aboutsummaryrefslogtreecommitdiff
path: root/runtime/CSharp3/Sources/Antlr3.Runtime/Tree/TreeWizard.cs
blob: 98c759b0548c671d7bc6b0723c381b358803eed8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 * [The "BSD licence"]
 * Copyright (c) 2005-2008 Terence Parr
 * All rights reserved.
 *
 * Conversion to C#:
 * Copyright (c) 2008-2009 Sam Harwell, Pixel Mine, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// TODO: build indexes for wizard
//#define BUILD_INDEXES

namespace Antlr.Runtime.Tree
{
    using System.Collections.Generic;

    using IList = System.Collections.IList;
#if BUILD_INDEXES
    using IDictionary = System.Collections.IDictionary;
#endif

    /** <summary>
     *  Build and navigate trees with this object.  Must know about the names
     *  of tokens so you have to pass in a map or array of token names (from which
     *  this class can build the map).  I.e., Token DECL means nothing unless the
     *  class can translate it to a token type.
     *  </summary>
     *
     *  <remarks>
     *  In order to create nodes and navigate, this class needs a TreeAdaptor.
     *
     *  This class can build a token type -> node index for repeated use or for
     *  iterating over the various nodes with a particular type.
     *
     *  This class works in conjunction with the TreeAdaptor rather than moving
     *  all this functionality into the adaptor.  An adaptor helps build and
     *  navigate trees using methods.  This class helps you do it with string
     *  patterns like "(A B C)".  You can create a tree from that pattern or
     *  match subtrees against it.
     *  </remarks>
     */
    public class TreeWizard
    {
        protected ITreeAdaptor adaptor;
        protected IDictionary<string, int> tokenNameToTypeMap;

        public interface IContextVisitor
        {
            // TODO: should this be called visit or something else?
            void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels );
        }

        public abstract class Visitor : IContextVisitor
        {
            public virtual void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels )
            {
                Visit( t );
            }
            public abstract void Visit( object t );
        }

        class ActionVisitor : Visitor
        {
            System.Action<object> _action;

            public ActionVisitor( System.Action<object> action )
            {
                _action = action;
            }

            public override void Visit( object t )
            {
                _action( t );
            }
        }

        /** <summary>
         *  When using %label:TOKENNAME in a tree for parse(), we must
         *  track the label.
         *  </summary>
         */
        public class TreePattern : CommonTree
        {
            public string label;
            public bool hasTextArg;
            public TreePattern( IToken payload ) :
                base( payload )
            {
            }
            public override string ToString()
            {
                if ( label != null )
                {
                    return "%" + label + ":"; //+ base.ToString();
                }
                else
                {
                    return base.ToString();
                }
            }
        }

        public class WildcardTreePattern : TreePattern
        {
            public WildcardTreePattern( IToken payload ) :
                base( payload )
            {
            }
        }

        /** <summary>This adaptor creates TreePattern objects for use during scan()</summary> */
        public class TreePatternTreeAdaptor : CommonTreeAdaptor
        {
            public override object Create( IToken payload )
            {
                return new TreePattern( payload );
            }
        }

#if BUILD_INDEXES
        // TODO: build indexes for the wizard

        /** <summary>
         *  During fillBuffer(), we can make a reverse index from a set
         *  of token types of interest to the list of indexes into the
         *  node stream.  This lets us convert a node pointer to a
         *  stream index semi-efficiently for a list of interesting
         *  nodes such as function definition nodes (you'll want to seek
         *  to their bodies for an interpreter).  Also useful for doing
         *  dynamic searches; i.e., go find me all PLUS nodes.
         *  </summary>
         */
        protected IDictionary<int, IList<int>> tokenTypeToStreamIndexesMap;

        /** <summary>
         *  If tokenTypesToReverseIndex set to INDEX_ALL then indexing
         *  occurs for all token types.
         *  </summary>
         */
        public static readonly HashSet<int> INDEX_ALL = new HashSet<int>();

