summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java231
1 files changed, 231 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java b/src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java
new file mode 100644
index 0000000..aaa2efd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/distribution/AbstractContinuousDistribution.java
@@ -0,0 +1,231 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.ConvergenceException;
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.analysis.UnivariateRealFunction;
+import org.apache.commons.math.analysis.solvers.BrentSolver;
+import org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils;
+import org.apache.commons.math.FunctionEvaluationException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.random.RandomDataImpl;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Base class for continuous distributions. Default implementations are
+ * provided for some of the methods that do not vary from distribution to
+ * distribution.
+ *
+ * @version $Revision: 1073498 $ $Date: 2011-02-22 21:57:26 +0100 (mar. 22 févr. 2011) $
+ */
+public abstract class AbstractContinuousDistribution
+ extends AbstractDistribution
+ implements ContinuousDistribution, Serializable {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -38038050983108802L;
+
+ /**
+ * RandomData instance used to generate samples from the distribution
+ * @since 2.2
+ */
+ protected final RandomDataImpl randomData = new RandomDataImpl();
+
+ /**
+ * Solver absolute accuracy for inverse cumulative computation
+ * @since 2.1
+ */
+ private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY;
+
+ /**
+ * Default constructor.
+ */
+ protected AbstractContinuousDistribution() {
+ super();
+ }
+
+ /**
+ * Return the probability density for a particular point.
+ * @param x The point at which the density should be computed.
+ * @return The pdf at point x.
+ * @throws MathRuntimeException if the specialized class hasn't implemented this function
+ * @since 2.1
+ */
+ public double density(double x) throws MathRuntimeException {
+ throw new MathRuntimeException(new UnsupportedOperationException(),
+ LocalizedFormats.NO_DENSITY_FOR_THIS_DISTRIBUTION);
+ }
+
+ /**
+ * For this distribution, X, this method returns the critical point x, such
+ * that P(X &lt; x) = <code>p</code>.
+ *
+ * @param p the desired probability
+ * @return x, such that P(X &lt; x) = <code>p</code>
+ * @throws MathException if the inverse cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ * @throws IllegalArgumentException if <code>p</code> is not a valid
+ * probability.
+ */
+ public double inverseCumulativeProbability(final double p)
+ throws MathException {
+ if (p < 0.0 || p > 1.0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
+ }
+
+ // by default, do simple root finding using bracketing and default solver.
+ // subclasses can override if there is a better method.
+ UnivariateRealFunction rootFindingFunction =
+ new UnivariateRealFunction() {
+ public double value(double x) throws FunctionEvaluationException {
+ double ret = Double.NaN;
+ try {
+ ret = cumulativeProbability(x) - p;
+ } catch (MathException ex) {
+ throw new FunctionEvaluationException(x, ex.getSpecificPattern(), ex.getGeneralPattern(), ex.getArguments());
+ }
+ if (Double.isNaN(ret)) {
+ throw new FunctionEvaluationException(x, LocalizedFormats.CUMULATIVE_PROBABILITY_RETURNED_NAN, x, p);
+ }
+ return ret;
+ }
+ };
+
+ // Try to bracket root, test domain endpoints if this fails
+ double lowerBound = getDomainLowerBound(p);
+ double upperBound = getDomainUpperBound(p);
+ double[] bracket = null;
+ try {
+ bracket = UnivariateRealSolverUtils.bracket(
+ rootFindingFunction, getInitialDomain(p),
+ lowerBound, upperBound);
+ } catch (ConvergenceException ex) {
+ /*
+ * Check domain endpoints to see if one gives value that is within
+ * the default solver's defaultAbsoluteAccuracy of 0 (will be the
+ * case if density has bounded support and p is 0 or 1).
+ */
+ if (FastMath.abs(rootFindingFunction.value(lowerBound)) < getSolverAbsoluteAccuracy()) {
+ return lowerBound;
+ }
+ if (FastMath.abs(rootFindingFunction.value(upperBound)) < getSolverAbsoluteAccuracy()) {
+ return upperBound;
+ }
+ // Failed bracket convergence was not because of corner solution
+ throw new MathException(ex);
+ }
+
+ // find root
+ double root = UnivariateRealSolverUtils.solve(rootFindingFunction,
+ // override getSolverAbsoluteAccuracy() to use a Brent solver with
+ // absolute accuracy different from BrentSolver default
+ bracket[0],bracket[1], getSolverAbsoluteAccuracy());
+ return root;
+ }
+
+ /**
+ * Reseeds the random generator used to generate samples.
+ *
+ * @param seed the new seed
+ * @since 2.2
+ */
+ public void reseedRandomGenerator(long seed) {
+ randomData.reSeed(seed);
+ }
+
+ /**
+ * Generates a random value sampled from this distribution. The default
+ * implementation uses the
+ * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
+ *
+ * @return random value
+ * @since 2.2
+ * @throws MathException if an error occurs generating the random value
+ */
+ public double sample() throws MathException {
+ return randomData.nextInversionDeviate(this);
+ }
+
+ /**
+ * Generates a random sample from the distribution. The default implementation
+ * generates the sample by calling {@link #sample()} in a loop.
+ *
+ * @param sampleSize number of random values to generate
+ * @since 2.2
+ * @return an array representing the random sample
+ * @throws MathException if an error occurs generating the sample
+ * @throws IllegalArgumentException if sampleSize is not positive
+ */
+ public double[] sample(int sampleSize) throws MathException {
+ if (sampleSize <= 0) {
+ MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize);
+ }
+ double[] out = new double[sampleSize];
+ for (int i = 0; i < sampleSize; i++) {
+ out[i] = sample();
+ }
+ return out;
+ }
+
+ /**
+ * Access the initial domain value, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return initial domain value
+ */
+ protected abstract double getInitialDomain(double p);
+
+ /**
+ * Access the domain value lower bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value lower bound, i.e.
+ * P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
+ */
+ protected abstract double getDomainLowerBound(double p);
+
+ /**
+ * Access the domain value upper bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value upper bound, i.e.
+ * P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
+ */
+ protected abstract double getDomainUpperBound(double p);
+
+ /**
+ * Returns the solver absolute accuracy for inverse cumulative computation.
+ *
+ * @return the maximum absolute error in inverse cumulative probability estimates
+ * @since 2.1
+ */
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+}