summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java')
-rw-r--r--src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java343
1 files changed, 343 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java
new file mode 100644
index 0000000..85623d4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/distribution/PoissonDistributionImpl.java
@@ -0,0 +1,343 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.special.Gamma;
+import org.apache.commons.math.util.MathUtils;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Implementation for the {@link PoissonDistribution}.
+ *
+ * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
+ */
+public class PoissonDistributionImpl extends AbstractIntegerDistribution
+ implements PoissonDistribution, Serializable {
+
+ /**
+ * Default maximum number of iterations for cumulative probability calculations.
+ * @since 2.1
+ */
+ public static final int DEFAULT_MAX_ITERATIONS = 10000000;
+
+ /**
+ * Default convergence criterion.
+ * @since 2.1
+ */
+ public static final double DEFAULT_EPSILON = 1E-12;
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -3349935121172596109L;
+
+ /** Distribution used to compute normal approximation. */
+ private NormalDistribution normal;
+
+ /**
+ * Holds the Poisson mean for the distribution.
+ */
+ private double mean;
+
+ /**
+ * Maximum number of iterations for cumulative probability.
+ *
+ * Cumulative probabilities are estimated using either Lanczos series approximation of
+ * Gamma#regularizedGammaP or continued fraction approximation of Gamma#regularizedGammaQ.
+ */
+ private int maxIterations = DEFAULT_MAX_ITERATIONS;
+
+ /**
+ * Convergence criterion for cumulative probability.
+ */
+ private double epsilon = DEFAULT_EPSILON;
+
+ /**
+ * Create a new Poisson distribution with the given the mean. The mean value
+ * must be positive; otherwise an <code>IllegalArgument</code> is thrown.
+ *
+ * @param p the Poisson mean
+ * @throws IllegalArgumentException if p &le; 0
+ */
+ public PoissonDistributionImpl(double p) {
+ this(p, new NormalDistributionImpl());
+ }
+
+ /**
+ * Create a new Poisson distribution with the given mean, convergence criterion
+ * and maximum number of iterations.
+ *
+ * @param p the Poisson mean
+ * @param epsilon the convergence criteria for cumulative probabilites
+ * @param maxIterations the maximum number of iterations for cumulative probabilites
+ * @since 2.1
+ */
+ public PoissonDistributionImpl(double p, double epsilon, int maxIterations) {
+ setMean(p);
+ this.epsilon = epsilon;
+ this.maxIterations = maxIterations;
+ }
+
+ /**
+ * Create a new Poisson distribution with the given mean and convergence criterion.
+ *
+ * @param p the Poisson mean
+ * @param epsilon the convergence criteria for cumulative probabilites
+ * @since 2.1
+ */
+ public PoissonDistributionImpl(double p, double epsilon) {
+ setMean(p);
+ this.epsilon = epsilon;
+ }
+
+ /**
+ * Create a new Poisson distribution with the given mean and maximum number of iterations.
+ *
+ * @param p the Poisson mean
+ * @param maxIterations the maximum number of iterations for cumulative probabilites
+ * @since 2.1
+ */
+ public PoissonDistributionImpl(double p, int maxIterations) {
+ setMean(p);
+ this.maxIterations = maxIterations;
+ }
+
+
+ /**
+ * Create a new Poisson distribution with the given the mean. The mean value
+ * must be positive; otherwise an <code>IllegalArgument</code> is thrown.
+ *
+ * @param p the Poisson mean
+ * @param z a normal distribution used to compute normal approximations.
+ * @throws IllegalArgumentException if p &le; 0
+ * @since 1.2
+ * @deprecated as of 2.1 (to avoid possibly inconsistent state, the
+ * "NormalDistribution" will be instantiated internally)
+ */
+ @Deprecated
+ public PoissonDistributionImpl(double p, NormalDistribution z) {
+ super();
+ setNormalAndMeanInternal(z, p);
+ }
+
+ /**
+ * Get the Poisson mean for the distribution.
+ *
+ * @return the Poisson mean for the distribution.
+ */
+ public double getMean() {
+ return mean;
+ }
+
+ /**
+ * Set the Poisson mean for the distribution. The mean value must be
+ * positive; otherwise an <code>IllegalArgument</code> is thrown.
+ *
+ * @param p the Poisson mean value
+ * @throws IllegalArgumentException if p &le; 0
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setMean(double p) {
+ setNormalAndMeanInternal(normal, p);
+ }
+ /**
+ * Set the Poisson mean for the distribution. The mean value must be
+ * positive; otherwise an <code>IllegalArgument</code> is thrown.
