summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java')
-rw-r--r--src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java240
1 files changed, 240 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java b/src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java
new file mode 100644
index 0000000..3186d6a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/analysis/solvers/UnivariateRealSolverUtils.java
@@ -0,0 +1,240 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.analysis.solvers;
+
+import org.apache.commons.math.ConvergenceException;
+import org.apache.commons.math.FunctionEvaluationException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.analysis.UnivariateRealFunction;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.exception.NullArgumentException;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Utility routines for {@link UnivariateRealSolver} objects.
+ *
+ * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
+ */
+public class UnivariateRealSolverUtils {
+
+ /**
+ * Default constructor.
+ */
+ private UnivariateRealSolverUtils() {
+ super();
+ }
+
+ /**
+ * Convenience method to find a zero of a univariate real function. A default
+ * solver is used.
+ *
+ * @param f the function.
+ * @param x0 the lower bound for the interval.
+ * @param x1 the upper bound for the interval.
+ * @return a value where the function is zero.
+ * @throws ConvergenceException if the iteration count was exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if f is null or the endpoints do not
+ * specify a valid interval
+ */
+ public static double solve(UnivariateRealFunction f, double x0, double x1)
+ throws ConvergenceException, FunctionEvaluationException {
+ setup(f);
+ return LazyHolder.FACTORY.newDefaultSolver().solve(f, x0, x1);
+ }
+
+ /**
+ * Convenience method to find a zero of a univariate real function. A default
+ * solver is used.
+ *
+ * @param f the function
+ * @param x0 the lower bound for the interval
+ * @param x1 the upper bound for the interval
+ * @param absoluteAccuracy the accuracy to be used by the solver
+ * @return a value where the function is zero
+ * @throws ConvergenceException if the iteration count is exceeded
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if f is null, the endpoints do not
+ * specify a valid interval, or the absoluteAccuracy is not valid for the
+ * default solver
+ */
+ public static double solve(UnivariateRealFunction f, double x0, double x1,
+ double absoluteAccuracy) throws ConvergenceException,
+ FunctionEvaluationException {
+
+ setup(f);
+ UnivariateRealSolver solver = LazyHolder.FACTORY.newDefaultSolver();
+ solver.setAbsoluteAccuracy(absoluteAccuracy);
+ return solver.solve(f, x0, x1);
+ }
+
+ /**
+ * This method attempts to find two values a and b satisfying <ul>
+ * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>
+ * <li> <code> f(a) * f(b) < 0 </code></li>
+ * </ul>
+ * If f is continuous on <code>[a,b],</code> this means that <code>a</code>
+ * and <code>b</code> bracket a root of f.
+ * <p>
+ * The algorithm starts by setting
+ * <code>a := initial -1; b := initial +1,</code> examines the value of the
+ * function at <code>a</code> and <code>b</code> and keeps moving
+ * the endpoints out by one unit each time through a loop that terminates
+ * when one of the following happens: <ul>
+ * <li> <code> f(a) * f(b) < 0 </code> -- success!</li>
+ * <li> <code> a = lower </code> and <code> b = upper</code>
+ * -- ConvergenceException </li>
+ * <li> <code> Integer.MAX_VALUE</code> iterations elapse
+ * -- ConvergenceException </li>
+ * </ul></p>
+ * <p>
+ * <strong>Note: </strong> this method can take
+ * <code>Integer.MAX_VALUE</code> iterations to throw a
+ * <code>ConvergenceException.</code> Unless you are confident that there
+ * is a root between <code>lowerBound</code> and <code>upperBound</code>
+ * near <code>initial,</code> it is better to use
+ * {@link #bracket(UnivariateRealFunction, double, double, double, int)},
+ * explicitly specifying the maximum number of iterations.</p>
+ *
+ * @param function the function
+ * @param initial initial midpoint of interval being expanded to
+ * bracket a root
+ * @param lowerBound lower bound (a is never lower than this value)
+ * @param upperBound upper bound (b never is greater than this
+ * value)
+ * @return a two element array holding {a, b}
+ * @throws ConvergenceException if a root can not be bracketted
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if function is null, maximumIterations
+ * is not positive, or initial is not between lowerBound and upperBound
+ */
+ public static double[] bracket(UnivariateRealFunction function,
+ double initial, double lowerBound, double upperBound)
+ throws ConvergenceException, FunctionEvaluationException {
+ return bracket( function, initial, lowerBound, upperBound,
+ Integer.MAX_VALUE ) ;
+ }
+
+ /**
+ * This method attempts to find two values a and b satisfying <ul>
+ * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>
+ * <li> <code> f(a) * f(b) <= 0 </code> </li>
+ * </ul>
+ * If f is continuous on <code>[a,b],</code> this means that <code>a</code>
+ * and <code>b</code> bracket a root of f.
