summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java319
1 files changed, 319 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java b/src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java
new file mode 100644
index 0000000..96cfe5d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/distribution/AbstractIntegerDistribution.java
@@ -0,0 +1,319 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.random.RandomDataImpl;
+import org.apache.commons.math.util.FastMath;
+
+
+/**
+ * Base class for integer-valued discrete distributions. Default
+ * implementations are provided for some of the methods that do not vary
+ * from distribution to distribution.
+ *
+ * @version $Revision: 1067494 $ $Date: 2011-02-05 20:49:07 +0100 (sam. 05 févr. 2011) $
+ */
+public abstract class AbstractIntegerDistribution extends AbstractDistribution
+ implements IntegerDistribution, Serializable {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -1146319659338487221L;
+
+ /**
+ * RandomData instance used to generate samples from the distribution
+ * @since 2.2
+ */
+ protected final RandomDataImpl randomData = new RandomDataImpl();
+
+ /**
+ * Default constructor.
+ */
+ protected AbstractIntegerDistribution() {
+ super();
+ }
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns P(X ≤ x). In other words,
+ * this method represents the (cumulative) distribution function, or
+ * CDF, for this distribution.
+ * <p>
+ * If <code>x</code> does not represent an integer value, the CDF is
+ * evaluated at the greatest integer less than x.
+ *
+ * @param x the value at which the distribution function is evaluated.
+ * @return cumulative probability that a random variable with this
+ * distribution takes a value less than or equal to <code>x</code>
+ * @throws MathException if the cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ */
+ public double cumulativeProbability(double x) throws MathException {
+ return cumulativeProbability((int) FastMath.floor(x));
+ }
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns P(x0 &le; X &le; x1).
+ *
+ * @param x0 the (inclusive) lower bound
+ * @param x1 the (inclusive) upper bound
+ * @return the probability that a random variable with this distribution
+ * will take a value between <code>x0</code> and <code>x1</code>,
+ * including the endpoints.
+ * @throws MathException if the cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ * @throws IllegalArgumentException if <code>x0 > x1</code>
+ */
+ @Override
+ public double cumulativeProbability(double x0, double x1)
+ throws MathException {
+ if (x0 > x1) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1);
+ }
+ if (FastMath.floor(x0) < x0) {
+ return cumulativeProbability(((int) FastMath.floor(x0)) + 1,
+ (int) FastMath.floor(x1)); // don't want to count mass below x0
+ } else { // x0 is mathematical integer, so use as is
+ return cumulativeProbability((int) FastMath.floor(x0),
+ (int) FastMath.floor(x1));
+ }
+ }
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns P(X &le; x). In other words,
+ * this method represents the probability distribution function, or PDF,
+ * for this distribution.
+ *
+ * @param x the value at which the PDF is evaluated.
+ * @return PDF for this distribution.
+ * @throws MathException if the cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ */
+ public abstract double cumulativeProbability(int x) throws MathException;
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns P(X = x). In other words, this
+ * method represents the probability mass function, or PMF, for the distribution.
+ * <p>
+ * If <code>x</code> does not represent an integer value, 0 is returned.
+ *
+ * @param x the value at which the probability density function is evaluated
+ * @return the value of the probability density function at x
+ */
+ public double probability(double x) {
+ double fl = FastMath.floor(x);
+ if (fl == x) {
+ return this.probability((int) x);
+ } else {
+ return 0;
+ }
+ }
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns P(x0 &le; X &le; x1).
+ *
+ * @param x0 the inclusive, lower bound
+ * @param x1 the inclusive, upper bound
+ * @return the cumulative probability.
+ * @throws MathException if the cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ * @throws IllegalArgumentException if x0 > x1
+ */
+ public double cumulativeProbability(int x0, int x1) throws MathException {
+ if (x0 > x1) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1);
+ }
+ return cumulativeProbability(x1) - cumulativeProbability(x0 - 1);
+ }
+
+ /**
+ * For a random variable X whose values are distributed according
+ * to this distribution, this method returns the largest x, such
+ * that P(X &le; x) &le; <code>p</code>.
+ *
+ * @param p the desired probability
+ * @return the largest x such that P(X &le; x) <= p
+ * @throws MathException if the inverse cumulative probability can not be
+ * computed due to convergence or other numerical errors.
