCaps.maxShaderAtomicCounters[shaderType] = maxAtomicCounters;
    }

    // Set maxShaderAtomicCounters to zero if atomic is not supported.
    if (!mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
    {
        mNativeCaps.maxShaderAtomicCounters[gl::ShaderType::Vertex]         = 0;
        mNativeCaps.maxShaderAtomicCounters[gl::ShaderType::Geometry]       = 0;
        mNativeCaps.maxShaderAtomicCounters[gl::ShaderType::TessControl]    = 0;
        mNativeCaps.maxShaderAtomicCounters[gl::ShaderType::TessEvaluation] = 0;
    }
    if (!mPhysicalDeviceFeatures.fragmentStoresAndAtomics)
    {
        mNativeCaps.maxShaderAtomicCounters[gl::ShaderType::Fragment] = 0;
    }

    mNativeCaps.maxCombinedAtomicCounters = maxAtomicCounters;

    // GL Images correspond to Vulkan Storage Images.
    const int32_t maxPerStageImages = LimitToInt(limitsVk.maxPerStageDescriptorStorageImages);
    const int32_t maxCombinedImages = LimitToInt(limitsVk.maxDescriptorSetStorageImages);
    const int32_t maxVertexPipelineImages =
        mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics ? maxPerStageImages : 0;

    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Vertex]         = maxVertexPipelineImages;
    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::TessControl]    = maxVertexPipelineImages;
    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::TessEvaluation] = maxVertexPipelineImages;
    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Geometry]       = maxVertexPipelineImages;
    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Fragment] =
        mPhysicalDeviceFeatures.fragmentStoresAndAtomics ? maxPerStageImages : 0;
    mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Compute] = maxPerStageImages;

    mNativeCaps.maxCombinedImageUniforms = maxCombinedImages;
    mNativeCaps.maxImageUnits            = maxCombinedImages;

    mNativeCaps.minProgramTexelOffset         = limitsVk.minTexelOffset;
    mNativeCaps.maxProgramTexelOffset         = limitsVk.maxTexelOffset;
    mNativeCaps.minProgramTextureGatherOffset = limitsVk.minTexelGatherOffset;
    mNativeCaps.maxProgramTextureGatherOffset = limitsVk.maxTexelGatherOffset;

    // There is no additional limit to the combined number of components.  We can have up to a
    // maximum number of uniform buffers, each having the maximum number of components.  Note that
    // this limit includes both components in and out of uniform buffers.
    //
    // This value is limited to INT_MAX to avoid overflow when queried from glGetIntegerv().
    const uint64_t maxCombinedUniformComponents =
        std::min<uint64_t>(static_cast<uint64_t>(maxPerStageUniformBuffers +
                                                 kReservedPerStageDefaultUniformBindingCount) *
                               maxUniformComponents,
                           std::numeric_limits<GLint>::max());
    for (gl::ShaderType shaderType : gl::AllShaderTypes())
    {
        mNativeCaps.maxCombinedShaderUniformComponents[shaderType] = maxCombinedUniformComponents;
    }

    // Total number of resources available to the user are as many as Vulkan allows minus everything
    // that ANGLE uses internally.  That is, one dynamic uniform buffer used per stage for default
    // uniforms.  Additionally, Vulkan uses up to IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS + 1
    // buffers for transform feedback (Note: +1 is for the "counter" buffer of
    // VK_EXT_transform_feedback).
    constexpr uint32_t kReservedPerStageUniformBufferCount = 1;
    constexpr uint32_t kReservedPerStageBindingCount =
        kReservedPerStageUniformBufferCount + gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS + 1;

    // Note: maxPerStageResources is required to be at least the sum of per stage UBOs, SSBOs etc
    // which total a minimum of 44 resources, so no underflow is possible here.  Limit the total
    // number of resources reported by Vulkan to 2 billion though to avoid seeing negative numbers
    // in applications that take the value as signed int (including dEQP).
    const uint32_t maxPerStageResources = limitsVk.maxPerStageResources;
    mNativeCaps.maxCombinedShaderOutputResources =
        LimitToInt(maxPerStageResources - kReservedPerStageBindingCount);

    // Reserve 1 extra varying for transform feedback capture of gl_Position.
    constexpr GLint kReservedVaryingComponentsForTransformFeedbackExtension = 4;

