summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/random/RandomDataImpl.java')
-rw-r--r--src/main/java/org/apache/commons/math/random/RandomDataImpl.java966
1 files changed, 966 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/random/RandomDataImpl.java b/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
new file mode 100644
index 0000000..e9ccab7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
@@ -0,0 +1,966 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.random;
+
+import java.io.Serializable;
+import java.security.MessageDigest;
+import java.security.NoSuchAlgorithmException;
+import java.security.NoSuchProviderException;
+import java.security.SecureRandom;
+import java.util.Collection;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.distribution.BetaDistributionImpl;
+import org.apache.commons.math.distribution.BinomialDistributionImpl;
+import org.apache.commons.math.distribution.CauchyDistributionImpl;
+import org.apache.commons.math.distribution.ChiSquaredDistributionImpl;
+import org.apache.commons.math.distribution.ContinuousDistribution;
+import org.apache.commons.math.distribution.FDistributionImpl;
+import org.apache.commons.math.distribution.GammaDistributionImpl;
+import org.apache.commons.math.distribution.HypergeometricDistributionImpl;
+import org.apache.commons.math.distribution.IntegerDistribution;
+import org.apache.commons.math.distribution.PascalDistributionImpl;
+import org.apache.commons.math.distribution.TDistributionImpl;
+import org.apache.commons.math.distribution.WeibullDistributionImpl;
+import org.apache.commons.math.distribution.ZipfDistributionImpl;
+import org.apache.commons.math.exception.MathInternalError;
+import org.apache.commons.math.exception.NotStrictlyPositiveException;
+import org.apache.commons.math.exception.NumberIsTooLargeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.FastMath;
+import org.apache.commons.math.util.MathUtils;
+
+/**
+ * Implements the {@link RandomData} interface using a {@link RandomGenerator}
+ * instance to generate non-secure data and a {@link java.security.SecureRandom}
+ * instance to provide data for the <code>nextSecureXxx</code> methods. If no
+ * <code>RandomGenerator</code> is provided in the constructor, the default is
+ * to use a generator based on {@link java.util.Random}. To plug in a different
+ * implementation, either implement <code>RandomGenerator</code> directly or
+ * extend {@link AbstractRandomGenerator}.
+ * <p>
+ * Supports reseeding the underlying pseudo-random number generator (PRNG). The
+ * <code>SecurityProvider</code> and <code>Algorithm</code> used by the
+ * <code>SecureRandom</code> instance can also be reset.
+ * </p>
+ * <p>
+ * For details on the default PRNGs, see {@link java.util.Random} and
+ * {@link java.security.SecureRandom}.
+ * </p>
+ * <p>
+ * <strong>Usage Notes</strong>:
+ * <ul>
+ * <li>
+ * Instance variables are used to maintain <code>RandomGenerator</code> and
+ * <code>SecureRandom</code> instances used in data generation. Therefore, to
+ * generate a random sequence of values or strings, you should use just
+ * <strong>one</strong> <code>RandomDataImpl</code> instance repeatedly.</li>
+ * <li>
+ * The "secure" methods are *much* slower. These should be used only when a
+ * cryptographically secure random sequence is required. A secure random
+ * sequence is a sequence of pseudo-random values which, in addition to being
+ * well-dispersed (so no subsequence of values is an any more likely than other
+ * subsequence of the the same length), also has the additional property that
+ * knowledge of values generated up to any point in the sequence does not make
+ * it any easier to predict subsequent values.</li>
+ * <li>
+ * When a new <code>RandomDataImpl</code> is created, the underlying random
+ * number generators are <strong>not</strong> initialized. If you do not
+ * explicitly seed the default non-secure generator, it is seeded with the
+ * current time in milliseconds on first use. The same holds for the secure
+ * generator. If you provide a <code>RandomGenerator</code> to the constructor,
+ * however, this generator is not reseeded by the constructor nor is it reseeded
+ * on first use.</li>
+ * <li>
+ * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the
+ * corresponding methods on the underlying <code>RandomGenerator</code> and
+ * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code>
+ * fully resets the initial state of the non-secure random number generator (so
+ * that reseeding with a specific value always results in the same subsequent
+ * random sequence); whereas reSeedSecure(long) does <strong>not</strong>
+ * reinitialize the secure random number generator (so secure sequences started
+ * with calls to reseedSecure(long) won't be identical).</li>
+ * <li>
+ * This implementation is not synchronized.
