summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java')
-rw-r--r--src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java378
1 files changed, 378 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java
new file mode 100644
index 0000000..c52caac
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java
@@ -0,0 +1,378 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.special.Gamma;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Default implementation of
+ * {@link org.apache.commons.math.distribution.WeibullDistribution}.
+ *
+ * @since 1.1
+ * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
+ */
+public class WeibullDistributionImpl extends AbstractContinuousDistribution
+ implements WeibullDistribution, Serializable {
+
+ /**
+ * Default inverse cumulative probability accuracy
+ * @since 2.1
+ */
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 8589540077390120676L;
+
+ /** The shape parameter. */
+ private double shape;
+
+ /** The scale parameter. */
+ private double scale;
+
+ /** Inverse cumulative probability accuracy */
+ private final double solverAbsoluteAccuracy;
+
+ /** Cached numerical mean */
+ private double numericalMean = Double.NaN;
+
+ /** Whether or not the numerical mean has been calculated */
+ private boolean numericalMeanIsCalculated = false;
+
+ /** Cached numerical variance */
+ private double numericalVariance = Double.NaN;
+
+ /** Whether or not the numerical variance has been calculated */
+ private boolean numericalVarianceIsCalculated = false;
+
+ /**
+ * Creates weibull distribution with the given shape and scale and a
+ * location equal to zero.
+ * @param alpha the shape parameter.
+ * @param beta the scale parameter.
+ */
+ public WeibullDistributionImpl(double alpha, double beta){
+ this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Creates weibull distribution with the given shape, scale and inverse
+ * cumulative probability accuracy and a location equal to zero.
+ * @param alpha the shape parameter.
+ * @param beta the scale parameter.
+ * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
+ * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
+ * @since 2.1
+ */
+ public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){
+ super();
+ setShapeInternal(alpha);
+ setScaleInternal(beta);
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
+ /**
+ * For this distribution, X, this method returns P(X &lt; <code>x</code>).
+ * @param x the value at which the CDF is evaluated.
+ * @return CDF evaluated at <code>x</code>.
+ */
+ public double cumulativeProbability(double x) {
+ double ret;
+ if (x <= 0.0) {
+ ret = 0.0;
+ } else {
+ ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
+ }
+ return ret;
+ }
+
+ /**
+ * Access the shape parameter.
+ * @return the shape parameter.
+ */
+ public double getShape() {
+ return shape;
+ }
+
+ /**
+ * Access the scale parameter.
+ * @return the scale parameter.
+ */
+ public double getScale() {
+ return scale;
+ }
+
+ /**
+ * Returns the probability density for a particular point.
+ *
+ * @param x The point at which the density should be computed.
+ * @return The pdf at point x.
+ * @since 2.1
+ */
+ @Override
+ public double density(double x) {
+ if (x < 0) {
+ return 0;
+ }
+
+ final double xscale = x / scale;
+ final double xscalepow = FastMath.pow(xscale, shape - 1);
+
+ /*
+ * FastMath.pow(x / scale, shape) =
+ * FastMath.pow(xscale, shape) =
+ * FastMath.pow(xscale, shape - 1) * xscale
+ */
+ final double xscalepowshape = xscalepow * xscale;
+
+ return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
+ }
+
+ /**
+ * For this distribution, X, this method returns the critical point x, such
+ * that P(X &lt; x) = <code>p</code>.
+ * <p>
+ * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
+ * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
+ *
+ * @param p the desired probability
+ * @return x, such that P(X &lt; x) = <code>p</code>
+ * @throws IllegalArgumentException if <code>p</code> is not a valid
+ * probability.
+ */
+ @Override
+ public double inverseCumulativeProbability(double p) {
+ double ret;
+ if (p < 0.0 || p > 1.0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
+ } else if (p == 0) {
+ ret = 0.0;
+ } else if (p == 1) {
+ ret = Double.POSITIVE_INFINITY;
+ } else {
+ ret = scale * FastMath.pow(-FastMath.log(1.0 - p), 1.0 / shape);
+ }
+ return ret;
+ }
+
+ /**
+ * Modify the shape parameter.
+ * @param alpha the new shape parameter value.
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setShape(double alpha) {
+ setShapeInternal(alpha);
+ invalidateParameterDependentMoments();
+ }
+ /**
+ * Modify the shape parameter.
+ * @param alpha the new shape parameter value.