        /** <summary>
         *  A set of token types user would like to index for faster lookup.
         *  If this is INDEX_ALL, then all token types are tracked.  If null,
         *  then none are indexed.
         *  </summary>
         */
        protected HashSet<int> tokenTypesToReverseIndex = null;
#endif

        public TreeWizard( ITreeAdaptor adaptor )
        {
            this.adaptor = adaptor;
        }

        public TreeWizard( ITreeAdaptor adaptor, IDictionary<string, int> tokenNameToTypeMap )
        {
            this.adaptor = adaptor;
            this.tokenNameToTypeMap = tokenNameToTypeMap;
        }

        public TreeWizard( ITreeAdaptor adaptor, string[] tokenNames )
        {
            this.adaptor = adaptor;
            this.tokenNameToTypeMap = ComputeTokenTypes( tokenNames );
        }

        public TreeWizard( string[] tokenNames )
            : this( new CommonTreeAdaptor(), tokenNames )
        {
        }

        /** <summary>
         *  Compute a Map&lt;String, Integer&gt; that is an inverted index of
         *  tokenNames (which maps int token types to names).
         *  </summary>
         */
        public virtual IDictionary<string, int> ComputeTokenTypes( string[] tokenNames )
        {
            IDictionary<string, int> m = new Dictionary<string, int>();
            if ( tokenNames == null )
            {
                return m;
            }
            for ( int ttype = TokenTypes.Min; ttype < tokenNames.Length; ttype++ )
            {
                string name = tokenNames[ttype];
                m[name] = ttype;
            }
            return m;
        }

        /** <summary>Using the map of token names to token types, return the type.</summary> */
        public virtual int GetTokenType( string tokenName )
        {
            if ( tokenNameToTypeMap == null )
            {
                return TokenTypes.Invalid;
            }

            int value;
            if ( tokenNameToTypeMap.TryGetValue( tokenName, out value ) )
                return value;

            return TokenTypes.Invalid;
        }

        /** <summary>
         *  Walk the entire tree and make a node name to nodes mapping.
         *  For now, use recursion but later nonrecursive version may be
         *  more efficient.  Returns Map&lt;Integer, List&gt; where the List is
         *  of your AST node type.  The Integer is the token type of the node.
         *  </summary>
         *
         *  <remarks>
         *  TODO: save this index so that find and visit are faster
         *  </remarks>
         */
        public IDictionary<int, IList> Index( object t )
        {
            IDictionary<int, IList> m = new Dictionary<int, IList>();
            IndexCore( t, m );
            return m;
        }

        /** <summary>Do the work for index</summary> */
        protected virtual void IndexCore( object t, IDictionary<int, IList> m )
        {
            if ( t == null )
            {
                return;
            }
            int ttype = adaptor.GetType( t );
            IList elements;
            if ( !m.TryGetValue( ttype, out elements ) || elements == null )
            {
                elements = new List<object>();
                m[ttype] = elements;
            }
            elements.Add( t );
            int n = adaptor.GetChildCount( t );
            for ( int i = 0; i < n; i++ )
            {
                object child = adaptor.GetChild( t, i );
                IndexCore( child, m );
            }
        }

        class FindTreeWizardVisitor : TreeWizard.Visitor
        {
            IList _nodes;
            public FindTreeWizardVisitor( IList nodes )
            {
                _nodes = nodes;
            }
            public override void Visit( object t )
            {
                _nodes.Add( t );
            }
        }
        class FindTreeWizardContextVisitor : TreeWizard.IContextVisitor
        {
            TreeWizard _outer;
            TreePattern _tpattern;
            IList _subtrees;
            public FindTreeWizardContextVisitor( TreeWizard outer, TreePattern tpattern, IList subtrees )
            {
                _outer = outer;
                _tpattern = tpattern;
                _subtrees = subtrees;
            }

            public void Visit( object t, object parent, int childIndex, IDictionary<string, object> labels )
            {
                if ( _outer.ParseCore( t, _tpattern, null ) )
                {
                    _subtrees.Add( t );
                }
            }
        }

        /** <summary>Return a List of tree nodes with token type ttype</summary> */
        public virtual IList Find( object t, int ttype )
        {
            IList nodes = new List<object>();
            Visit( t, ttype, new FindTreeWizardVisitor( nodes ) );
            return nodes;
        }

        /** <summary>Return a List of subtrees matching pattern.</summary> */
        public virtual IList Find( object t, string pattern )
        {
            IList subtrees = new List<object>();
            // Create a TreePattern from the pattern
            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
            TreePatternParser parser =
                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
            TreePattern tpattern = (TreePattern)parser.Pattern();
            // don't allow invalid patterns
            if ( tpattern == null ||
                 tpattern.IsNil ||
                 tpattern.GetType() == typeof( WildcardTreePattern ) )
            {
                return null;
            }
            int rootTokenType = tpattern.Type;
            Visit( t, rootTokenType, new FindTreeWizardContextVisitor( this, tpattern, subtrees ) );
            return subtrees;
        }

        public virtual object FindFirst( object t, int ttype )
        {
            return null;
        }

        public virtual object FindFirst( object t, string pattern )
        {
            return null;
        }