+ * </ul>
+ * </p>
+ *
+ * @version $Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
+ */
+public class RandomDataImpl implements RandomData, Serializable {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -626730818244969716L;
+
+ /** underlying random number generator */
+ private RandomGenerator rand = null;
+
+ /** underlying secure random number generator */
+ private SecureRandom secRand = null;
+
+ /**
+ * Construct a RandomDataImpl.
+ */
+ public RandomDataImpl() {
+ }
+
+ /**
+ * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as
+ * the source of (non-secure) random data.
+ *
+ * @param rand
+ * the source of (non-secure) random data
+ * @since 1.1
+ */
+ public RandomDataImpl(RandomGenerator rand) {
+ super();
+ this.rand = rand;
+ }
+
+ /**
+ * {@inheritDoc}
+ * <p>
+ * <strong>Algorithm Description:</strong> hex strings are generated using a
+ * 2-step process.
+ * <ol>
+ * <li>
+ * len/2+1 binary bytes are generated using the underlying Random</li>
+ * <li>
+ * Each binary byte is translated into 2 hex digits</li>
+ * </ol>
+ * </p>
+ *
+ * @param len
+ * the desired string length.
+ * @return the random string.
+ * @throws NotStrictlyPositiveException if {@code len <= 0}.
+ */
+ public String nextHexString(int len) {
+ if (len <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
+ }
+
+ // Get a random number generator
+ RandomGenerator ran = getRan();
+
+ // Initialize output buffer
+ StringBuilder outBuffer = new StringBuilder();
+
+ // Get int(len/2)+1 random bytes
+ byte[] randomBytes = new byte[(len / 2) + 1];
+ ran.nextBytes(randomBytes);
+
+ // Convert each byte to 2 hex digits
+ for (int i = 0; i < randomBytes.length; i++) {
+ Integer c = Integer.valueOf(randomBytes[i]);
+
+ /*
+ * Add 128 to byte value to make interval 0-255 before doing hex
+ * conversion. This guarantees <= 2 hex digits from toHexString()
+ * toHexString would otherwise add 2^32 to negative arguments.
+ */
+ String hex = Integer.toHexString(c.intValue() + 128);
+
+ // Make sure we add 2 hex digits for each byte
+ if (hex.length() == 1) {
+ hex = "0" + hex;
+ }
+ outBuffer.append(hex);
+ }
+ return outBuffer.toString().substring(0, len);
+ }
+
+ /**
+ * Generate a random int value uniformly distributed between
+ * <code>lower</code> and <code>upper</code>, inclusive.
+ *
+ * @param lower
+ * the lower bound.
+ * @param upper
+ * the upper bound.
+ * @return the random integer.
+ * @throws NumberIsTooLargeException if {@code lower >= upper}.
+ */
+ public int nextInt(int lower, int upper) {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
+ lower, upper, false);
+ }
+ double r = getRan().nextDouble();
+ return (int) ((r * upper) + ((1.0 - r) * lower) + r);
+ }
+
+ /**
+ * Generate a random long value uniformly distributed between
+ * <code>lower</code> and <code>upper</code>, inclusive.
+ *
+ * @param lower
+ * the lower bound.
+ * @param upper
+ * the upper bound.
+ * @return the random integer.
+ * @throws NumberIsTooLargeException if {@code lower >= upper}.
+ */
+ public long nextLong(long lower, long upper) {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
+ lower, upper, false);
+ }
+ double r = getRan().nextDouble();
+ return (long) ((r * upper) + ((1.0 - r) * lower) + r);
+ }
+
+ /**
+ * {@inheritDoc}
+ * <p>
+ * <strong>Algorithm Description:</strong> hex strings are generated in
+ * 40-byte segments using a 3-step process.