    GLint reservedVaryingComponentCount = 0;

    if (getFeatures().supportsTransformFeedbackExtension.enabled &&
        (!getFeatures().supportsDepthClipControl.enabled ||
         getFeatures().enablePreRotateSurfaces.enabled ||
         getFeatures().emulatedPrerotation90.enabled ||
         getFeatures().emulatedPrerotation180.enabled ||
         getFeatures().emulatedPrerotation270.enabled))
    {
        reservedVaryingComponentCount += kReservedVaryingComponentsForTransformFeedbackExtension;
    }

    // The max varying vectors should not include gl_Position.
    // The gles2.0 section 2.10 states that "gl_Position is not a varying variable and does
    // not count against this limit.", but the Vulkan spec has no such mention in its Built-in
    // vars section. It is implicit that we need to actually reserve it for Vulkan in that case.
    //
    // Note that this exception for gl_Position does not apply to MAX_VERTEX_OUTPUT_COMPONENTS and
    // similar limits.
    //
    // Note also that the reserved components are for transform feedback capture only, so they don't
    // apply to the _input_ component limit.
    const GLint reservedVaryingVectorCount = reservedVaryingComponentCount / 4 + 1;

    const GLint maxVaryingCount =
        std::min(limitsVk.maxVertexOutputComponents, limitsVk.maxFragmentInputComponents);
    mNativeCaps.maxVaryingVectors =
        LimitToInt((maxVaryingCount / kComponentsPerVector) - reservedVaryingVectorCount);
    mNativeCaps.maxVertexOutputComponents =
        LimitToInt(limitsVk.maxVertexOutputComponents) - reservedVaryingComponentCount;
    mNativeCaps.maxFragmentInputComponents = LimitToInt(limitsVk.maxFragmentInputComponents);

    mNativeCaps.maxTransformFeedbackInterleavedComponents =
        gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS;
    mNativeCaps.maxTransformFeedbackSeparateAttributes =
        gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS;
    mNativeCaps.maxTransformFeedbackSeparateComponents =
        gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS;

    mNativeCaps.minProgramTexelOffset = limitsVk.minTexelOffset;
    mNativeCaps.maxProgramTexelOffset = LimitToInt(limitsVk.maxTexelOffset);

    const uint32_t sampleCounts =
        limitsVk.framebufferColorSampleCounts & limitsVk.framebufferDepthSampleCounts &
        limitsVk.framebufferStencilSampleCounts & vk_gl::kSupportedSampleCounts;

    mNativeCaps.maxSamples            = LimitToInt(vk_gl::GetMaxSampleCount(sampleCounts));
    mNativeCaps.maxFramebufferSamples = mNativeCaps.maxSamples;

    mNativeCaps.subPixelBits = limitsVk.subPixelPrecisionBits;

    if (getFeatures().supportsShaderFramebufferFetch.enabled)
    {
        // Enable GL_EXT_shader_framebuffer_fetch
        // gl::IMPLEMENTATION_MAX_DRAW_BUFFERS is used to support the extension.
        mNativeExtensions.shaderFramebufferFetchEXT =
            mNativeCaps.maxDrawBuffers >= gl::IMPLEMENTATION_MAX_DRAW_BUFFERS;
        mNativeExtensions.shaderFramebufferFetchARM = mNativeExtensions.shaderFramebufferFetchEXT;
    }

    if (getFeatures().supportsShaderFramebufferFetchNonCoherent.enabled)
    {
        // Enable GL_EXT_shader_framebuffer_fetch_non_coherent
        // For supporting this extension, gl::IMPLEMENTATION_MAX_DRAW_BUFFERS is used.
        mNativeExtensions.shaderFramebufferFetchNonCoherentEXT =
            mNativeCaps.maxDrawBuffers >= gl::IMPLEMENTATION_MAX_DRAW_BUFFERS;
    }

    // Enable Program Binary extension.
    mNativeExtensions.getProgramBinaryOES = true;
    mNativeCaps.programBinaryFormats.push_back(GL_PROGRAM_BINARY_ANGLE);

    // Enable Shader Binary extension.
    mNativeCaps.shaderBinaryFormats.push_back(GL_SHADER_BINARY_ANGLE);

    // Enable GL_NV_pixel_buffer_object extension.
    mNativeExtensions.pixelBufferObjectNV = true;