+ * @throws IllegalArgumentException if p < 0 or p > 1
+ */
+ public int inverseCumulativeProbability(final double p) throws MathException{
+ if (p < 0.0 || p > 1.0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
+ }
+
+ // by default, do simple bisection.
+ // subclasses can override if there is a better method.
+ int x0 = getDomainLowerBound(p);
+ int x1 = getDomainUpperBound(p);
+ double pm;
+ while (x0 < x1) {
+ int xm = x0 + (x1 - x0) / 2;
+ pm = checkedCumulativeProbability(xm);
+ if (pm > p) {
+ // update x1
+ if (xm == x1) {
+ // this can happen with integer division
+ // simply decrement x1
+ --x1;
+ } else {
+ // update x1 normally
+ x1 = xm;
+ }
+ } else {
+ // update x0
+ if (xm == x0) {
+ // this can happen with integer division
+ // simply increment x0
+ ++x0;
+ } else {
+ // update x0 normally
+ x0 = xm;
+ }
+ }
+ }
+
+ // insure x0 is the correct critical point
+ pm = checkedCumulativeProbability(x0);
+ while (pm > p) {
+ --x0;
+ pm = checkedCumulativeProbability(x0);
+ }
+
+ return x0;
+ }
+
+ /**
+ * Reseeds the random generator used to generate samples.
+ *
+ * @param seed the new seed
+ * @since 2.2
+ */
+ public void reseedRandomGenerator(long seed) {
+ randomData.reSeed(seed);
+ }
+
+ /**
+ * Generates a random value sampled from this distribution. The default
+ * implementation uses the
+ * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
+ *
+ * @return random value
+ * @since 2.2
+ * @throws MathException if an error occurs generating the random value
+ */
+ public int sample() throws MathException {
+ return randomData.nextInversionDeviate(this);
+ }
+
+ /**
+ * Generates a random sample from the distribution. The default implementation
+ * generates the sample by calling {@link #sample()} in a loop.
+ *
+ * @param sampleSize number of random values to generate
+ * @since 2.2
+ * @return an array representing the random sample
+ * @throws MathException if an error occurs generating the sample
+ * @throws IllegalArgumentException if sampleSize is not positive
+ */
+ public int[] sample(int sampleSize) throws MathException {
+ if (sampleSize <= 0) {
+ MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize);
+ }
+ int[] out = new int[sampleSize];
+ for (int i = 0; i < sampleSize; i++) {
+ out[i] = sample();
+ }
+ return out;
+ }
+
+ /**
+ * Computes the cumulative probability function and checks for NaN values returned.
+ * Throws MathException if the value is NaN. Rethrows any MathException encountered
+ * evaluating the cumulative probability function. Throws
+ * MathException if the cumulative probability function returns NaN.
+ *
+ * @param argument input value
+ * @return cumulative probability
+ * @throws MathException if the cumulative probability is NaN
+ */
+ private double checkedCumulativeProbability(int argument) throws MathException {
+ double result = Double.NaN;
+ result = cumulativeProbability(argument);
+ if (Double.isNaN(result)) {
+ throw new MathException(LocalizedFormats.DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument);
+ }
+ return result;
+ }
+
+ /**
+ * Access the domain value lower bound, based on <code>p</code>, used to
+ * bracket a PDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value lower bound, i.e.
+ * P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
+ */
+ protected abstract int getDomainLowerBound(double p);
+
+ /**
+ * Access the domain value upper bound, based on <code>p</code>, used to
+ * bracket a PDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value upper bound, i.e.
+ * P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
+ */
+ protected abstract int getDomainUpperBound(double p);
+
+ /**
+ * Use this method to get information about whether the lower bound
+ * of the support is inclusive or not. For discrete support,
+ * only true here is meaningful.
+ *
+ * @return true (always but at Integer.MIN_VALUE because of the nature of discrete support)
+ * @since 2.2
+ */
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /**
+ * Use this method to get information about whether the upper bound
+ * of the support is inclusive or not. For discrete support,
+ * only true here is meaningful.
+ *
+ * @return true (always but at Integer.MAX_VALUE because of the nature of discrete support)
+ * @since 2.2
+ */
+ public boolean isSupportUpperBoundInclusive() {
+ return true;
+ }
+}