+ * <ol>
+ * <li>
+ * 20 random bytes are generated using the underlying
+ * <code>SecureRandom</code>.</li>
+ * <li>
+ * SHA-1 hash is applied to yield a 20-byte binary digest.</li>
+ * <li>
+ * Each byte of the binary digest is converted to 2 hex digits.</li>
+ * </ol>
+ * </p>
+ *
+ * @param len
+ * the length of the generated string
+ * @return the random string
+ * @throws NotStrictlyPositiveException if {@code len <= 0}.
+ */
+ public String nextSecureHexString(int len) {
+ if (len <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
+ }
+
+ // Get SecureRandom and setup Digest provider
+ SecureRandom secRan = getSecRan();
+ MessageDigest alg = null;
+ try {
+ alg = MessageDigest.getInstance("SHA-1");
+ } catch (NoSuchAlgorithmException ex) {
+ // this should never happen
+ throw new MathInternalError(ex);
+ }
+ alg.reset();
+
+ // Compute number of iterations required (40 bytes each)
+ int numIter = (len / 40) + 1;
+
+ StringBuilder outBuffer = new StringBuilder();
+ for (int iter = 1; iter < numIter + 1; iter++) {
+ byte[] randomBytes = new byte[40];
+ secRan.nextBytes(randomBytes);
+ alg.update(randomBytes);
+
+ // Compute hash -- will create 20-byte binary hash
+ byte hash[] = alg.digest();
+
+ // Loop over the hash, converting each byte to 2 hex digits
+ for (int i = 0; i < hash.length; i++) {
+ Integer c = Integer.valueOf(hash[i]);
+
+ /*
+ * Add 128 to byte value to make interval 0-255 This guarantees
+ * <= 2 hex digits from toHexString() toHexString would
+ * otherwise add 2^32 to negative arguments
+ */
+ String hex = Integer.toHexString(c.intValue() + 128);
+
+ // Keep strings uniform length -- guarantees 40 bytes
+ if (hex.length() == 1) {
+ hex = "0" + hex;
+ }
+ outBuffer.append(hex);
+ }
+ }
+ return outBuffer.toString().substring(0, len);
+ }
+
+ /**
+ * Generate a random int value uniformly distributed between
+ * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
+ * a secure random number generator.
+ *
+ * @param lower
+ * the lower bound.
+ * @param upper
+ * the upper bound.
+ * @return the random integer.
+ * @throws NumberIsTooLargeException if {@code lower >= upper}.
+ */
+ public int nextSecureInt(int lower, int upper) {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
+ lower, upper, false);
+ }
+ SecureRandom sec = getSecRan();
+ return lower + (int) (sec.nextDouble() * (upper - lower + 1));
+ }
+
+ /**
+ * Generate a random long value uniformly distributed between
+ * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
+ * a secure random number generator.
+ *
+ * @param lower
+ * the lower bound.
+ * @param upper
+ * the upper bound.
+ * @return the random integer.
+ * @throws NumberIsTooLargeException if {@code lower >= upper}.
+ */
+ public long nextSecureLong(long lower, long upper) {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
+ lower, upper, false);
+ }
+ SecureRandom sec = getSecRan();
+ return lower + (long) (sec.nextDouble() * (upper - lower + 1));
+ }
+
+ /**
+ * {@inheritDoc}
+ * <p>
+ * <strong>Algorithm Description</strong>:
+ * <ul><li> For small means, uses simulation of a Poisson process
+ * using Uniform deviates, as described
+ * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
+ * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
+ *
+ * <li> For large means, uses the rejection algorithm described in <br/>
+ * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
+ * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
+ *
+ * @param mean mean of the Poisson distribution.
+ * @return the random Poisson value.
+ * @throws NotStrictlyPositiveException if {@code mean <= 0}.