    // Enable GL_NV_fence extension.
    mNativeExtensions.fenceNV = true;

    // Enable GL_EXT_copy_image
    mNativeExtensions.copyImageEXT = true;

    // GL_EXT_clip_control
    mNativeExtensions.clipControlEXT = true;

    // GL_ANGLE_read_only_depth_stencil_feedback_loops
    mNativeExtensions.readOnlyDepthStencilFeedbackLoopsANGLE = true;

    // Enable GL_EXT_texture_buffer and OES variant.  Nearly all formats required for this extension
    // are also required to have the UNIFORM_TEXEL_BUFFER feature bit in Vulkan, except for
    // R32G32B32_SFLOAT/UINT/SINT which are optional.  For many formats, the STORAGE_TEXEL_BUFFER
    // feature is optional though.  This extension is exposed only if the formats specified in
    // EXT_texture_buffer support the necessary feature bits.
    //
    //  glTexBuffer page 187 table 8.18.
    //  glBindImageTexture page 216 table 8.24.
    //  https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf.
    //  https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/chap43.html#features-required-format-support
    //  required image and texture access for texture buffer formats are
    //                         texture access                image access
    //    8-bit components, all required by vulkan.
    //
    //    GL_R8                        Y                           N
    //    GL_R8I                       Y                           N
    //    GL_R8UI                      Y                           N
    //    GL_RG8                       Y                           N
    //    GL_RG8I                      Y                           N
    //    GL_RG8UI                     Y                           N
    //    GL_RGBA8                     Y                           Y
    //    GL_RGBA8I                    Y                           Y
    //    GL_RGBA8UI                   Y                           Y
    //    GL_RGBA8_SNORM               N                           Y
    //
    //    16-bit components,  all required by vulkan.
    //
    //    GL_R16F                      Y                           N
    //    GL_R16I                      Y                           N
    //    GL_R16UI                     Y                           N
    //    GL_RG16F                     Y                           N
    //    GL_RG16I                     Y                           N
    //    GL_RG16UI                    Y                           N
    //    GL_RGBA16F                   Y                           Y
    //    GL_RGBA16I                   Y                           Y
    //    GL_RGBA16UI                  Y                           Y
    //
    //    32-bit components, except RGB32 all others required by vulkan.
    //                       RGB32 is emulated by ANGLE
    //
    //    GL_R32F                      Y                           Y
    //    GL_R32I                      Y                           Y
    //    GL_R32UI                     Y                           Y
    //    GL_RG32F                     Y                           N
    //    GL_RG32I                     Y                           N
    //    GL_RG32UI                    Y                           N
    //    GL_RGB32F                    Y                           N
    //    GL_RGB32I                    Y                           N
    //    GL_RGB32UI                   Y                           N
    //    GL_RGBA32F                   Y                           Y
    //    GL_RGBA32I                   Y                           Y
    //    GL_RGBA32UI                  Y                           Y
    mNativeExtensions.textureBufferOES       = true;
    mNativeExtensions.textureBufferEXT       = true;
    mNativeCaps.maxTextureBufferSize         = LimitToInt(limitsVk.maxTexelBufferElements);
    mNativeCaps.textureBufferOffsetAlignment = LimitToInt(limitsVk.minTexelBufferOffsetAlignment);

    // Atomic image operations in the vertex and fragment shaders require the
    // vertexPipelineStoresAndAtomics and fragmentStoresAndAtomics Vulkan features respectively.
    // If either of these features is not present, the number of image uniforms for that stage is
    // advertised as zero, so image atomic operations support can be agnostic of shader stages.
    //
    // GL_OES_shader_image_atomic requires that image atomic functions have support for r32i and
    // r32ui formats.  These formats have mandatory support for STORAGE_IMAGE_ATOMIC and
    // STORAGE_TEXEL_BUFFER_ATOMIC features in Vulkan.  Additionally, it requires that
    // imageAtomicExchange supports r32f, which is emulated in ANGLE transforming the shader to
    // expect r32ui instead.
    mNativeExtensions.shaderImageAtomicOES = true;

