summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java')
-rw-r--r--src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java304
1 files changed, 304 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java b/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
new file mode 100644
index 0000000..f1df51d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
@@ -0,0 +1,304 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.random;
+
+import org.apache.commons.math.DimensionMismatchException;
+import org.apache.commons.math.linear.MatrixUtils;
+import org.apache.commons.math.linear.NotPositiveDefiniteMatrixException;
+import org.apache.commons.math.linear.RealMatrix;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * A {@link RandomVectorGenerator} that generates vectors with with
+ * correlated components.
+ * <p>Random vectors with correlated components are built by combining
+ * the uncorrelated components of another random vector in such a way that
+ * the resulting correlations are the ones specified by a positive
+ * definite covariance matrix.</p>
+ * <p>The main use for correlated random vector generation is for Monte-Carlo
+ * simulation of physical problems with several variables, for example to
+ * generate error vectors to be added to a nominal vector. A particularly
+ * interesting case is when the generated vector should be drawn from a <a
+ * href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
+ * Multivariate Normal Distribution</a>. The approach using a Cholesky
+ * decomposition is quite usual in this case. However, it can be extended
+ * to other cases as long as the underlying random generator provides
+ * {@link NormalizedRandomGenerator normalized values} like {@link
+ * GaussianRandomGenerator} or {@link UniformRandomGenerator}.</p>
+ * <p>Sometimes, the covariance matrix for a given simulation is not
+ * strictly positive definite. This means that the correlations are
+ * not all independent from each other. In this case, however, the non
+ * strictly positive elements found during the Cholesky decomposition
+ * of the covariance matrix should not be negative either, they
+ * should be null. Another non-conventional extension handling this case
+ * is used here. Rather than computing <code>C = U<sup>T</sup>.U</code>
+ * where <code>C</code> is the covariance matrix and <code>U</code>
+ * is an upper-triangular matrix, we compute <code>C = B.B<sup>T</sup></code>
+ * where <code>B</code> is a rectangular matrix having
+ * more rows than columns. The number of columns of <code>B</code> is
+ * the rank of the covariance matrix, and it is the dimension of the
+ * uncorrelated random vector that is needed to compute the component
+ * of the correlated vector. This class handles this situation
+ * automatically.</p>
+ *
+ * @version $Revision: 1043908 $ $Date: 2010-12-09 12:53:14 +0100 (jeu. 09 déc. 2010) $
+ * @since 1.2
+ */
+
+public class CorrelatedRandomVectorGenerator
+ implements RandomVectorGenerator {
+
+ /** Mean vector. */
+ private final double[] mean;
+
+ /** Underlying generator. */
+ private final NormalizedRandomGenerator generator;
+
+ /** Storage for the normalized vector. */
+ private final double[] normalized;
+
+ /** Permutated Cholesky root of the covariance matrix. */
+ private RealMatrix root;
+
+ /** Rank of the covariance matrix. */
+ private int rank;
+
+ /** Simple constructor.
+ * <p>Build a correlated random vector generator from its mean
+ * vector and covariance matrix.</p>
+ * @param mean expected mean values for all components
+ * @param covariance covariance matrix
+ * @param small diagonal elements threshold under which column are
+ * considered to be dependent on previous ones and are discarded
+ * @param generator underlying generator for uncorrelated normalized
+ * components
+ * @exception IllegalArgumentException if there is a dimension
+ * mismatch between the mean vector and the covariance matrix
+ * @exception NotPositiveDefiniteMatrixException if the
+ * covariance matrix is not strictly positive definite
+ * @exception DimensionMismatchException if the mean and covariance
+ * arrays dimensions don't match
+ */
+ public CorrelatedRandomVectorGenerator(double[] mean,
+ RealMatrix covariance, double small,
+ NormalizedRandomGenerator generator)
+ throws NotPositiveDefiniteMatrixException, DimensionMismatchException {
+
+ int order = covariance.getRowDimension();
+ if (mean.length != order) {
+ throw new DimensionMismatchException(mean.length, order);
+ }
+ this.mean = mean.clone();
+
+ decompose(covariance, small);
+
+ this.generator = generator;
+ normalized = new double[rank];
+
+ }
+
+ /** Simple constructor.
+ * <p>Build a null mean random correlated vector generator from its
+ * covariance matrix.</p>
+ * @param covariance covariance matrix
+ * @param small diagonal elements threshold under which column are
+ * considered to be dependent on previous ones and are discarded
+ * @param generator underlying generator for uncorrelated normalized
+ * components
+ * @exception NotPositiveDefiniteMatrixException if the
+ * covariance matrix is not strictly positive definite
+ */
+ public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
+ NormalizedRandomGenerator generator)
+ throws NotPositiveDefiniteMatrixException {
+
+ int order = covariance.getRowDimension();
+ mean = new double[order];
+ for (int i = 0; i < order; ++i) {
+ mean[i] = 0;
+ }
+
+ decompose(covariance, small);
+
+ this.generator = generator;
+ normalized = new double[rank];
+
+ }
+
+ /** Get the underlying normalized components generator.
