summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java399
1 files changed, 399 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java b/src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java
new file mode 100644
index 0000000..5aa2447
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/analysis/solvers/BrentSolver.java
@@ -0,0 +1,399 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.analysis.solvers;
+
+
+import org.apache.commons.math.FunctionEvaluationException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.MaxIterationsExceededException;
+import org.apache.commons.math.analysis.UnivariateRealFunction;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
+ * Brent algorithm</a> for finding zeros of real univariate functions.
+ * <p>
+ * The function should be continuous but not necessarily smooth.</p>
+ *
+ * @version $Revision:670469 $ $Date:2008-06-23 10:01:38 +0200 (lun., 23 juin 2008) $
+ */
+public class BrentSolver extends UnivariateRealSolverImpl {
+
+ /**
+ * Default absolute accuracy
+ * @since 2.1
+ */
+ public static final double DEFAULT_ABSOLUTE_ACCURACY = 1E-6;
+
+ /** Default maximum number of iterations
+ * @since 2.1
+ */
+ public static final int DEFAULT_MAXIMUM_ITERATIONS = 100;
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 7694577816772532779L;
+
+ /**
+ * Construct a solver for the given function.
+ *
+ * @param f function to solve.
+ * @deprecated as of 2.0 the function to solve is passed as an argument
+ * to the {@link #solve(UnivariateRealFunction, double, double)} or
+ * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
+ * method.
+ */
+ @Deprecated
+ public BrentSolver(UnivariateRealFunction f) {
+ super(f, DEFAULT_MAXIMUM_ITERATIONS, DEFAULT_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Construct a solver with default properties.
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public BrentSolver() {
+ super(DEFAULT_MAXIMUM_ITERATIONS, DEFAULT_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Construct a solver with the given absolute accuracy.
+ *
+ * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
+ * @since 2.1
+ */
+ public BrentSolver(double absoluteAccuracy) {
+ super(DEFAULT_MAXIMUM_ITERATIONS, absoluteAccuracy);
+ }
+
+ /**
+ * Contstruct a solver with the given maximum iterations and absolute accuracy.
+ *
+ * @param maximumIterations maximum number of iterations
+ * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
+ * @since 2.1
+ */
+ public BrentSolver(int maximumIterations, double absoluteAccuracy) {
+ super(maximumIterations, absoluteAccuracy);
+ }
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public double solve(double min, double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ return solve(f, min, max);
+ }
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public double solve(double min, double max, double initial)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ return solve(f, min, max, initial);
+ }
+
+ /**
+ * Find a zero in the given interval with an initial guess.
+ * <p>Throws <code>IllegalArgumentException</code> if the values of the
+ * function at the three points have the same sign (note that it is
+ * allowed to have endpoints with the same sign if the initial point has
+ * opposite sign function-wise).</p>
+ *
+ * @param f function to solve.
+ * @param min the lower bound for the interval.
+ * @param max the upper bound for the interval.
+ * @param initial the start value to use (must be set to min if no
+ * initial point is known).
+ * @return the value where the function is zero
+ * @throws MaxIterationsExceededException the maximum iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if initial is not between min and max
+ * (even if it <em>is</em> a root)
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public double solve(final UnivariateRealFunction f,
+ final double min, final double max, final double initial)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ clearResult();
+ if ((initial < min) || (initial > max)) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.INVALID_INTERVAL_INITIAL_VALUE_PARAMETERS,
+ min, initial, max);
+ }
+
+ // return the initial guess if it is good enough
+ double yInitial = f.value(initial);
+ if (FastMath.abs(yInitial) <= functionValueAccuracy) {
+ setResult(initial, 0);
+ return result;
+ }
+
+ // return the first endpoint if it is good enough
+ double yMin = f.value(min);
+ if (FastMath.abs(yMin) <= functionValueAccuracy) {
+ setResult(min, 0);
+ return result;
+ }
+
+ // reduce interval if min and initial bracket the root
+ if (yInitial * yMin < 0) {
+ return solve(f, min, yMin, initial, yInitial, min, yMin);
+ }
+
+ // return the second endpoint if it is good enough
+ double yMax = f.value(max);
+ if (FastMath.abs(yMax) <= functionValueAccuracy) {
+ setResult(max, 0);
+ return result;
+ }
+
+ // reduce interval if initial and max bracket the root
+ if (yInitial * yMax < 0) {
+ return solve(f, initial, yInitial, max, yMax, initial, yInitial);
+ }
+
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.SAME_SIGN_AT_ENDPOINTS, min, max, yMin, yMax);
+
+ }
+
+ /**
+ * Find a zero in the given interval with an initial guess.
+ * <p>Throws <code>IllegalArgumentException</code> if the values of the
+ * function at the three points have the same sign (note that it is
+ * allowed to have endpoints with the same sign if the initial point has
+ * opposite sign function-wise).</p>
+ *
+ * @param f function to solve.
+ * @param min the lower bound for the interval.
+ * @param max the upper bound for the interval.
+ * @param initial the start value to use (must be set to min if no
+ * initial point is known).
+ * @param maxEval Maximum number of evaluations.
+ * @return the value where the function is zero
+ * @throws MaxIterationsExceededException the maximum iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if initial is not between min and max
+ * (even if it <em>is</em> a root)
+ */
+ @Override
+ public double solve(int maxEval, final UnivariateRealFunction f,
+ final double min, final double max, final double initial)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ setMaximalIterationCount(maxEval);
+ return solve(f, min, max, initial);
+ }
+
+ /**
+ * Find a zero in the given interval.
+ * <p>
+ * Requires that the values of the function at the endpoints have opposite
+ * signs. An <code>IllegalArgumentException</code> is thrown if this is not
+ * the case.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval.