        /** <summary>
         *  Visit every ttype node in t, invoking the visitor.  This is a quicker
         *  version of the general visit(t, pattern) method.  The labels arg
         *  of the visitor action method is never set (it's null) since using
         *  a token type rather than a pattern doesn't let us set a label.
         *  </summary>
         */
        public void Visit( object t, int ttype, IContextVisitor visitor )
        {
            VisitCore( t, null, 0, ttype, visitor );
        }

        public void Visit( object t, int ttype, System.Action<object> action )
        {
            Visit( t, ttype, new ActionVisitor( action ) );
        }

        /** <summary>Do the recursive work for visit</summary> */
        protected virtual void VisitCore( object t, object parent, int childIndex, int ttype, IContextVisitor visitor )
        {
            if ( t == null )
            {
                return;
            }
            if ( adaptor.GetType( t ) == ttype )
            {
                visitor.Visit( t, parent, childIndex, null );
            }
            int n = adaptor.GetChildCount( t );
            for ( int i = 0; i < n; i++ )
            {
                object child = adaptor.GetChild( t, i );
                VisitCore( child, t, i, ttype, visitor );
            }
        }

        class VisitTreeWizardContextVisitor : TreeWizard.IContextVisitor
        {
            TreeWizard _outer;
            IContextVisitor _visitor;
            IDictionary<string, object> _labels;
            TreePattern _tpattern;

            public VisitTreeWizardContextVisitor( TreeWizard outer, IContextVisitor visitor, IDictionary<string, object> labels, TreePattern tpattern )
            {
                _outer = outer;
                _visitor = visitor;
                _labels = labels;
                _tpattern = tpattern;
            }

            public void Visit( object t, object parent, int childIndex, IDictionary<string, object> unusedlabels )
            {
                // the unusedlabels arg is null as visit on token type doesn't set.
                _labels.Clear();
                if ( _outer.ParseCore( t, _tpattern, _labels ) )
                {
                    _visitor.Visit( t, parent, childIndex, _labels );
                }
            }
        }

        /** <summary>
         *  For all subtrees that match the pattern, execute the visit action.
         *  The implementation uses the root node of the pattern in combination
         *  with visit(t, ttype, visitor) so nil-rooted patterns are not allowed.
         *  Patterns with wildcard roots are also not allowed.
         *  </summary>
         */
        public void Visit( object t, string pattern, IContextVisitor visitor )
        {
            // Create a TreePattern from the pattern
            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
            TreePatternParser parser =
                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
            TreePattern tpattern = (TreePattern)parser.Pattern();
            // don't allow invalid patterns
            if ( tpattern == null ||
                 tpattern.IsNil ||
                 tpattern.GetType() == typeof( WildcardTreePattern ) )
            {
                return;
            }
            IDictionary<string, object> labels = new Dictionary<string, object>(); // reused for each _parse
            int rootTokenType = tpattern.Type;
            Visit( t, rootTokenType, new VisitTreeWizardContextVisitor( this, visitor, labels, tpattern ) );
        }

        /** <summary>
         *  Given a pattern like (ASSIGN %lhs:ID %rhs:.) with optional labels
         *  on the various nodes and '.' (dot) as the node/subtree wildcard,
         *  return true if the pattern matches and fill the labels Map with
         *  the labels pointing at the appropriate nodes.  Return false if
         *  the pattern is malformed or the tree does not match.
         *  </summary>
         *
         *  <remarks>
         *  If a node specifies a text arg in pattern, then that must match
         *  for that node in t.
         *
         *  TODO: what's a better way to indicate bad pattern? Exceptions are a hassle 
         *  </remarks>
         */
        public bool Parse( object t, string pattern, IDictionary<string, object> labels )
        {
            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
            TreePatternParser parser =
                new TreePatternParser( tokenizer, this, new TreePatternTreeAdaptor() );
            TreePattern tpattern = (TreePattern)parser.Pattern();
            /*
            System.out.println("t="+((Tree)t).toStringTree());
            System.out.println("scant="+tpattern.toStringTree());
            */
            bool matched = ParseCore( t, tpattern, labels );
            return matched;
        }

        public bool Parse( object t, string pattern )
        {
            return Parse( t, pattern, null );
        }