+ * @return underlying uncorrelated components generator
+ */
+ public NormalizedRandomGenerator getGenerator() {
+ return generator;
+ }
+
+ /** Get the root of the covariance matrix.
+ * The root is the rectangular matrix <code>B</code> such that
+ * the covariance matrix is equal to <code>B.B<sup>T</sup></code>
+ * @return root of the square matrix
+ * @see #getRank()
+ */
+ public RealMatrix getRootMatrix() {
+ return root;
+ }
+
+ /** Get the rank of the covariance matrix.
+ * The rank is the number of independent rows in the covariance
+ * matrix, it is also the number of columns of the rectangular
+ * matrix of the decomposition.
+ * @return rank of the square matrix.
+ * @see #getRootMatrix()
+ */
+ public int getRank() {
+ return rank;
+ }
+
+ /** Decompose the original square matrix.
+ * <p>The decomposition is based on a Choleski decomposition
+ * where additional transforms are performed:
+ * <ul>
+ * <li>the rows of the decomposed matrix are permuted</li>
+ * <li>columns with the too small diagonal element are discarded</li>
+ * <li>the matrix is permuted</li>
+ * </ul>
+ * This means that rather than computing M = U<sup>T</sup>.U where U
+ * is an upper triangular matrix, this method computed M=B.B<sup>T</sup>
+ * where B is a rectangular matrix.
+ * @param covariance covariance matrix
+ * @param small diagonal elements threshold under which column are
+ * considered to be dependent on previous ones and are discarded
+ * @exception NotPositiveDefiniteMatrixException if the
+ * covariance matrix is not strictly positive definite
+ */
+ private void decompose(RealMatrix covariance, double small)
+ throws NotPositiveDefiniteMatrixException {
+
+ int order = covariance.getRowDimension();
+ double[][] c = covariance.getData();
+ double[][] b = new double[order][order];
+
+ int[] swap = new int[order];
+ int[] index = new int[order];
+ for (int i = 0; i < order; ++i) {
+ index[i] = i;
+ }
+
+ rank = 0;
+ for (boolean loop = true; loop;) {
+
+ // find maximal diagonal element
+ swap[rank] = rank;
+ for (int i = rank + 1; i < order; ++i) {
+ int ii = index[i];
+ int isi = index[swap[i]];
+ if (c[ii][ii] > c[isi][isi]) {
+ swap[rank] = i;
+ }
+ }
+
+
+ // swap elements
+ if (swap[rank] != rank) {
+ int tmp = index[rank];
+ index[rank] = index[swap[rank]];
+ index[swap[rank]] = tmp;
+ }
+
+ // check diagonal element
+ int ir = index[rank];
+ if (c[ir][ir] < small) {
+
+ if (rank == 0) {
+ throw new NotPositiveDefiniteMatrixException();
+ }
+
+ // check remaining diagonal elements
+ for (int i = rank; i < order; ++i) {
+ if (c[index[i]][index[i]] < -small) {
+ // there is at least one sufficiently negative diagonal element,
+ // the covariance matrix is wrong
+ throw new NotPositiveDefiniteMatrixException();
+ }
+ }
+
+ // all remaining diagonal elements are close to zero,
+ // we consider we have found the rank of the covariance matrix
+ ++rank;
+ loop = false;
+
+ } else {
+
+ // transform the matrix
+ double sqrt = FastMath.sqrt(c[ir][ir]);
+ b[rank][rank] = sqrt;
+ double inverse = 1 / sqrt;
+ for (int i = rank + 1; i < order; ++i) {
+ int ii = index[i];
+ double e = inverse * c[ii][ir];
+ b[i][rank] = e;
+ c[ii][ii] -= e * e;
+ for (int j = rank + 1; j < i; ++j) {
+ int ij = index[j];
+ double f = c[ii][ij] - e * b[j][rank];
+ c[ii][ij] = f;
+ c[ij][ii] = f;
+ }
+ }
+
+ // prepare next iteration
+ loop = ++rank < order;
+
+ }
+
+ }
+
+ // build the root matrix
+ root = MatrixUtils.createRealMatrix(order, rank);
+ for (int i = 0; i < order; ++i) {
+ for (int j = 0; j < rank; ++j) {
+ root.setEntry(index[i], j, b[i][j]);
+ }
+ }
+
+ }
+
+ /** Generate a correlated random vector.
+ * @return a random vector as an array of double. The returned array
+ * is created at each call, the caller can do what it wants with it.
+ */
+ public double[] nextVector() {
+
+ // generate uncorrelated vector
+ for (int i = 0; i < rank; ++i) {
+ normalized[i] = generator.nextNormalizedDouble();
+ }
+
+ // compute correlated vector
+ double[] correlated = new double[mean.length];
+ for (int i = 0; i < correlated.length; ++i) {
+ correlated[i] = mean[i];
+ for (int j = 0; j < rank; ++j) {
+ correlated[i] += root.getEntry(i, j) * normalized[j];
+ }
+ }
+
+ return correlated;
+
+ }
+
+}