+ */
+ public long nextPoisson(double mean) {
+ if (mean <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
+ }
+
+ final RandomGenerator generator = getRan();
+
+ final double pivot = 40.0d;
+ if (mean < pivot) {
+ double p = FastMath.exp(-mean);
+ long n = 0;
+ double r = 1.0d;
+ double rnd = 1.0d;
+
+ while (n < 1000 * mean) {
+ rnd = generator.nextDouble();
+ r = r * rnd;
+ if (r >= p) {
+ n++;
+ } else {
+ return n;
+ }
+ }
+ return n;
+ } else {
+ final double lambda = FastMath.floor(mean);
+ final double lambdaFractional = mean - lambda;
+ final double logLambda = FastMath.log(lambda);
+ final double logLambdaFactorial = MathUtils.factorialLog((int) lambda);
+ final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
+ final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
+ final double halfDelta = delta / 2;
+ final double twolpd = 2 * lambda + delta;
+ final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / 8 * lambda);
+ final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
+ final double aSum = a1 + a2 + 1;
+ final double p1 = a1 / aSum;
+ final double p2 = a2 / aSum;
+ final double c1 = 1 / (8 * lambda);
+
+ double x = 0;
+ double y = 0;
+ double v = 0;
+ int a = 0;
+ double t = 0;
+ double qr = 0;
+ double qa = 0;
+ for (;;) {
+ final double u = nextUniform(0.0, 1);
+ if (u <= p1) {
+ final double n = nextGaussian(0d, 1d);
+ x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
+ if (x > delta || x < -lambda) {
+ continue;
+ }
+ y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
+ final double e = nextExponential(1d);
+ v = -e - (n * n / 2) + c1;
+ } else {
+ if (u > p1 + p2) {
+ y = lambda;
+ break;
+ } else {
+ x = delta + (twolpd / delta) * nextExponential(1d);
+ y = FastMath.ceil(x);
+ v = -nextExponential(1d) - delta * (x + 1) / twolpd;
+ }
+ }
+ a = x < 0 ? 1 : 0;
+ t = y * (y + 1) / (2 * lambda);
+ if (v < -t && a == 0) {
+ y = lambda + y;
+ break;
+ }
+ qr = t * ((2 * y + 1) / (6 * lambda) - 1);
+ qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
+ if (v < qa) {
+ y = lambda + y;
+ break;
+ }
+ if (v > qr) {
+ continue;
+ }
+ if (v < y * logLambda - MathUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
+ y = lambda + y;
+ break;
+ }
+ }
+ return y2 + (long) y;
+ }
+ }
+
+ /**
+ * Generate a random value from a Normal (a.k.a. Gaussian) distribution with
+ * the given mean, <code>mu</code> and the given standard deviation,
+ * <code>sigma</code>.
+ *
+ * @param mu
+ * the mean of the distribution
+ * @param sigma
+ * the standard deviation of the distribution
+ * @return the random Normal value
+ * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
+ */
+ public double nextGaussian(double mu, double sigma) {
+ if (sigma <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
+ }
+ return sigma * getRan().nextGaussian() + mu;
+ }
+
+ /**
+ * Returns a random value from an Exponential distribution with the given
+ * mean.
+ * <p>
+ * <strong>Algorithm Description</strong>: Uses the <a
+ * href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion
+ * Method</a> to generate exponentially distributed random values from
+ * uniform deviates.
+ * </p>
+ *
+ * @param mean the mean of the distribution
+ * @return the random Exponential value
+ * @throws NotStrictlyPositiveException if {@code mean <= 0}.
+ */
+ public double nextExponential(double mean) {
+ if (mean <= 0.0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
+ }
+ final RandomGenerator generator = getRan();
+ double unif = generator.nextDouble();
+ while (unif == 0.0d) {
+ unif = generator.nextDouble();
+ }
+ return -mean * FastMath.log(unif);
+ }
+
+ /**
+ * {@inheritDoc}
+ * <p>
+ * <strong>Algorithm Description</strong>: scales the output of
+ * Random.nextDouble(), but rejects 0 values (i.e., will generate another
+ * random double if Random.nextDouble() returns 0). This is necessary to
+ * provide a symmetric output interval (both endpoints excluded).
+ * </p>
+ *
+ * @param lower
+ * the lower bound.
+ * @param upper
+ * the upper bound.
+ * @return a uniformly distributed random value from the interval (lower,
+ * upper)
+ * @throws NumberIsTooLargeException if {@code lower >= upper}.