        /** <summary>
         *  Do the work for parse. Check to see if the t2 pattern fits the
         *  structure and token types in t1.  Check text if the pattern has
         *  text arguments on nodes.  Fill labels map with pointers to nodes
         *  in tree matched against nodes in pattern with labels.
         *  </summary>
         */
        protected virtual bool ParseCore( object t1, TreePattern tpattern, IDictionary<string, object> labels )
        {
            // make sure both are non-null
            if ( t1 == null || tpattern == null )
            {
                return false;
            }
            // check roots (wildcard matches anything)
            if ( tpattern.GetType() != typeof( WildcardTreePattern ) )
            {
                if ( adaptor.GetType( t1 ) != tpattern.Type )
                {
                    return false;
                }
                // if pattern has text, check node text
                if ( tpattern.hasTextArg && !adaptor.GetText( t1 ).Equals( tpattern.Text ) )
                {
                    return false;
                }
            }
            if ( tpattern.label != null && labels != null )
            {
                // map label in pattern to node in t1
                labels[tpattern.label] = t1;
            }
            // check children
            int n1 = adaptor.GetChildCount( t1 );
            int n2 = tpattern.ChildCount;
            if ( n1 != n2 )
            {
                return false;
            }
            for ( int i = 0; i < n1; i++ )
            {
                object child1 = adaptor.GetChild( t1, i );
                TreePattern child2 = (TreePattern)tpattern.GetChild( i );
                if ( !ParseCore( child1, child2, labels ) )
                {
                    return false;
                }
            }
            return true;
        }

        /** <summary>
         *  Create a tree or node from the indicated tree pattern that closely
         *  follows ANTLR tree grammar tree element syntax:
         *
         *      (root child1 ... child2).
         *  </summary>
         *
         *  <remarks>
         *  You can also just pass in a node: ID
         * 
         *  Any node can have a text argument: ID[foo]
         *  (notice there are no quotes around foo--it's clear it's a string).
         *
         *  nil is a special name meaning "give me a nil node".  Useful for
         *  making lists: (nil A B C) is a list of A B C.
         *  </remarks>
         */
        public virtual object Create( string pattern )
        {
            TreePatternLexer tokenizer = new TreePatternLexer( pattern );
            TreePatternParser parser = new TreePatternParser( tokenizer, this, adaptor );
            object t = parser.Pattern();
            return t;
        }

        /** <summary>
         *  Compare t1 and t2; return true if token types/text, structure match exactly.
         *  The trees are examined in their entirety so that (A B) does not match
         *  (A B C) nor (A (B C)). 
         *  </summary>
         *
         *  <remarks>
         *  TODO: allow them to pass in a comparator
         *  TODO: have a version that is nonstatic so it can use instance adaptor
         *
         *  I cannot rely on the tree node's equals() implementation as I make
         *  no constraints at all on the node types nor interface etc... 
         *  </remarks>
         */
        public static bool Equals( object t1, object t2, ITreeAdaptor adaptor )
        {
            return EqualsCore( t1, t2, adaptor );
        }

        /** <summary>
         *  Compare type, structure, and text of two trees, assuming adaptor in
         *  this instance of a TreeWizard.
         *  </summary>
         */
        public new bool Equals( object t1, object t2 )
        {
            return EqualsCore( t1, t2, adaptor );
        }

        protected static bool EqualsCore( object t1, object t2, ITreeAdaptor adaptor )
        {
            // make sure both are non-null
            if ( t1 == null || t2 == null )
            {
                return false;
            }
            // check roots
            if ( adaptor.GetType( t1 ) != adaptor.GetType( t2 ) )
            {
                return false;
            }
            if ( !adaptor.GetText( t1 ).Equals( adaptor.GetText( t2 ) ) )
            {
                return false;
            }
            // check children
            int n1 = adaptor.GetChildCount( t1 );
            int n2 = adaptor.GetChildCount( t2 );
            if ( n1 != n2 )
            {
                return false;
            }
            for ( int i = 0; i < n1; i++ )
            {
                object child1 = adaptor.GetChild( t1, i );
                object child2 = adaptor.GetChild( t2, i );
                if ( !EqualsCore( child1, child2, adaptor ) )
                {
                    return false;
                }
            }
            return true;
        }