+ * <p>
+ * The algorithm starts by setting
+ * <code>a := initial -1; b := initial +1,</code> examines the value of the
+ * function at <code>a</code> and <code>b</code> and keeps moving
+ * the endpoints out by one unit each time through a loop that terminates
+ * when one of the following happens: <ul>
+ * <li> <code> f(a) * f(b) <= 0 </code> -- success!</li>
+ * <li> <code> a = lower </code> and <code> b = upper</code>
+ * -- ConvergenceException </li>
+ * <li> <code> maximumIterations</code> iterations elapse
+ * -- ConvergenceException </li></ul></p>
+ *
+ * @param function the function
+ * @param initial initial midpoint of interval being expanded to
+ * bracket a root
+ * @param lowerBound lower bound (a is never lower than this value)
+ * @param upperBound upper bound (b never is greater than this
+ * value)
+ * @param maximumIterations maximum number of iterations to perform
+ * @return a two element array holding {a, b}.
+ * @throws ConvergenceException if the algorithm fails to find a and b
+ * satisfying the desired conditions
+ * @throws FunctionEvaluationException if an error occurs evaluating the function
+ * @throws IllegalArgumentException if function is null, maximumIterations
+ * is not positive, or initial is not between lowerBound and upperBound
+ */
+ public static double[] bracket(UnivariateRealFunction function,
+ double initial, double lowerBound, double upperBound,
+ int maximumIterations) throws ConvergenceException,
+ FunctionEvaluationException {
+
+ if (function == null) {
+ throw new NullArgumentException(LocalizedFormats.FUNCTION);
+ }
+ if (maximumIterations <= 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations);
+ }
+ if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.INVALID_BRACKETING_PARAMETERS,
+ lowerBound, initial, upperBound);
+ }
+ double a = initial;
+ double b = initial;
+ double fa;
+ double fb;
+ int numIterations = 0 ;
+
+ do {
+ a = FastMath.max(a - 1.0, lowerBound);
+ b = FastMath.min(b + 1.0, upperBound);
+ fa = function.value(a);
+
+ fb = function.value(b);
+ numIterations++ ;
+ } while ((fa * fb > 0.0) && (numIterations < maximumIterations) &&
+ ((a > lowerBound) || (b < upperBound)));
+
+ if (fa * fb > 0.0 ) {
+ throw new ConvergenceException(
+ LocalizedFormats.FAILED_BRACKETING,
+ numIterations, maximumIterations, initial,
+ lowerBound, upperBound, a, b, fa, fb);
+ }
+
+ return new double[]{a, b};
+ }
+
+ /**
+ * Compute the midpoint of two values.
+ *
+ * @param a first value.
+ * @param b second value.
+ * @return the midpoint.
+ */
+ public static double midpoint(double a, double b) {
+ return (a + b) * .5;
+ }
+
+ /**
+ * Checks to see if f is null, throwing IllegalArgumentException if so.
+ * @param f input function
+ * @throws IllegalArgumentException if f is null
+ */
+ private static void setup(UnivariateRealFunction f) {
+ if (f == null) {
+ throw new NullArgumentException(LocalizedFormats.FUNCTION);
+ }
+ }
+
+ // CHECKSTYLE: stop HideUtilityClassConstructor
+ /** Holder for the factory.
+ * <p>We use here the Initialization On Demand Holder Idiom.</p>
+ */
+ private static class LazyHolder {
+ /** Cached solver factory */
+ private static final UnivariateRealSolverFactory FACTORY = UnivariateRealSolverFactory.newInstance();
+ }
+ // CHECKSTYLE: resume HideUtilityClassConstructor
+
+}