summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java')
-rw-r--r--src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java421
1 files changed, 421 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java
new file mode 100644
index 0000000..f9dff2d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java
@@ -0,0 +1,421 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.MathUtils;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * The default implementation of {@link HypergeometricDistribution}.
+ *
+ * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
+ */
+public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
+ implements HypergeometricDistribution, Serializable {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -436928820673516179L;
+
+ /** The number of successes in the population. */
+ private int numberOfSuccesses;
+
+ /** The population size. */
+ private int populationSize;
+
+ /** The sample size. */
+ private int sampleSize;
+
+ /**
+ * Construct a new hypergeometric distribution with the given the population
+ * size, the number of successes in the population, and the sample size.
+ *
+ * @param populationSize the population size.
+ * @param numberOfSuccesses number of successes in the population.
+ * @param sampleSize the sample size.
+ */
+ public HypergeometricDistributionImpl(int populationSize,
+ int numberOfSuccesses, int sampleSize) {
+ super();
+ if (numberOfSuccesses > populationSize) {
+ throw MathRuntimeException
+ .createIllegalArgumentException(
+ LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE,
+ numberOfSuccesses, populationSize);
+ }
+ if (sampleSize > populationSize) {
+ throw MathRuntimeException
+ .createIllegalArgumentException(
+ LocalizedFormats.SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE,
+ sampleSize, populationSize);
+ }
+
+ setPopulationSizeInternal(populationSize);
+ setSampleSizeInternal(sampleSize);
+ setNumberOfSuccessesInternal(numberOfSuccesses);
+ }
+
+ /**
+ * For this distribution, X, this method returns P(X ≤ x).
+ *
+ * @param x the value at which the PDF is evaluated.
+ * @return PDF for this distribution.
+ */
+ @Override
+ public double cumulativeProbability(int x) {
+ double ret;
+
+ int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
+ if (x < domain[0]) {
+ ret = 0.0;
+ } else if (x >= domain[1]) {
+ ret = 1.0;
+ } else {
+ ret = innerCumulativeProbability(domain[0], x, 1, populationSize,
+ numberOfSuccesses, sampleSize);
+ }
+
+ return ret;
+ }
+
+ /**
+ * Return the domain for the given hypergeometric distribution parameters.
+ *
+ * @param n the population size.
+ * @param m number of successes in the population.
+ * @param k the sample size.
+ * @return a two element array containing the lower and upper bounds of the
+ * hypergeometric distribution.
+ */
+ private int[] getDomain(int n, int m, int k) {
+ return new int[] { getLowerDomain(n, m, k), getUpperDomain(m, k) };
+ }
+
+ /**
+ * Access the domain value lower bound, based on <code>p</code>, used to
+ * bracket a PDF root.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value lower bound, i.e. P(X &lt; <i>lower bound</i>) &lt;
+ * <code>p</code>
+ */
+ @Override
+ protected int getDomainLowerBound(double p) {
+ return getLowerDomain(populationSize, numberOfSuccesses, sampleSize);
+ }
+
+ /**
+ * Access the domain value upper bound, based on <code>p</code>, used to
+ * bracket a PDF root.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value upper bound, i.e. P(X &lt; <i>upper bound</i>) &gt;
+ * <code>p</code>
+ */
+ @Override
+ protected int getDomainUpperBound(double p) {
+ return getUpperDomain(sampleSize, numberOfSuccesses);
+ }
+
+ /**
+ * Return the lowest domain value for the given hypergeometric distribution
+ * parameters.
+ *
+ * @param n the population size.
+ * @param m number of successes in the population.
+ * @param k the sample size.
+ * @return the lowest domain value of the hypergeometric distribution.
+ */
+ private int getLowerDomain(int n, int m, int k) {
+ return FastMath.max(0, m - (n - k));
+ }
+
+ /**
+ * Access the number of successes.
+ *
+ * @return the number of successes.
+ */
+ public int getNumberOfSuccesses() {
+ return numberOfSuccesses;
+ }
+
+ /**
+ * Access the population size.
+ *
+ * @return the population size.
+ */
+ public int getPopulationSize() {
+ return populationSize;
+ }
+
+ /**
+ * Access the sample size.
+ *
+ * @return the sample size.
+ */
+ public int getSampleSize() {
+ return sampleSize;
+ }
+
+ /**
+ * Return the highest domain value for the given hypergeometric distribution
+ * parameters.
+ *
+ * @param m number of successes in the population.
+ * @param k the sample size.
+ * @return the highest domain value of the hypergeometric distribution.
+ */
+ private int getUpperDomain(int m, int k) {
+ return FastMath.min(k, m);
+ }
+
+ /**
+ * For this distribution, X, this method returns P(X = x).
+ *
+ * @param x the value at which the PMF is evaluated.
+ * @return PMF for this distribution.
+ */
+ public double probability(int x) {
+ double ret;
+
+ int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
+ if (x < domain[0] || x > domain[1]) {
+ ret = 0.0;
+ } else {
+ double p = (double) sampleSize / (double) populationSize;
+ double q = (double) (populationSize - sampleSize) / (double) populationSize;
+ double p1 = SaddlePointExpansion.logBinomialProbability(x,
+ numberOfSuccesses, p, q);
+ double p2 =
+ SaddlePointExpansion.logBinomialProbability(sampleSize - x,
+ populationSize - numberOfSuccesses, p, q);
+ double p3 =
+ SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q);
+ ret = FastMath.exp(p1 + p2 - p3);
+ }
+
+ return ret;
+ }
+
+ /**
+ * For the distribution, X, defined by the given hypergeometric distribution
+ * parameters, this method returns P(X = x).