    // Tessellation shaders are required for ES 3.2.
    if (mPhysicalDeviceFeatures.tessellationShader)
    {
        constexpr uint32_t kReservedTessellationDefaultUniformBindingCount = 2;

        bool tessellationShaderEnabled =
            mFeatures.supportsTransformFeedbackExtension.enabled &&
            (mFeatures.supportsPrimitivesGeneratedQuery.enabled ||
             mFeatures.exposeNonConformantExtensionsAndVersions.enabled);
        mNativeExtensions.tessellationShaderEXT = tessellationShaderEnabled;
        mNativeCaps.maxPatchVertices            = LimitToInt(limitsVk.maxTessellationPatchSize);
        mNativeCaps.maxTessPatchComponents =
            LimitToInt(limitsVk.maxTessellationControlPerPatchOutputComponents);
        mNativeCaps.maxTessGenLevel = LimitToInt(limitsVk.maxTessellationGenerationLevel);

        mNativeCaps.maxTessControlInputComponents =
            LimitToInt(limitsVk.maxTessellationControlPerVertexInputComponents);
        mNativeCaps.maxTessControlOutputComponents =
            LimitToInt(limitsVk.maxTessellationControlPerVertexOutputComponents);
        mNativeCaps.maxTessControlTotalOutputComponents =
            LimitToInt(limitsVk.maxTessellationControlTotalOutputComponents);
        mNativeCaps.maxTessEvaluationInputComponents =
            LimitToInt(limitsVk.maxTessellationEvaluationInputComponents);
        mNativeCaps.maxTessEvaluationOutputComponents =
            LimitToInt(limitsVk.maxTessellationEvaluationOutputComponents) -
            reservedVaryingComponentCount;

        // There is 1 default uniform binding used per tessellation stages.
        mNativeCaps.maxCombinedUniformBlocks = LimitToInt(
            mNativeCaps.maxCombinedUniformBlocks + kReservedTessellationDefaultUniformBindingCount);
        mNativeCaps.maxUniformBufferBindings = LimitToInt(
            mNativeCaps.maxUniformBufferBindings + kReservedTessellationDefaultUniformBindingCount);

        if (mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
        {
            mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::TessControl] =
                mNativeCaps.maxCombinedShaderOutputResources;
            mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::TessControl] =
                maxCombinedAtomicCounterBuffers;

            mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::TessEvaluation] =
                mNativeCaps.maxCombinedShaderOutputResources;
            mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::TessEvaluation] =
                maxCombinedAtomicCounterBuffers;
        }

        // Reserve a uniform buffer binding for each tessellation stage
        if (tessellationShaderEnabled)
        {
            maxCombinedUniformBuffers -= 2 * kReservedPerStageDefaultUniformBindingCount;
        }
    }

    // Geometry shaders are required for ES 3.2.
    if (mPhysicalDeviceFeatures.geometryShader)
    {
        bool geometryShaderEnabled = mFeatures.supportsTransformFeedbackExtension.enabled &&
                                     (mFeatures.supportsPrimitivesGeneratedQuery.enabled ||
                                      mFeatures.exposeNonConformantExtensionsAndVersions.enabled);
        mNativeExtensions.geometryShaderEXT = geometryShaderEnabled;
        mNativeExtensions.geometryShaderOES = geometryShaderEnabled;
        mNativeCaps.maxFramebufferLayers    = LimitToInt(limitsVk.maxFramebufferLayers);

        // Use "undefined" which means APP would have to set gl_Layer identically.
        mNativeCaps.layerProvokingVertex = GL_UNDEFINED_VERTEX_EXT;

        mNativeCaps.maxGeometryInputComponents = LimitToInt(limitsVk.maxGeometryInputComponents);
        mNativeCaps.maxGeometryOutputComponents =
            LimitToInt(limitsVk.maxGeometryOutputComponents) - reservedVaryingComponentCount;
        mNativeCaps.maxGeometryOutputVertices = LimitToInt(limitsVk.maxGeometryOutputVertices);
        mNativeCaps.maxGeometryTotalOutputComponents =
            LimitToInt(limitsVk.maxGeometryTotalOutputComponents);
        if (mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
        {
            mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Geometry] =
                mNativeCaps.maxCombinedShaderOutputResources;
            mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Geometry] =
                maxCombinedAtomicCounterBuffers;
        }
        mNativeCaps.maxGeometryShaderInvocations =
            LimitToInt(limitsVk.maxGeometryShaderInvocations);