+ */
+ public double nextUniform(double lower, double upper) {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
+ lower, upper, false);
+ }
+ final RandomGenerator generator = getRan();
+
+ // ensure nextDouble() isn't 0.0
+ double u = generator.nextDouble();
+ while (u <= 0.0) {
+ u = generator.nextDouble();
+ }
+
+ return lower + u * (upper - lower);
+ }
+
+ /**
+ * Generates a random value from the {@link BetaDistributionImpl Beta Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param alpha first distribution shape parameter
+ * @param beta second distribution shape parameter
+ * @return random value sampled from the beta(alpha, beta) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextBeta(double alpha, double beta) throws MathException {
+ return nextInversionDeviate(new BetaDistributionImpl(alpha, beta));
+ }
+
+ /**
+ * Generates a random value from the {@link BinomialDistributionImpl Binomial Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param numberOfTrials number of trials of the Binomial distribution
+ * @param probabilityOfSuccess probability of success of the Binomial distribution
+ * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) throws MathException {
+ return nextInversionDeviate(new BinomialDistributionImpl(numberOfTrials, probabilityOfSuccess));
+ }
+
+ /**
+ * Generates a random value from the {@link CauchyDistributionImpl Cauchy Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param median the median of the Cauchy distribution
+ * @param scale the scale parameter of the Cauchy distribution
+ * @return random value sampled from the Cauchy(median, scale) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextCauchy(double median, double scale) throws MathException {
+ return nextInversionDeviate(new CauchyDistributionImpl(median, scale));
+ }
+
+ /**
+ * Generates a random value from the {@link ChiSquaredDistributionImpl ChiSquare Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param df the degrees of freedom of the ChiSquare distribution
+ * @return random value sampled from the ChiSquare(df) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextChiSquare(double df) throws MathException {
+ return nextInversionDeviate(new ChiSquaredDistributionImpl(df));
+ }
+
+ /**
+ * Generates a random value from the {@link FDistributionImpl F Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param numeratorDf the numerator degrees of freedom of the F distribution
+ * @param denominatorDf the denominator degrees of freedom of the F distribution
+ * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextF(double numeratorDf, double denominatorDf) throws MathException {
+ return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
+ }
+
+ /**
+ * Generates a random value from the {@link GammaDistributionImpl Gamma Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param shape the median of the Gamma distribution
+ * @param scale the scale parameter of the Gamma distribution
+ * @return random value sampled from the Gamma(shape, scale) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextGamma(double shape, double scale) throws MathException {
+ return nextInversionDeviate(new GammaDistributionImpl(shape, scale));
+ }
+
+ /**
+ * Generates a random value from the {@link HypergeometricDistributionImpl Hypergeometric Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
+ * to generate random values.
+ *
+ * @param populationSize the population size of the Hypergeometric distribution
+ * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
+ * @param sampleSize the sample size of the Hypergeometric distribution
+ * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws MathException {
+ return nextInversionDeviate(new HypergeometricDistributionImpl(populationSize, numberOfSuccesses, sampleSize));
+ }
+
+ /**
+ * Generates a random value from the {@link PascalDistributionImpl Pascal Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
+ * to generate random values.
+ *
+ * @param r the number of successes of the Pascal distribution
+ * @param p the probability of success of the Pascal distribution
+ * @return random value sampled from the Pascal(r, p) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public int nextPascal(int r, double p) throws MathException {
+ return nextInversionDeviate(new PascalDistributionImpl(r, p));
+ }
+
+ /**
+ * Generates a random value from the {@link TDistributionImpl T Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param df the degrees of freedom of the T distribution
+ * @return random value from the T(df) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextT(double df) throws MathException {
+ return nextInversionDeviate(new TDistributionImpl(df));
+ }
+
+ /**
+ * Generates a random value from the {@link WeibullDistributionImpl Weibull Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
+ * to generate random values.
+ *
+ * @param shape the shape parameter of the Weibull distribution
+ * @param scale the scale parameter of the Weibull distribution
+ * @return random value sampled from the Weibull(shape, size) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public double nextWeibull(double shape, double scale) throws MathException {
+ return nextInversionDeviate(new WeibullDistributionImpl(shape, scale));
+ }
+
+ /**
+ * Generates a random value from the {@link ZipfDistributionImpl Zipf Distribution}.
+ * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
+ * to generate random values.