+ * @param max the upper bound for the interval.
+ * @return the value where the function is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if min is not less than max or the
+ * signs of the values of the function at the endpoints are not opposites
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public double solve(final UnivariateRealFunction f,
+ final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ clearResult();
+ verifyInterval(min, max);
+
+ double ret = Double.NaN;
+
+ double yMin = f.value(min);
+ double yMax = f.value(max);
+
+ // Verify bracketing
+ double sign = yMin * yMax;
+ if (sign > 0) {
+ // check if either value is close to a zero
+ if (FastMath.abs(yMin) <= functionValueAccuracy) {
+ setResult(min, 0);
+ ret = min;
+ } else if (FastMath.abs(yMax) <= functionValueAccuracy) {
+ setResult(max, 0);
+ ret = max;
+ } else {
+ // neither value is close to zero and min and max do not bracket root.
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.SAME_SIGN_AT_ENDPOINTS, min, max, yMin, yMax);
+ }
+ } else if (sign < 0){
+ // solve using only the first endpoint as initial guess
+ ret = solve(f, min, yMin, max, yMax, min, yMin);
+ } else {
+ // either min or max is a root
+ if (yMin == 0.0) {
+ ret = min;
+ } else {
+ ret = max;
+ }
+ }
+
+ return ret;
+ }
+
+ /**
+ * Find a zero in the given interval.
+ * <p>
+ * Requires that the values of the function at the endpoints have opposite
+ * signs. An <code>IllegalArgumentException</code> is thrown if this is not
+ * the case.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval.
+ * @param max the upper bound for the interval.
+ * @param maxEval Maximum number of evaluations.
+ * @return the value where the function is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if min is not less than max or the
+ * signs of the values of the function at the endpoints are not opposites
+ */
+ @Override
+ public double solve(int maxEval, final UnivariateRealFunction f,
+ final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ setMaximalIterationCount(maxEval);
+ return solve(f, min, max);
+ }
+
+ /**
+ * Find a zero starting search according to the three provided points.
+ * @param f the function to solve
+ * @param x0 old approximation for the root
+ * @param y0 function value at the approximation for the root
+ * @param x1 last calculated approximation for the root
+ * @param y1 function value at the last calculated approximation
+ * for the root
+ * @param x2 bracket point (must be set to x0 if no bracket point is
+ * known, this will force starting with linear interpolation)
+ * @param y2 function value at the bracket point.
+ * @return the value where the function is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ */
+ private double solve(final UnivariateRealFunction f,
+ double x0, double y0,
+ double x1, double y1,
+ double x2, double y2)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ double delta = x1 - x0;
+ double oldDelta = delta;
+
+ int i = 0;
+ while (i < maximalIterationCount) {
+ if (FastMath.abs(y2) < FastMath.abs(y1)) {
+ // use the bracket point if is better than last approximation
+ x0 = x1;
+ x1 = x2;
+ x2 = x0;
+ y0 = y1;
+ y1 = y2;
+ y2 = y0;
+ }
+ if (FastMath.abs(y1) <= functionValueAccuracy) {
+ // Avoid division by very small values. Assume
+ // the iteration has converged (the problem may
+ // still be ill conditioned)
+ setResult(x1, i);
+ return result;
+ }
+ double dx = x2 - x1;
+ double tolerance =
+ FastMath.max(relativeAccuracy * FastMath.abs(x1), absoluteAccuracy);
+ if (FastMath.abs(dx) <= tolerance) {
+ setResult(x1, i);
+ return result;
+ }
+ if ((FastMath.abs(oldDelta) < tolerance) ||
+ (FastMath.abs(y0) <= FastMath.abs(y1))) {
+ // Force bisection.
+ delta = 0.5 * dx;
+ oldDelta = delta;
+ } else {
+ double r3 = y1 / y0;
+ double p;
+ double p1;
+ // the equality test (x0 == x2) is intentional,
+ // it is part of the original Brent's method,
+ // it should NOT be replaced by proximity test
+ if (x0 == x2) {
+ // Linear interpolation.
+ p = dx * r3;
+ p1 = 1.0 - r3;
+ } else {
+ // Inverse quadratic interpolation.
+ double r1 = y0 / y2;
+ double r2 = y1 / y2;
+ p = r3 * (dx * r1 * (r1 - r2) - (x1 - x0) * (r2 - 1.0));
+ p1 = (r1 - 1.0) * (r2 - 1.0) * (r3 - 1.0);
+ }
+ if (p > 0.0) {
+ p1 = -p1;
+ } else {
+ p = -p;
+ }
+ if (2.0 * p >= 1.5 * dx * p1 - FastMath.abs(tolerance * p1) ||
+ p >= FastMath.abs(0.5 * oldDelta * p1)) {
+ // Inverse quadratic interpolation gives a value
+ // in the wrong direction, or progress is slow.
+ // Fall back to bisection.
+ delta = 0.5 * dx;
+ oldDelta = delta;
+ } else {
+ oldDelta = delta;
+ delta = p / p1;
+ }
+ }
+ // Save old X1, Y1
+ x0 = x1;
+ y0 = y1;
+ // Compute new X1, Y1
+ if (FastMath.abs(delta) > tolerance) {
+ x1 = x1 + delta;
+ } else if (dx > 0.0) {
+ x1 = x1 + 0.5 * tolerance;
+ } else if (dx <= 0.0) {
+ x1 = x1 - 0.5 * tolerance;
+ }
+ y1 = f.value(x1);
+ if ((y1 > 0) == (y2 > 0)) {
+ x2 = x0;
+ y2 = y0;
+ delta = x1 - x0;
+ oldDelta = delta;
+ }
+ i++;
+ }
+ throw new MaxIterationsExceededException(maximalIterationCount);
+ }
+}