        // Cap maxGeometryInputComponents by maxVertexOutputComponents and
        // maxTessellationEvaluationOutputComponents; there can't be more inputs than there are
        // outputs in the previous stage.
        mNativeCaps.maxGeometryInputComponents =
            std::min(mNativeCaps.maxGeometryInputComponents,
                     std::min(mNativeCaps.maxVertexOutputComponents,
                              mNativeCaps.maxTessEvaluationOutputComponents));

        // Reserve a uniform buffer binding for the geometry stage
        if (geometryShaderEnabled)
        {
            maxCombinedUniformBuffers -= kReservedPerStageDefaultUniformBindingCount;
        }
    }

    mNativeCaps.maxCombinedUniformBlocks = maxCombinedUniformBuffers;
    mNativeCaps.maxUniformBufferBindings = maxCombinedUniformBuffers;

    // GL_APPLE_clip_distance / GL_EXT_clip_cull_distance / GL_ANGLE_clip_cull_distance
    // From the EXT_clip_cull_distance extension spec:
    //
    // > Modify Section 7.2, "Built-In Constants" (p. 126)
    // >
    // > const mediump int gl_MaxClipDistances = 8;
    // > const mediump int gl_MaxCullDistances = 8;
    // > const mediump int gl_MaxCombinedClipAndCullDistances = 8;
    constexpr uint32_t kMaxClipDistancePerSpec                = 8;
    constexpr uint32_t kMaxCullDistancePerSpec                = 8;
    constexpr uint32_t kMaxCombinedClipAndCullDistancePerSpec = 8;

    // TODO: http://anglebug.com/5466
    // After implementing EXT_geometry_shader, EXT_clip_cull_distance should be additionally
    // implemented to support the geometry shader. Until then, EXT_clip_cull_distance is enabled
    // only in the experimental cases.
    if (mPhysicalDeviceFeatures.shaderClipDistance &&
        limitsVk.maxClipDistances >= kMaxClipDistancePerSpec)
    {
        mNativeExtensions.clipDistanceAPPLE     = true;
        mNativeExtensions.clipCullDistanceANGLE = true;
        mNativeCaps.maxClipDistances            = limitsVk.maxClipDistances;

        if (mPhysicalDeviceFeatures.shaderCullDistance &&
            limitsVk.maxCullDistances >= kMaxCullDistancePerSpec &&
            limitsVk.maxCombinedClipAndCullDistances >= kMaxCombinedClipAndCullDistancePerSpec)
        {
            mNativeExtensions.clipCullDistanceEXT       = true;
            mNativeCaps.maxCullDistances                = limitsVk.maxCullDistances;
            mNativeCaps.maxCombinedClipAndCullDistances = limitsVk.maxCombinedClipAndCullDistances;
        }
    }

    // GL_EXT_blend_func_extended
    mNativeExtensions.blendFuncExtendedEXT = mPhysicalDeviceFeatures.dualSrcBlend == VK_TRUE;
    mNativeCaps.maxDualSourceDrawBuffers   = LimitToInt(limitsVk.maxFragmentDualSrcAttachments);

    // GL_ANGLE_relaxed_vertex_attribute_type
    mNativeExtensions.relaxedVertexAttributeTypeANGLE = true;

    // GL_OVR_multiview*.  Bresenham line emulation does not work with multiview.  There's no
    // limitation in Vulkan to restrict an application to multiview 1.
    mNativeExtensions.multiviewOVR =
        mFeatures.supportsMultiview.enabled && mFeatures.bresenhamLineRasterization.enabled;
    mNativeExtensions.multiview2OVR = mNativeExtensions.multiviewOVR;
    mNativeCaps.maxViews            = mMultiviewProperties.maxMultiviewViewCount;

    // GL_ANGLE_yuv_internal_format
    mNativeExtensions.yuvInternalFormatANGLE =
        getFeatures().supportsYUVSamplerConversion.enabled && vk::CanSupportYuvInternalFormat(this);

    // GL_EXT_primitive_bounding_box
    mNativeExtensions.primitiveBoundingBoxEXT = true;

    // GL_OES_primitive_bounding_box
    mNativeExtensions.primitiveBoundingBoxOES = true;

    // GL_EXT_protected_textures
    mNativeExtensions.protectedTexturesEXT = mFeatures.supportsProtectedMemory.enabled;

    // GL_ANGLE_vulkan_image
    mNativeExtensions.vulkanImageANGLE = true;

    // GL_ANGLE_texture_usage
    mNativeExtensions.textureUsageANGLE = true;

