summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java415
1 files changed, 415 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java b/src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java
new file mode 100644
index 0000000..a6d03bc
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/analysis/solvers/MullerSolver.java
@@ -0,0 +1,415 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.analysis.solvers;
+
+import org.apache.commons.math.ConvergenceException;
+import org.apache.commons.math.FunctionEvaluationException;
+import org.apache.commons.math.MaxIterationsExceededException;
+import org.apache.commons.math.analysis.UnivariateRealFunction;
+import org.apache.commons.math.util.FastMath;
+import org.apache.commons.math.util.MathUtils;
+
+/**
+ * Implements the <a href="http://mathworld.wolfram.com/MullersMethod.html">
+ * Muller's Method</a> for root finding of real univariate functions. For
+ * reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477,
+ * chapter 3.
+ * <p>
+ * Muller's method applies to both real and complex functions, but here we
+ * restrict ourselves to real functions. Methods solve() and solve2() find
+ * real zeros, using different ways to bypass complex arithmetics.</p>
+ *
+ * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
+ * @since 1.2
+ */
+public class MullerSolver extends UnivariateRealSolverImpl {
+
+ /**
+ * Construct a solver for the given function.
+ *
+ * @param f function to solve
+ * @deprecated as of 2.0 the function to solve is passed as an argument
+ * to the {@link #solve(UnivariateRealFunction, double, double)} or
+ * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
+ * method.
+ */
+ @Deprecated
+ public MullerSolver(UnivariateRealFunction f) {
+ super(f, 100, 1E-6);
+ }
+
+ /**
+ * Construct a solver.
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public MullerSolver() {
+ super(100, 1E-6);
+ }
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public double solve(final double min, final double max)
+ throws ConvergenceException, FunctionEvaluationException {
+ return solve(f, min, max);
+ }
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public double solve(final double min, final double max, final double initial)
+ throws ConvergenceException, FunctionEvaluationException {
+ return solve(f, min, max, initial);
+ }
+
+ /**
+ * Find a real root in the given interval with initial value.
+ * <p>
+ * Requires bracketing condition.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @param initial the start value to use
+ * @param maxEval Maximum number of evaluations.
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ */
+ @Override
+ public double solve(int maxEval, final UnivariateRealFunction f,
+ final double min, final double max, final double initial)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ setMaximalIterationCount(maxEval);
+ return solve(f, min, max, initial);
+ }
+
+ /**
+ * Find a real root in the given interval with initial value.
+ * <p>
+ * Requires bracketing condition.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @param initial the start value to use
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public double solve(final UnivariateRealFunction f,
+ final double min, final double max, final double initial)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ // check for zeros before verifying bracketing
+ if (f.value(min) == 0.0) { return min; }
+ if (f.value(max) == 0.0) { return max; }
+ if (f.value(initial) == 0.0) { return initial; }
+
+ verifyBracketing(min, max, f);
+ verifySequence(min, initial, max);
+ if (isBracketing(min, initial, f)) {
+ return solve(f, min, initial);
+ } else {
+ return solve(f, initial, max);
+ }
+ }
+
+ /**
+ * Find a real root in the given interval.
+ * <p>
+ * Original Muller's method would have function evaluation at complex point.
+ * Since our f(x) is real, we have to find ways to avoid that. Bracketing
+ * condition is one way to go: by requiring bracketing in every iteration,
+ * the newly computed approximation is guaranteed to be real.</p>
+ * <p>
+ * Normally Muller's method converges quadratically in the vicinity of a
+ * zero, however it may be very slow in regions far away from zeros. For
+ * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use
+ * bisection as a safety backup if it performs very poorly.</p>
+ * <p>
+ * The formulas here use divided differences directly.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @param maxEval Maximum number of evaluations.
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ */
+ @Override
+ public double solve(int maxEval, final UnivariateRealFunction f,
+ final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ setMaximalIterationCount(maxEval);
+ return solve(f, min, max);
+ }
+
+ /**
+ * Find a real root in the given interval.
+ * <p>
+ * Original Muller's method would have function evaluation at complex point.
