summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/special/Gamma.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/special/Gamma.java')
-rw-r--r--src/main/java/org/apache/commons/math/special/Gamma.java339
1 files changed, 339 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/special/Gamma.java b/src/main/java/org/apache/commons/math/special/Gamma.java
new file mode 100644
index 0000000..327aa3a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/special/Gamma.java
@@ -0,0 +1,339 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.special;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.MaxIterationsExceededException;
+import org.apache.commons.math.util.ContinuedFraction;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * This is a utility class that provides computation methods related to the
+ * Gamma family of functions.
+ *
+ * @version $Revision: 1042510 $ $Date: 2010-12-06 02:54:18 +0100 (lun. 06 déc. 2010) $
+ */
+public class Gamma {
+
+ /**
+ * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>
+ * @since 2.0
+ */
+ public static final double GAMMA = 0.577215664901532860606512090082;
+
+ /** Maximum allowed numerical error. */
+ private static final double DEFAULT_EPSILON = 10e-15;
+
+ /** Lanczos coefficients */
+ private static final double[] LANCZOS =
+ {
+ 0.99999999999999709182,
+ 57.156235665862923517,
+ -59.597960355475491248,
+ 14.136097974741747174,
+ -0.49191381609762019978,
+ .33994649984811888699e-4,
+ .46523628927048575665e-4,
+ -.98374475304879564677e-4,
+ .15808870322491248884e-3,
+ -.21026444172410488319e-3,
+ .21743961811521264320e-3,
+ -.16431810653676389022e-3,
+ .84418223983852743293e-4,
+ -.26190838401581408670e-4,
+ .36899182659531622704e-5,
+ };
+
+ /** Avoid repeated computation of log of 2 PI in logGamma */
+ private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * FastMath.PI);
+
+ // limits for switching algorithm in digamma
+ /** C limit. */
+ private static final double C_LIMIT = 49;
+
+ /** S limit. */
+ private static final double S_LIMIT = 1e-5;
+
+ /**
+ * Default constructor. Prohibit instantiation.
+ */
+ private Gamma() {
+ super();
+ }
+
+ /**
+ * Returns the natural logarithm of the gamma function &#915;(x).
+ *
+ * The implementation of this method is based on:
+ * <ul>
+ * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">
+ * Gamma Function</a>, equation (28).</li>
+ * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
+ * Lanczos Approximation</a>, equations (1) through (5).</li>
+ * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
+ * the computation of the convergent Lanczos complex Gamma approximation
+ * </a></li>
+ * </ul>
+ *
+ * @param x the value.
+ * @return log(&#915;(x))
+ */
+ public static double logGamma(double x) {
+ double ret;
+
+ if (Double.isNaN(x) || (x <= 0.0)) {
+ ret = Double.NaN;
+ } else {
+ double g = 607.0 / 128.0;
+
+ double sum = 0.0;
+ for (int i = LANCZOS.length - 1; i > 0; --i) {
+ sum = sum + (LANCZOS[i] / (x + i));
+ }
+ sum = sum + LANCZOS[0];
+
+ double tmp = x + g + .5;
+ ret = ((x + .5) * FastMath.log(tmp)) - tmp +
+ HALF_LOG_2_PI + FastMath.log(sum / x);
+ }
+
+ return ret;
+ }
+
+ /**
+ * Returns the regularized gamma function P(a, x).
+ *
+ * @param a the a parameter.
+ * @param x the value.
+ * @return the regularized gamma function P(a, x)
+ * @throws MathException if the algorithm fails to converge.
+ */
+ public static double regularizedGammaP(double a, double x)
+ throws MathException
+ {
+ return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
+ }
+
+
+ /**
+ * Returns the regularized gamma function P(a, x).
+ *
+ * The implementation of this method is based on:
+ * <ul>
+ * <li>
+ * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
+ * Regularized Gamma Function</a>, equation (1).</li>
+ * <li>
+ * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
+ * Incomplete Gamma Function</a>, equation (4).</li>
+ * <li>
+ * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
+ * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
+ * </li>
+ * </ul>
+ *
+ * @param a the a parameter.
+ * @param x the value.
+ * @param epsilon When the absolute value of the nth item in the
+ * series is less than epsilon the approximation ceases
+ * to calculate further elements in the series.
+ * @param maxIterations Maximum number of "iterations" to complete.
+ * @return the regularized gamma function P(a, x)
+ * @throws MathException if the algorithm fails to converge.
+ */
+ public static double regularizedGammaP(double a,
+ double x,
+ double epsilon,
+ int maxIterations)
+ throws MathException
+ {
+ double ret;
+
+ if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
+ ret = Double.NaN;
+ } else if (x == 0.0) {
+ ret = 0.0;
+ } else if (x >= a + 1) {
+ // use regularizedGammaQ because it should converge faster in this
+ // case.
+ ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
+ } else {
+ // calculate series
+ double n = 0.0; // current element index
+ double an = 1.0 / a; // n-th element in the series
+ double sum = an; // partial sum
+ while (FastMath.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
+ // compute next element in the series
+ n = n + 1.0;
+ an = an * (x / (a + n));
+
+ // update partial sum
+ sum = sum + an;
+ }
+ if (n >= maxIterations) {
+ throw new MaxIterationsExceededException(maxIterations);
+ } else if (Double.isInfinite(sum)) {
+ ret = 1.0;
+ } else {
+ ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * sum;
+ }
+ }
+
+ return ret;
+ }
+
+ /**
+ * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
+ *
+ * @param a the a parameter.
+ * @param x the value.
+ * @return the regularized gamma function Q(a, x)
+ * @throws MathException if the algorithm fails to converge.
+ */
+ public static double regularizedGammaQ(double a, double x)
+ throws MathException
+ {
+ return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
+ }
+
+ /**
+ * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
+ *
+ * The implementation of this method is based on:
+ * <ul>
+ * <li>
+ * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
+ * Regularized Gamma Function</a>, equation (1).</li>
+ * <li>
+ * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
+ * Regularized incomplete gamma function: Continued fraction representations (formula 06.08.10.0003)</a></li>
+ * </ul>
+ *
+ * @param a the a parameter.
+ * @param x the value.
+ * @param epsilon When the absolute value of the nth item in the
+ * series is less than epsilon the approximation ceases
+ * to calculate further elements in the series.
+ * @param maxIterations Maximum number of "iterations" to complete.
+ * @return the regularized gamma function P(a, x)
+ * @throws MathException if the algorithm fails to converge.
+ */
+ public static double regularizedGammaQ(final double a,
+ double x,
+ double epsilon,
+ int maxIterations)
+ throws MathException
+ {
+ double ret;
+
+ if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
+ ret = Double.NaN;
+ } else if (x == 0.0) {
+ ret = 1.0;
+ } else if (x < a + 1.0) {
+ // use regularizedGammaP because it should converge faster in this
+ // case.
+ ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
+ } else {
+ // create continued fraction
+ ContinuedFraction cf = new ContinuedFraction() {
+
+ @Override
+ protected double getA(int n, double x) {
+ return ((2.0 * n) + 1.0) - a + x;
+ }
+
+ @Override
+ protected double getB(int n, double x) {
+ return n * (a - n);
+ }
+ };
+
+ ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
+ ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * ret;
+ }
+
+ return ret;
+ }
+
+
+ /**
+ * <p>Computes the digamma function of x.</p>
+ *
+ * <p>This is an independently written implementation of the algorithm described in
+ * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
+ *
+ * <p>Some of the constants have been changed to increase accuracy at the moderate expense
+ * of run-time. The result should be accurate to within 10^-8 absolute tolerance for
+ * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
+ *
+ * <p>Performance for large negative values of x will be quite expensive (proportional to
+ * |x|). Accuracy for negative values of x should be about 10^-8 absolute for results
+ * less than 10^5 and 10^-8 relative for results larger than that.</p>
+ *
+ * @param x the argument
+ * @return digamma(x) to within 10-8 relative or absolute error whichever is smaller
+ * @see <a href="http://en.wikipedia.org/wiki/Digamma_function"> Digamma at wikipedia </a>
+ * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf"> Bernardo&apos;s original article </a>
+ * @since 2.0
+ */
+ public static double digamma(double x) {
+ if (x > 0 && x <= S_LIMIT) {
+ // use method 5 from Bernardo AS103
+ // accurate to O(x)
+ return -GAMMA - 1 / x;
+ }
+
+ if (x >= C_LIMIT) {
+ // use method 4 (accurate to O(1/x^8)
+ double inv = 1 / (x * x);
+ // 1 1 1 1
+ // log(x) - --- - ------ + ------- - -------
+ // 2 x 12 x^2 120 x^4 252 x^6
+ return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252));
+ }
+
+ return digamma(x + 1) - 1 / x;
+ }
+
+ /**
+ * <p>Computes the trigamma function of x. This function is derived by taking the derivative of
+ * the implementation of digamma.</p>
+ *
+ * @param x the argument
+ * @return trigamma(x) to within 10-8 relative or absolute error whichever is smaller
+ * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function"> Trigamma at wikipedia </a>
+ * @see Gamma#digamma(double)
+ * @since 2.0
+ */
+ public static double trigamma(double x) {
+ if (x > 0 && x <= S_LIMIT) {
+ return 1 / (x * x);
+ }
+
+ if (x >= C_LIMIT) {
+ double inv = 1 / (x * x);
+ // 1 1 1 1 1
+ // - + ---- + ---- - ----- + -----
+ // x 2 3 5 7
+ // 2 x 6 x 30 x 42 x
+ return 1 / x + inv / 2 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv / 42));
+ }
+
+ return trigamma(x + 1) + 1 / (x * x);
+ }
+}