    // GL_KHR_parallel_shader_compile
    mNativeExtensions.parallelShaderCompileKHR = mFeatures.enableParallelCompileAndLink.enabled;

    // GL_NV_read_depth, GL_NV_read_depth_stencil, GL_NV_read_stencil
    mNativeExtensions.readDepthNV        = true;
    mNativeExtensions.readDepthStencilNV = true;
    mNativeExtensions.readStencilNV      = true;

    // GL_QCOM_shading_rate
    mNativeExtensions.shadingRateQCOM = mFeatures.supportsFragmentShadingRate.enabled;

    // GL_ANGLE_shader_pixel_local_storage
    mNativeExtensions.shaderPixelLocalStorageANGLE = true;
    if (getFeatures().supportsShaderFramebufferFetch.enabled)
    {
        mNativeExtensions.shaderPixelLocalStorageCoherentANGLE = true;
        mNativePLSOptions.type             = ShPixelLocalStorageType::FramebufferFetch;
        mNativePLSOptions.fragmentSyncType = ShFragmentSynchronizationType::Automatic;
    }
    else if (getFeatures().supportsFragmentShaderPixelInterlock.enabled)
    {
        // Use shader images with VK_EXT_fragment_shader_interlock, instead of attachments, if
        // they're our only option to be coherent.
        mNativeExtensions.shaderPixelLocalStorageCoherentANGLE = true;
        mNativePLSOptions.type = ShPixelLocalStorageType::ImageLoadStore;
        // GL_ARB_fragment_shader_interlock compiles to SPV_EXT_fragment_shader_interlock.
        mNativePLSOptions.fragmentSyncType =
            ShFragmentSynchronizationType::FragmentShaderInterlock_ARB_GL;
        mNativePLSOptions.supportsNativeRGBA8ImageFormats = true;
    }
    else
    {
        mNativePLSOptions.type = ShPixelLocalStorageType::FramebufferFetch;
        ASSERT(mNativePLSOptions.fragmentSyncType == ShFragmentSynchronizationType::NotSupported);
    }

    mNativeExtensions.logicOpANGLE = mPhysicalDeviceFeatures.logicOp == VK_TRUE;
}

namespace vk
{

bool CanSupportTransformFeedbackExtension(
    const VkPhysicalDeviceTransformFeedbackFeaturesEXT &xfbFeatures)
{
    return xfbFeatures.transformFeedback == VK_TRUE;
}

bool CanSupportTransformFeedbackEmulation(const VkPhysicalDeviceFeatures &features)
{
    return features.vertexPipelineStoresAndAtomics == VK_TRUE;
}

bool CanSupportGPUShader5EXT(const VkPhysicalDeviceFeatures &features)
{
    // We use the following Vulkan features to implement EXT_gpu_shader5:
    // - shaderImageGatherExtended: textureGatherOffset with non-constant offset and
    //   textureGatherOffsets family of functions.
    // - shaderSampledImageArrayDynamicIndexing and shaderUniformBufferArrayDynamicIndexing:
    //   dynamically uniform indices for samplers and uniform buffers.
    return features.shaderImageGatherExtended && features.shaderSampledImageArrayDynamicIndexing &&
           features.shaderUniformBufferArrayDynamicIndexing;
}

}  // namespace vk

namespace egl_vk
{

namespace
{

EGLint ComputeMaximumPBufferPixels(const VkPhysicalDeviceProperties &physicalDeviceProperties)
{
    // EGLints are signed 32-bit integers, it's fairly easy to overflow them, especially since
    // Vulkan's minimum guaranteed VkImageFormatProperties::maxResourceSize is 2^31 bytes.
    constexpr uint64_t kMaxValueForEGLint =
        static_cast<uint64_t>(std::numeric_limits<EGLint>::max());

    // TODO(geofflang): Compute the maximum size of a pbuffer by using the maxResourceSize result
    // from vkGetPhysicalDeviceImageFormatProperties for both the color and depth stencil format and
    // the exact image creation parameters that would be used to create the pbuffer. Because it is
    // always safe to return out-of-memory errors on pbuffer allocation, it's fine to simply return
    // the number of pixels in a max width by max height pbuffer for now. http://anglebug.com/2622