+ * Since our f(x) is real, we have to find ways to avoid that. Bracketing
+ * condition is one way to go: by requiring bracketing in every iteration,
+ * the newly computed approximation is guaranteed to be real.</p>
+ * <p>
+ * Normally Muller's method converges quadratically in the vicinity of a
+ * zero, however it may be very slow in regions far away from zeros. For
+ * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use
+ * bisection as a safety backup if it performs very poorly.</p>
+ * <p>
+ * The formulas here use divided differences directly.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public double solve(final UnivariateRealFunction f,
+ final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ // [x0, x2] is the bracketing interval in each iteration
+ // x1 is the last approximation and an interpolation point in (x0, x2)
+ // x is the new root approximation and new x1 for next round
+ // d01, d12, d012 are divided differences
+
+ double x0 = min;
+ double y0 = f.value(x0);
+ double x2 = max;
+ double y2 = f.value(x2);
+ double x1 = 0.5 * (x0 + x2);
+ double y1 = f.value(x1);
+
+ // check for zeros before verifying bracketing
+ if (y0 == 0.0) {
+ return min;
+ }
+ if (y2 == 0.0) {
+ return max;
+ }
+ verifyBracketing(min, max, f);
+
+ double oldx = Double.POSITIVE_INFINITY;
+ for (int i = 1; i <= maximalIterationCount; ++i) {
+ // Muller's method employs quadratic interpolation through
+ // x0, x1, x2 and x is the zero of the interpolating parabola.
+ // Due to bracketing condition, this parabola must have two
+ // real roots and we choose one in [x0, x2] to be x.
+ final double d01 = (y1 - y0) / (x1 - x0);
+ final double d12 = (y2 - y1) / (x2 - x1);
+ final double d012 = (d12 - d01) / (x2 - x0);
+ final double c1 = d01 + (x1 - x0) * d012;
+ final double delta = c1 * c1 - 4 * y1 * d012;
+ final double xplus = x1 + (-2.0 * y1) / (c1 + FastMath.sqrt(delta));
+ final double xminus = x1 + (-2.0 * y1) / (c1 - FastMath.sqrt(delta));
+ // xplus and xminus are two roots of parabola and at least
+ // one of them should lie in (x0, x2)
+ final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
+ final double y = f.value(x);
+
+ // check for convergence
+ final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
+ if (FastMath.abs(x - oldx) <= tolerance) {
+ setResult(x, i);
+ return result;
+ }
+ if (FastMath.abs(y) <= functionValueAccuracy) {
+ setResult(x, i);
+ return result;
+ }
+
+ // Bisect if convergence is too slow. Bisection would waste
+ // our calculation of x, hopefully it won't happen often.
+ // the real number equality test x == x1 is intentional and
+ // completes the proximity tests above it
+ boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) ||
+ (x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) ||
+ (x == x1);
+ // prepare the new bracketing interval for next iteration
+ if (!bisect) {
+ x0 = x < x1 ? x0 : x1;
+ y0 = x < x1 ? y0 : y1;
+ x2 = x > x1 ? x2 : x1;
+ y2 = x > x1 ? y2 : y1;
+ x1 = x; y1 = y;
+ oldx = x;
+ } else {
+ double xm = 0.5 * (x0 + x2);
+ double ym = f.value(xm);
+ if (MathUtils.sign(y0) + MathUtils.sign(ym) == 0.0) {
+ x2 = xm; y2 = ym;
+ } else {
+ x0 = xm; y0 = ym;
+ }
+ x1 = 0.5 * (x0 + x2);
+ y1 = f.value(x1);
+ oldx = Double.POSITIVE_INFINITY;
+ }
+ }
+ throw new MaxIterationsExceededException(maximalIterationCount);
+ }
+
+ /**
+ * Find a real root in the given interval.
+ * <p>
+ * solve2() differs from solve() in the way it avoids complex operations.