+ *
+ * @param n the population size.
+ * @param m number of successes in the population.
+ * @param k the sample size.
+ * @param x the value at which the PMF is evaluated.
+ * @return PMF for the distribution.
+ */
+ private double probability(int n, int m, int k, int x) {
+ return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) +
+ MathUtils.binomialCoefficientLog(n - m, k - x) -
+ MathUtils.binomialCoefficientLog(n, k));
+ }
+
+ /**
+ * Modify the number of successes.
+ *
+ * @param num the new number of successes.
+ * @throws IllegalArgumentException if <code>num</code> is negative.
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setNumberOfSuccesses(int num) {
+ setNumberOfSuccessesInternal(num);
+ }
+
+ /**
+ * Modify the number of successes.
+ *
+ * @param num the new number of successes.
+ * @throws IllegalArgumentException if <code>num</code> is negative.
+ */
+ private void setNumberOfSuccessesInternal(int num) {
+ if (num < 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES, num);
+ }
+ numberOfSuccesses = num;
+ }
+
+ /**
+ * Modify the population size.
+ *
+ * @param size the new population size.
+ * @throws IllegalArgumentException if <code>size</code> is not positive.
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setPopulationSize(int size) {
+ setPopulationSizeInternal(size);
+ }
+
+ /**
+ * Modify the population size.
+ *
+ * @param size the new population size.
+ * @throws IllegalArgumentException if <code>size</code> is not positive.
+ */
+ private void setPopulationSizeInternal(int size) {
+ if (size <= 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POSITIVE_POPULATION_SIZE, size);
+ }
+ populationSize = size;
+ }
+
+ /**
+ * Modify the sample size.
+ *
+ * @param size the new sample size.
+ * @throws IllegalArgumentException if <code>size</code> is negative.
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setSampleSize(int size) {
+ setSampleSizeInternal(size);
+ }
+ /**
+ * Modify the sample size.
+ *
+ * @param size the new sample size.
+ * @throws IllegalArgumentException if <code>size</code> is negative.
+ */
+ private void setSampleSizeInternal(int size) {
+ if (size < 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, size);
+ }
+ sampleSize = size;
+ }
+
+ /**
+ * For this distribution, X, this method returns P(X &ge; x).
+ *
+ * @param x the value at which the CDF is evaluated.
+ * @return upper tail CDF for this distribution.
+ * @since 1.1
+ */
+ public double upperCumulativeProbability(int x) {
+ double ret;
+
+ final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
+ if (x < domain[0]) {
+ ret = 1.0;
+ } else if (x > domain[1]) {
+ ret = 0.0;
+ } else {
+ ret = innerCumulativeProbability(domain[1], x, -1, populationSize, numberOfSuccesses, sampleSize);
+ }
+
+ return ret;
+ }
+
+ /**
+ * For this distribution, X, this method returns P(x0 &le; X &le; x1). This
+ * probability is computed by summing the point probabilities for the values
+ * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx.
+ *
+ * @param x0 the inclusive, lower bound
+ * @param x1 the inclusive, upper bound
+ * @param dx the direction of summation. 1 indicates summing from x0 to x1.
+ * 0 indicates summing from x1 to x0.
+ * @param n the population size.
+ * @param m number of successes in the population.
+ * @param k the sample size.
+ * @return P(x0 &le; X &le; x1).
+ */
+ private double innerCumulativeProbability(int x0, int x1, int dx, int n,
+ int m, int k) {
+ double ret = probability(n, m, k, x0);
+ while (x0 != x1) {
+ x0 += dx;
+ ret += probability(n, m, k, x0);
+ }
+ return ret;
+ }
+
+ /**
+ * Returns the lower bound for the support for the distribution.
+ *
+ * For population size <code>N</code>,
+ * number of successes <code>m</code>, and
+ * sample size <code>n</code>,
+ * the lower bound of the support is
+ * <code>max(0, n + m - N)</code>
+ *
+ * @return lower bound of the support
+ * @since 2.2
+ */
+ public int getSupportLowerBound() {
+ return FastMath.max(0,
+ getSampleSize() + getNumberOfSuccesses() - getPopulationSize());
+ }
+
+ /**
+ * Returns the upper bound for the support of the distribution.
+ *
+ * For number of successes <code>m</code> and
+ * sample size <code>n</code>,
+ * the upper bound of the support is
+ * <code>min(m, n)</code>
+ *
+ * @return upper bound of the support
+ * @since 2.2
+ */
+ public int getSupportUpperBound() {
+ return FastMath.min(getNumberOfSuccesses(), getSampleSize());
+ }
+
+ /**
+ * Returns the mean.
+ *
+ * For population size <code>N</code>,
+ * number of successes <code>m</code>, and
+ * sample size <code>n</code>, the mean is
+ * <code>n * m / N</code>
+ *
+ * @return the mean
+ * @since 2.2
+ */
+ protected double getNumericalMean() {
+ return (double)(getSampleSize() * getNumberOfSuccesses()) / (double)getPopulationSize();
+ }
+
+ /**
+ * Returns the variance.
+ *
+ * For population size <code>N</code>,
+ * number of successes <code>m</code>, and
+ * sample size <code>n</code>, the variance is
+ * <code>[ n * m * (N - n) * (N - m) ] / [ N^2 * (N - 1) ]</code>
+ *
+ * @return the variance
+ * @since 2.2
+ */
+ public double getNumericalVariance() {
+ final double N = getPopulationSize();
+ final double m = getNumberOfSuccesses();
+ final double n = getSampleSize();
+ return ( n * m * (N - n) * (N - m) ) / ( (N*N * (N - 1)) );
+ }
+}