    // Storing the result of squaring a 32-bit unsigned int in a 64-bit unsigned int is safe.
    static_assert(std::is_same<decltype(physicalDeviceProperties.limits.maxImageDimension2D),
                               uint32_t>::value,
                  "physicalDeviceProperties.limits.maxImageDimension2D expected to be a uint32_t.");
    const uint64_t maxDimensionsSquared =
        static_cast<uint64_t>(physicalDeviceProperties.limits.maxImageDimension2D) *
        static_cast<uint64_t>(physicalDeviceProperties.limits.maxImageDimension2D);

    return static_cast<EGLint>(std::min(maxDimensionsSquared, kMaxValueForEGLint));
}

EGLint GetMatchFormat(GLenum internalFormat)
{
    // Lock Surface match format
    switch (internalFormat)
    {
        case GL_RGBA8:
            return EGL_FORMAT_RGBA_8888_KHR;
        case GL_BGRA8_EXT:
            return EGL_FORMAT_RGBA_8888_EXACT_KHR;
        case GL_RGB565:
            return EGL_FORMAT_RGB_565_EXACT_KHR;
        default:
            return EGL_NONE;
    }
}

// Generates a basic config for a combination of color format, depth stencil format and sample
// count.
egl::Config GenerateDefaultConfig(DisplayVk *display,
                                  const gl::InternalFormat &colorFormat,
                                  const gl::InternalFormat &depthStencilFormat,
                                  EGLint sampleCount)
{
    const RendererVk *renderer = display->getRenderer();

    const VkPhysicalDeviceProperties &physicalDeviceProperties =
        renderer->getPhysicalDeviceProperties();
    gl::Version maxSupportedESVersion                = renderer->getMaxSupportedESVersion();
    Optional<gl::Version> maxSupportedDesktopVersion = display->getMaxSupportedDesktopVersion();

    // ES3 features are required to emulate ES1
    EGLint es1Support     = (maxSupportedESVersion.major >= 3 ? EGL_OPENGL_ES_BIT : 0);
    EGLint es2Support     = (maxSupportedESVersion.major >= 2 ? EGL_OPENGL_ES2_BIT : 0);
    EGLint es3Support     = (maxSupportedESVersion.major >= 3 ? EGL_OPENGL_ES3_BIT : 0);
    EGLint desktopSupport = (maxSupportedDesktopVersion.valid() ? EGL_OPENGL_BIT : 0);

    egl::Config config;

    config.renderTargetFormat = colorFormat.internalFormat;
    config.depthStencilFormat = depthStencilFormat.internalFormat;
    config.bufferSize         = colorFormat.getEGLConfigBufferSize();
    config.redSize            = colorFormat.redBits;
    config.greenSize          = colorFormat.greenBits;
    config.blueSize           = colorFormat.blueBits;
    config.alphaSize          = colorFormat.alphaBits;
    config.alphaMaskSize      = 0;
    config.bindToTextureRGB   = colorFormat.format == GL_RGB;
    config.bindToTextureRGBA  = colorFormat.format == GL_RGBA || colorFormat.format == GL_BGRA_EXT;
    config.colorBufferType    = EGL_RGB_BUFFER;
    config.configCaveat       = GetConfigCaveat(colorFormat.internalFormat);
    config.conformant         = es1Support | es2Support | es3Support;
    config.depthSize          = depthStencilFormat.depthBits;
    config.stencilSize        = depthStencilFormat.stencilBits;
    config.level              = 0;
    config.matchNativePixmap  = EGL_NONE;
    config.maxPBufferWidth    = physicalDeviceProperties.limits.maxImageDimension2D;
    config.maxPBufferHeight   = physicalDeviceProperties.limits.maxImageDimension2D;
    config.maxPBufferPixels   = ComputeMaximumPBufferPixels(physicalDeviceProperties);
    config.maxSwapInterval    = 1;
    config.minSwapInterval    = 0;
    config.nativeRenderable   = EGL_TRUE;
    config.nativeVisualID     = static_cast<EGLint>(GetNativeVisualID(colorFormat));
    config.nativeVisualType   = EGL_NONE;
    config.renderableType     = es1Support | es2Support | es3Support | desktopSupport;
    config.sampleBuffers      = (sampleCount > 0) ? 1 : 0;
    config.samples            = sampleCount;
    config.surfaceType        = EGL_WINDOW_BIT | EGL_PBUFFER_BIT;
    if (display->getExtensions().mutableRenderBufferKHR)
    {
        config.surfaceType |= EGL_MUTABLE_RENDER_BUFFER_BIT_KHR;
    }
    // Vulkan surfaces use a different origin than OpenGL, always prefer to be flipped vertically if
    // possible.
    config.optimalOrientation    = EGL_SURFACE_ORIENTATION_INVERT_Y_ANGLE;
    config.transparentType       = EGL_NONE;
    config.transparentRedValue   = 0;
    config.transparentGreenValue = 0;
    config.transparentBlueValue  = 0;
    config.colorComponentType =
        gl_egl::GLComponentTypeToEGLColorComponentType(colorFormat.componentType);
    // LockSurface matching
    config.matchFormat = GetMatchFormat(colorFormat.internalFormat);
    if (config.matchFormat != EGL_NONE)
    {
        config.surfaceType |= EGL_LOCK_SURFACE_BIT_KHR;
    }