+ *
+ * @param numberOfElements the number of elements of the ZipfDistribution
+ * @param exponent the exponent of the ZipfDistribution
+ * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
+ * @throws MathException if an error occurs generating the random value
+ * @since 2.2
+ */
+ public int nextZipf(int numberOfElements, double exponent) throws MathException {
+ return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
+ }
+
+ /**
+ * Returns the RandomGenerator used to generate non-secure random data.
+ * <p>
+ * Creates and initializes a default generator if null.
+ * </p>
+ *
+ * @return the Random used to generate random data
+ * @since 1.1
+ */
+ private RandomGenerator getRan() {
+ if (rand == null) {
+ rand = new JDKRandomGenerator();
+ rand.setSeed(System.currentTimeMillis());
+ }
+ return rand;
+ }
+
+ /**
+ * Returns the SecureRandom used to generate secure random data.
+ * <p>
+ * Creates and initializes if null.
+ * </p>
+ *
+ * @return the SecureRandom used to generate secure random data
+ */
+ private SecureRandom getSecRan() {
+ if (secRand == null) {
+ secRand = new SecureRandom();
+ secRand.setSeed(System.currentTimeMillis());
+ }
+ return secRand;
+ }
+
+ /**
+ * Reseeds the random number generator with the supplied seed.
+ * <p>
+ * Will create and initialize if null.
+ * </p>
+ *
+ * @param seed
+ * the seed value to use
+ */
+ public void reSeed(long seed) {
+ if (rand == null) {
+ rand = new JDKRandomGenerator();
+ }
+ rand.setSeed(seed);
+ }
+
+ /**
+ * Reseeds the secure random number generator with the current time in
+ * milliseconds.
+ * <p>
+ * Will create and initialize if null.
+ * </p>
+ */
+ public void reSeedSecure() {
+ if (secRand == null) {
+ secRand = new SecureRandom();
+ }
+ secRand.setSeed(System.currentTimeMillis());
+ }
+
+ /**
+ * Reseeds the secure random number generator with the supplied seed.
+ * <p>
+ * Will create and initialize if null.
+ * </p>
+ *
+ * @param seed
+ * the seed value to use
+ */
+ public void reSeedSecure(long seed) {
+ if (secRand == null) {
+ secRand = new SecureRandom();
+ }
+ secRand.setSeed(seed);
+ }
+
+ /**
+ * Reseeds the random number generator with the current time in
+ * milliseconds.
+ */
+ public void reSeed() {
+ if (rand == null) {
+ rand = new JDKRandomGenerator();
+ }
+ rand.setSeed(System.currentTimeMillis());
+ }
+
+ /**
+ * Sets the PRNG algorithm for the underlying SecureRandom instance using
+ * the Security Provider API. The Security Provider API is defined in <a
+ * href =
+ * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA">
+ * Java Cryptography Architecture API Specification & Reference.</a>
+ * <p>
+ * <strong>USAGE NOTE:</strong> This method carries <i>significant</i>
+ * overhead and may take several seconds to execute.
+ * </p>
+ *
+ * @param algorithm
+ * the name of the PRNG algorithm
+ * @param provider
+ * the name of the provider
+ * @throws NoSuchAlgorithmException
+ * if the specified algorithm is not available
+ * @throws NoSuchProviderException
+ * if the specified provider is not installed
+ */
+ public void setSecureAlgorithm(String algorithm, String provider)
+ throws NoSuchAlgorithmException, NoSuchProviderException {
+ secRand = SecureRandom.getInstance(algorithm, provider);
+ }
+
+ /**
+ * Generates an integer array of length <code>k</code> whose entries are
+ * selected randomly, without repetition, from the integers
+ * <code>0 through n-1</code> (inclusive).
+ * <p>
+ * Generated arrays represent permutations of <code>n</code> taken
+ * <code>k</code> at a time.
+ * </p>
+ * <p>
+ * <strong>Preconditions:</strong>
+ * <ul>
+ * <li> <code>k <= n</code></li>
+ * <li> <code>n > 0</code></li>
+ * </ul>
+ * If the preconditions are not met, an IllegalArgumentException is thrown.