#if BUILD_INDEXES
        // TODO: next stuff taken from CommonTreeNodeStream

        /** <summary>
         *  Given a node, add this to the reverse index tokenTypeToStreamIndexesMap.
         *  You can override this method to alter how indexing occurs.  The
         *  default is to create a
         *
         *    Map&lt;Integer token type,ArrayList&lt;Integer stream index&gt;&gt;
         *  </summary>
         *
         *  <remarks>
         *  This data structure allows you to find all nodes with type INT in order.
         *
         *  If you really need to find a node of type, say, FUNC quickly then perhaps
         *
         *    Map&lt;Integertoken type,Map&lt;Object tree node,Integer stream index&gt;&gt;
         *
         *  would be better for you.  The interior maps map a tree node to
         *  the index so you don't have to search linearly for a specific node.
         *
         *  If you change this method, you will likely need to change
         *  getNodeIndex(), which extracts information.
         *  </remarks>
         */
        protected void fillReverseIndex( object node, int streamIndex )
        {
            //System.out.println("revIndex "+node+"@"+streamIndex);
            if ( tokenTypesToReverseIndex == null )
            {
                return; // no indexing if this is empty (nothing of interest)
            }
            if ( tokenTypeToStreamIndexesMap == null )
            {
                tokenTypeToStreamIndexesMap = new Dictionary<int, IList<int>>(); // first indexing op
            }
            int tokenType = adaptor.getType( node );
            if ( !( tokenTypesToReverseIndex == INDEX_ALL ||
                   tokenTypesToReverseIndex.Contains( tokenType ) ) )
            {
                return; // tokenType not of interest
            }
            IList<int> indexes;

            if ( !tokenTypeToStreamIndexesMap.TryGetValue( tokenType, out indexes ) || indexes == null )
            {
                indexes = new List<int>(); // no list yet for this token type
                indexes.Add( streamIndex ); // not there yet, add
                tokenTypeToStreamIndexesMap[tokenType] = indexes;
            }
            else
            {
                if ( !indexes.Contains( streamIndex ) )
                {
                    indexes.Add( streamIndex ); // not there yet, add
                }
            }
        }

        /** <summary>
         *  Track the indicated token type in the reverse index.  Call this
         *  repeatedly for each type or use variant with Set argument to
         *  set all at once.
         *  </summary>
         *
         *  <param name="tokenType" />
         */
        public void reverseIndex( int tokenType )
        {
            if ( tokenTypesToReverseIndex == null )
            {
                tokenTypesToReverseIndex = new HashSet<int>();
            }
            else if ( tokenTypesToReverseIndex == INDEX_ALL )
            {
                return;
            }
            tokenTypesToReverseIndex.add( tokenType );
        }

        /** <summary>
         *  Track the indicated token types in the reverse index. Set
         *  to INDEX_ALL to track all token types.
         *  </summary>
         */
        public void reverseIndex( HashSet<int> tokenTypes )
        {
            tokenTypesToReverseIndex = tokenTypes;
        }

        /** <summary>
         *  Given a node pointer, return its index into the node stream.
         *  This is not its Token stream index.  If there is no reverse map
         *  from node to stream index or the map does not contain entries
         *  for node's token type, a linear search of entire stream is used.
         *  </summary>
         *
         *  <remarks>
         *  Return -1 if exact node pointer not in stream.
         *  </remarks>
         */
        public int getNodeIndex( object node )
        {
            //System.out.println("get "+node);
            if ( tokenTypeToStreamIndexesMap == null )
            {
                return getNodeIndexLinearly( node );
            }
            int tokenType = adaptor.getType( node );
            IList<int> indexes;
            if ( !tokenTypeToStreamIndexesMap.TryGetValue( tokenType, out indexes ) || indexes == null )
            {
                //System.out.println("found linearly; stream index = "+getNodeIndexLinearly(node));
                return getNodeIndexLinearly( node );
            }
            for ( int i = 0; i < indexes.size(); i++ )
            {
                int streamIndex = indexes[i];
                object n = get( streamIndex );
                if ( n == node )
                {
                    //System.out.println("found in index; stream index = "+streamIndexI);
                    return streamIndex; // found it!
                }
            }
            return -1;
        }
#endif

    }
}