    // Vulkan always supports off-screen rendering.  Check the config with display to see if it can
    // also have window support.  If not, the following call should automatically remove
    // EGL_WINDOW_BIT.
    display->checkConfigSupport(&config);

    return config;
}

}  // anonymous namespace

egl::ConfigSet GenerateConfigs(const GLenum *colorFormats,
                               size_t colorFormatsCount,
                               const GLenum *depthStencilFormats,
                               size_t depthStencilFormatCount,
                               DisplayVk *display)
{
    ASSERT(colorFormatsCount > 0);
    ASSERT(display != nullptr);

    gl::SupportedSampleSet colorSampleCounts;
    gl::SupportedSampleSet depthStencilSampleCounts;
    gl::SupportedSampleSet sampleCounts;

    const VkPhysicalDeviceLimits &limits =
        display->getRenderer()->getPhysicalDeviceProperties().limits;
    const uint32_t depthStencilSampleCountsLimit = limits.framebufferDepthSampleCounts &
                                                   limits.framebufferStencilSampleCounts &
                                                   vk_gl::kSupportedSampleCounts;

    vk_gl::AddSampleCounts(limits.framebufferColorSampleCounts & vk_gl::kSupportedSampleCounts,
                           &colorSampleCounts);
    vk_gl::AddSampleCounts(depthStencilSampleCountsLimit, &depthStencilSampleCounts);

    // Always support 0 samples
    colorSampleCounts.insert(0);
    depthStencilSampleCounts.insert(0);

    std::set_intersection(colorSampleCounts.begin(), colorSampleCounts.end(),
                          depthStencilSampleCounts.begin(), depthStencilSampleCounts.end(),
                          std::inserter(sampleCounts, sampleCounts.begin()));

    egl::ConfigSet configSet;

    for (size_t colorFormatIdx = 0; colorFormatIdx < colorFormatsCount; colorFormatIdx++)
    {
        const gl::InternalFormat &colorFormatInfo =
            gl::GetSizedInternalFormatInfo(colorFormats[colorFormatIdx]);
        ASSERT(colorFormatInfo.sized);

        for (size_t depthStencilFormatIdx = 0; depthStencilFormatIdx < depthStencilFormatCount;
             depthStencilFormatIdx++)
        {
            const gl::InternalFormat &depthStencilFormatInfo =
                gl::GetSizedInternalFormatInfo(depthStencilFormats[depthStencilFormatIdx]);
            ASSERT(depthStencilFormats[depthStencilFormatIdx] == GL_NONE ||
                   depthStencilFormatInfo.sized);

            const gl::SupportedSampleSet *configSampleCounts = &sampleCounts;
            // If there is no depth/stencil buffer, use the color samples set.
            if (depthStencilFormats[depthStencilFormatIdx] == GL_NONE)
            {
                configSampleCounts = &colorSampleCounts;
            }
            // If there is no color buffer, use the depth/stencil samples set.
            else if (colorFormats[colorFormatIdx] == GL_NONE)
            {
                configSampleCounts = &depthStencilSampleCounts;
            }

            for (EGLint sampleCount : *configSampleCounts)
            {
                egl::Config config = GenerateDefaultConfig(display, colorFormatInfo,
                                                           depthStencilFormatInfo, sampleCount);
                configSet.add(config);
            }
        }
    }

    return configSet;
}

}  // namespace egl_vk

}  // namespace rx