+ *
+ * @param z the new distribution
+ * @param p the Poisson mean value
+ * @throws IllegalArgumentException if p &le; 0
+ */
+ private void setNormalAndMeanInternal(NormalDistribution z,
+ double p) {
+ if (p <= 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POSITIVE_POISSON_MEAN, p);
+ }
+ mean = p;
+ normal = z;
+ normal.setMean(p);
+ normal.setStandardDeviation(FastMath.sqrt(p));
+ }
+
+ /**
+ * The probability mass function P(X = x) for a Poisson distribution.
+ *
+ * @param x the value at which the probability density function is
+ * evaluated.
+ * @return the value of the probability mass function at x
+ */
+ public double probability(int x) {
+ double ret;
+ if (x < 0 || x == Integer.MAX_VALUE) {
+ ret = 0.0;
+ } else if (x == 0) {
+ ret = FastMath.exp(-mean);
+ } else {
+ ret = FastMath.exp(-SaddlePointExpansion.getStirlingError(x) -
+ SaddlePointExpansion.getDeviancePart(x, mean)) /
+ FastMath.sqrt(MathUtils.TWO_PI * x);
+ }
+ return ret;
+ }
+
+ /**
+ * The probability distribution function P(X <= x) for a Poisson
+ * distribution.
+ *
+ * @param x the value at which the PDF is evaluated.
+ * @return Poisson distribution function evaluated at x
+ * @throws MathException if the cumulative probability can not be computed
+ * due to convergence or other numerical errors.
+ */
+ @Override
+ public double cumulativeProbability(int x) throws MathException {
+ if (x < 0) {
+ return 0;
+ }
+ if (x == Integer.MAX_VALUE) {
+ return 1;
+ }
+ return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon, maxIterations);
+ }
+
+ /**
+ * Calculates the Poisson distribution function using a normal
+ * approximation. The <code>N(mean, sqrt(mean))</code> distribution is used
+ * to approximate the Poisson distribution.
+ * <p>
+ * The computation uses "half-correction" -- evaluating the normal
+ * distribution function at <code>x + 0.5</code>
+ * </p>
+ *
+ * @param x the upper bound, inclusive
+ * @return the distribution function value calculated using a normal
+ * approximation
+ * @throws MathException if an error occurs computing the normal
+ * approximation
+ */
+ public double normalApproximateProbability(int x) throws MathException {
+ // calculate the probability using half-correction
+ return normal.cumulativeProbability(x + 0.5);
+ }
+
+ /**
+ * Generates a random value sampled from this distribution.
+ *
+ * <p><strong>Algorithm Description</strong>:
+ * <ul><li> For small means, uses simulation of a Poisson process
+ * using Uniform deviates, as described
+ * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
+ * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li><
+ *
+ * <li> For large means, uses the rejection algorithm described in <br/>
+ * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
+ * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
+ *
+ * @return random value
+ * @since 2.2
+ * @throws MathException if an error occurs generating the random value
+ */
+ @Override
+ public int sample() throws MathException {
+ return (int) FastMath.min(randomData.nextPoisson(mean), Integer.MAX_VALUE);
+ }
+
+ /**
+ * Access the domain value lower bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain lower bound
+ */
+ @Override
+ protected int getDomainLowerBound(double p) {
+ return 0;
+ }
+
+ /**
+ * Access the domain value upper bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain upper bound
+ */
+ @Override
+ protected int getDomainUpperBound(double p) {
+ return Integer.MAX_VALUE;
+ }
+
+ /**
+ * Modify the normal distribution used to compute normal approximations. The
+ * caller is responsible for insuring the normal distribution has the proper
+ * parameter settings.
+ *
+ * @param value the new distribution
+ * @since 1.2
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setNormal(NormalDistribution value) {
+ setNormalAndMeanInternal(value, mean);
+ }
+
+ /**
+ * Returns the lower bound of the support for the distribution.
+ *
+ * The lower bound of the support is always 0 no matter the mean parameter.
+ *
+ * @return lower bound of the support (always 0)
+ * @since 2.2
+ */
+ public int getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * Returns the upper bound of the support for the distribution.
+ *
+ * The upper bound of the support is positive infinity,
+ * regardless of the parameter values. There is no integer infinity,
+ * so this method returns <code>Integer.MAX_VALUE</code> and
+ * {@link #isSupportUpperBoundInclusive()} returns <code>true</code>.
+ *
+ * @return upper bound of the support (always <code>Integer.MAX_VALUE</code> for positive infinity)
+ * @since 2.2
+ */
+ public int getSupportUpperBound() {
+ return Integer.MAX_VALUE;
+ }
+
+ /**
+ * Returns the variance of the distribution.
+ *
+ * For mean parameter <code>p</code>, the variance is <code>p</code>
+ *
+ * @return the variance
+ * @since 2.2
+ */
+ public double getNumericalVariance() {
+ return getMean();
+ }
+
+}