+ */
+ private void setShapeInternal(double alpha) {
+ if (alpha <= 0.0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POSITIVE_SHAPE,
+ alpha);
+ }
+ this.shape = alpha;
+ }
+
+ /**
+ * Modify the scale parameter.
+ * @param beta the new scale parameter value.
+ * @deprecated as of 2.1 (class will become immutable in 3.0)
+ */
+ @Deprecated
+ public void setScale(double beta) {
+ setScaleInternal(beta);
+ invalidateParameterDependentMoments();
+ }
+ /**
+ * Modify the scale parameter.
+ * @param beta the new scale parameter value.
+ */
+ private void setScaleInternal(double beta) {
+ if (beta <= 0.0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POSITIVE_SCALE,
+ beta);
+ }
+ this.scale = beta;
+ }
+
+ /**
+ * Access the domain value lower bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value lower bound, i.e.
+ * P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
+ */
+ @Override
+ protected double getDomainLowerBound(double p) {
+ return 0.0;
+ }
+
+ /**
+ * Access the domain value upper bound, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return domain value upper bound, i.e.
+ * P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
+ */
+ @Override
+ protected double getDomainUpperBound(double p) {
+ return Double.MAX_VALUE;
+ }
+
+ /**
+ * Access the initial domain value, based on <code>p</code>, used to
+ * bracket a CDF root. This method is used by
+ * {@link #inverseCumulativeProbability(double)} to find critical values.
+ *
+ * @param p the desired probability for the critical value
+ * @return initial domain value
+ */
+ @Override
+ protected double getInitialDomain(double p) {
+ // use median
+ return FastMath.pow(scale * FastMath.log(2.0), 1.0 / shape);
+ }
+
+ /**
+ * Return the absolute accuracy setting of the solver used to estimate
+ * inverse cumulative probabilities.
+ *
+ * @return the solver absolute accuracy
+ * @since 2.1
+ */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * Returns the lower bound of the support for the distribution.
+ *
+ * The lower bound of the support is always 0 no matter the parameters.
+ *
+ * @return lower bound of the support (always 0)
+ * @since 2.2
+ */
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * Returns the upper bound of the support for the distribution.
+ *
+ * The upper bound of the support is always positive infinity
+ * no matter the parameters.
+ *
+ * @return upper bound of the support (always Double.POSITIVE_INFINITY)
+ * @since 2.2
+ */
+ public double getSupportUpperBound() {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * Calculates the mean.
+ *
+ * The mean is <code>scale * Gamma(1 + (1 / shape))</code>
+ * where <code>Gamma(...)</code> is the Gamma-function
+ *
+ * @return the mean
+ * @since 2.2
+ */
+ protected double calculateNumericalMean() {
+ final double sh = getShape();
+ final double sc = getScale();
+
+ return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh)));
+ }
+
+ /**
+ * Calculates the variance.
+ *
+ * The variance is
+ * <code>scale^2 * Gamma(1 + (2 / shape)) - mean^2</code>
+ * where <code>Gamma(...)</code> is the Gamma-function
+ *
+ * @return the variance
+ * @since 2.2
+ */
+ private double calculateNumericalVariance() {
+ final double sh = getShape();
+ final double sc = getScale();
+ final double mn = getNumericalMean();
+
+ return (sc * sc) *
+ FastMath.exp(Gamma.logGamma(1 + (2 / sh))) -
+ (mn * mn);
+ }
+
+ /**
+ * Returns the mean of the distribution.
+ *
+ * @return the mean or Double.NaN if it's not defined
+ * @since 2.2
+ */
+ public double getNumericalMean() {
+ if (!numericalMeanIsCalculated) {
+ numericalMean = calculateNumericalMean();
+ numericalMeanIsCalculated = true;
+ }
+
+ return numericalMean;
+ }
+
+ /**
+ * Returns the variance of the distribution.
+ *
+ * @return the variance (possibly Double.POSITIVE_INFINITY as
+ * for certain cases in {@link TDistributionImpl}) or
+ * Double.NaN if it's not defined
+ * @since 2.2
+ */
+ public double getNumericalVariance() {
+ if (!numericalVarianceIsCalculated) {
+ numericalVariance = calculateNumericalVariance();
+ numericalVarianceIsCalculated = true;
+ }
+
+ return numericalVariance;
+ }
+
+ /**
+ * Invalidates the cached mean and variance.
+ */
+ private void invalidateParameterDependentMoments() {
+ numericalMeanIsCalculated = false;
+ numericalVarianceIsCalculated = false;
+ }
+}