+ * </p>
+ * <p>
+ * Uses a 2-cycle permutation shuffle. The shuffling process is described <a
+ * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
+ * here</a>.
+ * </p>
+ *
+ * @param n
+ * domain of the permutation (must be positive)
+ * @param k
+ * size of the permutation (must satisfy 0 < k <= n).
+ * @return the random permutation as an int array
+ * @throws NumberIsTooLargeException if {@code k > n}.
+ * @throws NotStrictlyPositiveException if {@code k <= 0}.
+ */
+ public int[] nextPermutation(int n, int k) {
+ if (k > n) {
+ throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
+ k, n, true);
+ }
+ if (k == 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE,
+ k);
+ }
+
+ int[] index = getNatural(n);
+ shuffle(index, n - k);
+ int[] result = new int[k];
+ for (int i = 0; i < k; i++) {
+ result[i] = index[n - i - 1];
+ }
+
+ return result;
+ }
+
+ /**
+ * Uses a 2-cycle permutation shuffle to generate a random permutation.
+ * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation
+ * shuffle to generate a random permutation of <code>c.size()</code> and
+ * then returns the elements whose indexes correspond to the elements of the
+ * generated permutation. This technique is described, and proven to
+ * generate random samples, <a
+ * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
+ * here</a>
+ *
+ * @param c
+ * Collection to sample from.
+ * @param k
+ * sample size.
+ * @return the random sample.
+ * @throws NumberIsTooLargeException if {@code k > c.size()}.
+ * @throws NotStrictlyPositiveException if {@code k <= 0}.
+ */
+ public Object[] nextSample(Collection<?> c, int k) {
+ int len = c.size();
+ if (k > len) {
+ throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE,
+ k, len, true);
+ }
+ if (k <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
+ }
+
+ Object[] objects = c.toArray();
+ int[] index = nextPermutation(len, k);
+ Object[] result = new Object[k];
+ for (int i = 0; i < k; i++) {
+ result[i] = objects[index[i]];
+ }
+ return result;
+ }
+
+ /**
+ * Generate a random deviate from the given distribution using the
+ * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
+ *
+ * @param distribution Continuous distribution to generate a random value from
+ * @return a random value sampled from the given distribution
+ * @throws MathException if an error occurs computing the inverse cumulative distribution function
+ * @since 2.2
+ */
+ public double nextInversionDeviate(ContinuousDistribution distribution) throws MathException {
+ return distribution.inverseCumulativeProbability(nextUniform(0, 1));
+
+ }
+
+ /**
+ * Generate a random deviate from the given distribution using the
+ * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
+ *
+ * @param distribution Integer distribution to generate a random value from
+ * @return a random value sampled from the given distribution
+ * @throws MathException if an error occurs computing the inverse cumulative distribution function
+ * @since 2.2
+ */
+ public int nextInversionDeviate(IntegerDistribution distribution) throws MathException {
+ final double target = nextUniform(0, 1);
+ final int glb = distribution.inverseCumulativeProbability(target);
+ if (distribution.cumulativeProbability(glb) == 1.0d) { // No mass above
+ return glb;
+ } else {
+ return glb + 1;
+ }
+ }
+
+ // ------------------------Private methods----------------------------------
+
+ /**
+ * Uses a 2-cycle permutation shuffle to randomly re-order the last elements
+ * of list.
+ *
+ * @param list
+ * list to be shuffled
+ * @param end
+ * element past which shuffling begins
+ */
+ private void shuffle(int[] list, int end) {
+ int target = 0;
+ for (int i = list.length - 1; i >= end; i--) {
+ if (i == 0) {
+ target = 0;
+ } else {
+ target = nextInt(0, i);
+ }
+ int temp = list[target];
+ list[target] = list[i];
+ list[i] = temp;
+ }
+ }
+
+ /**
+ * Returns an array representing n.
+ *
+ * @param n
+ * the natural number to represent
+ * @return array with entries = elements of n
+ */
+ private int[] getNatural(int n) {
+ int[] natural = new int[n];
+ for (int i = 0; i < n; i++) {
+ natural[i] = i;
+ }
+ return natural;
+ }
+
+}