+ * Except for the initial [min, max], solve2() does not require bracketing
+ * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If complex
+ * number arises in the computation, we simply use its modulus as real
+ * approximation.</p>
+ * <p>
+ * Because the interval may not be bracketing, bisection alternative is
+ * not applicable here. However in practice our treatment usually works
+ * well, especially near real zeros where the imaginary part of complex
+ * approximation is often negligible.</p>
+ * <p>
+ * The formulas here do not use divided differences directly.</p>
+ *
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ * @deprecated replaced by {@link #solve2(UnivariateRealFunction, double, double)}
+ * since 2.0
+ */
+ @Deprecated
+ public double solve2(final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+ return solve2(f, min, max);
+ }
+
+ /**
+ * Find a real root in the given interval.
+ * <p>
+ * solve2() differs from solve() in the way it avoids complex operations.
+ * Except for the initial [min, max], solve2() does not require bracketing
+ * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If complex
+ * number arises in the computation, we simply use its modulus as real
+ * approximation.</p>
+ * <p>
+ * Because the interval may not be bracketing, bisection alternative is
+ * not applicable here. However in practice our treatment usually works
+ * well, especially near real zeros where the imaginary part of complex
+ * approximation is often negligible.</p>
+ * <p>
+ * The formulas here do not use divided differences directly.</p>
+ *
+ * @param f the function to solve
+ * @param min the lower bound for the interval
+ * @param max the upper bound for the interval
+ * @return the point at which the function value is zero
+ * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
+ * or the solver detects convergence problems otherwise
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if any parameters are invalid
+ * @deprecated in 2.2 (to be removed in 3.0).
+ */
+ @Deprecated
+ public double solve2(final UnivariateRealFunction f,
+ final double min, final double max)
+ throws MaxIterationsExceededException, FunctionEvaluationException {
+
+ // x2 is the last root approximation
+ // x is the new approximation and new x2 for next round
+ // x0 < x1 < x2 does not hold here
+
+ double x0 = min;
+ double y0 = f.value(x0);
+ double x1 = max;
+ double y1 = f.value(x1);
+ double x2 = 0.5 * (x0 + x1);
+ double y2 = f.value(x2);
+
+ // check for zeros before verifying bracketing
+ if (y0 == 0.0) { return min; }
+ if (y1 == 0.0) { return max; }
+ verifyBracketing(min, max, f);
+
+ double oldx = Double.POSITIVE_INFINITY;
+ for (int i = 1; i <= maximalIterationCount; ++i) {
+ // quadratic interpolation through x0, x1, x2
+ final double q = (x2 - x1) / (x1 - x0);
+ final double a = q * (y2 - (1 + q) * y1 + q * y0);
+ final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0;
+ final double c = (1 + q) * y2;
+ final double delta = b * b - 4 * a * c;
+ double x;
+ final double denominator;
+ if (delta >= 0.0) {
+ // choose a denominator larger in magnitude
+ double dplus = b + FastMath.sqrt(delta);
+ double dminus = b - FastMath.sqrt(delta);
+ denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus;
+ } else {
+ // take the modulus of (B +/- FastMath.sqrt(delta))
+ denominator = FastMath.sqrt(b * b - delta);
+ }
+ if (denominator != 0) {
+ x = x2 - 2.0 * c * (x2 - x1) / denominator;
+ // perturb x if it exactly coincides with x1 or x2
+ // the equality tests here are intentional
+ while (x == x1 || x == x2) {
+ x += absoluteAccuracy;
+ }
+ } else {
+ // extremely rare case, get a random number to skip it
+ x = min + FastMath.random() * (max - min);
+ oldx = Double.POSITIVE_INFINITY;
+ }
+ final double y = f.value(x);
+
+ // check for convergence
+ final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
+ if (FastMath.abs(x - oldx) <= tolerance) {
+ setResult(x, i);
+ return result;
+ }
+ if (FastMath.abs(y) <= functionValueAccuracy) {
+ setResult(x, i);
+ return result;
+ }
+
+ // prepare the next iteration
+ x0 = x1;
+ y0 = y1;
+ x1 = x2;
+ y1 = y2;
+ x2 = x;
+ y2 = y;
+ oldx = x;
+ }
+ throw new MaxIterationsExceededException(maximalIterationCount);
+ }
+}