summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java')
-rw-r--r--src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java252
1 files changed, 252 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java b/src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java
new file mode 100644
index 0000000..db79c99
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/transform/FastHadamardTransformer.java
@@ -0,0 +1,252 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.transform;
+
+import org.apache.commons.math.FunctionEvaluationException;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.analysis.UnivariateRealFunction;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+
+/**
+ * Implements the <a href="http://www.archive.chipcenter.com/dsp/DSP000517F1.html">Fast Hadamard Transform</a> (FHT).
+ * Transformation of an input vector x to the output vector y.
+ * <p>In addition to transformation of real vectors, the Hadamard transform can
+ * transform integer vectors into integer vectors. However, this integer transform
+ * cannot be inverted directly. Due to a scaling factor it may lead to rational results.
+ * As an example, the inverse transform of integer vector (0, 1, 0, 1) is rational
+ * vector (1/2, -1/2, 0, 0).</p>
+ * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
+ * @since 2.0
+ */
+public class FastHadamardTransformer implements RealTransformer {
+
+ /** {@inheritDoc} */
+ public double[] transform(double f[])
+ throws IllegalArgumentException {
+ return fht(f);
+ }
+
+ /** {@inheritDoc} */
+ public double[] transform(UnivariateRealFunction f,
+ double min, double max, int n)
+ throws FunctionEvaluationException, IllegalArgumentException {
+ return fht(FastFourierTransformer.sample(f, min, max, n));
+ }
+
+ /** {@inheritDoc} */
+ public double[] inversetransform(double f[])
+ throws IllegalArgumentException {
+ return FastFourierTransformer.scaleArray(fht(f), 1.0 / f.length);
+ }
+
+ /** {@inheritDoc} */
+ public double[] inversetransform(UnivariateRealFunction f,
+ double min, double max, int n)
+ throws FunctionEvaluationException, IllegalArgumentException {
+ final double[] unscaled =
+ fht(FastFourierTransformer.sample(f, min, max, n));
+ return FastFourierTransformer.scaleArray(unscaled, 1.0 / n);
+ }
+
+ /**
+ * Transform the given real data set.
+ * <p>The integer transform cannot be inverted directly, due to a scaling
+ * factor it may lead to double results.</p>
+ * @param f the integer data array to be transformed (signal)
+ * @return the integer transformed array (spectrum)
+ * @throws IllegalArgumentException if any parameters are invalid
+ */
+ public int[] transform(int f[])
+ throws IllegalArgumentException {
+ return fht(f);
+ }
+
+ /**
+ * The FHT (Fast Hadamard Transformation) which uses only subtraction and addition.
+ * <br>
+ * Requires <b>Nlog2N = n2</b><sup>n</sup> additions.
+ * <br>
+ * <br>
+ * <b><u>Short Table of manual calculation for N=8:</u></b>
+ * <ol>
+ * <li><b>x</b> is the input vector we want to transform</li>
+ * <li><b>y</b> is the output vector which is our desired result</li>
+ * <li>a and b are just helper rows</li>
+ * </ol>
+ * <pre>
+ * <code>
+ * +----+----------+---------+----------+
+ * | <b>x</b> | <b>a</b> | <b>b</b> | <b>y</b> |
+ * +----+----------+---------+----------+
+ * | x<sub>0</sub> | a<sub>0</sub>=x<sub>0</sub>+x<sub>1</sub> | b<sub>0</sub>=a<sub>0</sub>+a<sub>1</sub> | y<sub>0</sub>=b<sub>0</sub>+b<sub>1</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>1</sub> | a<sub>1</sub>=x<sub>2</sub>+x<sub>3</sub> | b<sub>0</sub>=a<sub>2</sub>+a<sub>3</sub> | y<sub>0</sub>=b<sub>2</sub>+b<sub>3</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>2</sub> | a<sub>2</sub>=x<sub>4</sub>+x<sub>5</sub> | b<sub>0</sub>=a<sub>4</sub>+a<sub>5</sub> | y<sub>0</sub>=b<sub>4</sub>+b<sub>5</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>3</sub> | a<sub>3</sub>=x<sub>6</sub>+x<sub>7</sub> | b<sub>0</sub>=a<sub>6</sub>+a<sub>7</sub> | y<sub>0</sub>=b<sub>6</sub>+b<sub>7</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>4</sub> | a<sub>0</sub>=x<sub>0</sub>-x<sub>1</sub> | b<sub>0</sub>=a<sub>0</sub>-a<sub>1</sub> | y<sub>0</sub>=b<sub>0</sub>-b<sub>1</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>5</sub> | a<sub>1</sub>=x<sub>2</sub>-x<sub>3</sub> | b<sub>0</sub>=a<sub>2</sub>-a<sub>3</sub> | y<sub>0</sub>=b<sub>2</sub>-b<sub>3</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>6</sub> | a<sub>2</sub>=x<sub>4</sub>-x<sub>5</sub> | b<sub>0</sub>=a<sub>4</sub>-a<sub>5</sub> | y<sub>0</sub>=b<sub>4</sub>-b<sub>5</sub> |
+ * +----+----------+---------+----------+
+ * | x<sub>7</sub> | a<sub>3</sub>=x<sub>6</sub>-x<sub>7</sub> | b<sub>0</sub>=a<sub>6</sub>-a<sub>7</sub> | y<sub>0</sub>=b<sub>6</sub>-b<sub>7</sub> |
+ * +----+----------+---------+----------+
+ * </code>
+ * </pre>
+ *
+ * <b><u>How it works</u></b>
+ * <ol>
+ * <li>Construct a matrix with N rows and n+1 columns<br> <b>hadm[n+1][N]</b>
+ * <br><i>(If I use [x][y] it always means [row-offset][column-offset] of a Matrix with n rows and m columns. Its entries go from M[0][0] to M[n][m])</i></li>
+ * <li>Place the input vector <b>x[N]</b> in the first column of the matrix <b>hadm</b></li>
+ * <li>The entries of the submatrix D<sub>top</sub> are calculated as follows.
+ * <br>D<sub>top</sub> goes from entry [0][1] to [N/2-1][n+1].
+ * <br>The columns of D<sub>top</sub> are the pairwise mutually exclusive sums of the previous column
+ * </li>
+ * <li>The entries of the submatrix D<sub>bottom</sub> are calculated as follows.
+ * <br>D<sub>bottom</sub> goes from entry [N/2][1] to [N][n+1].
+ * <br>The columns of D<sub>bottom</sub> are the pairwise differences of the previous column
+ * </li>
+ * <li>How D<sub>top</sub> and D<sub>bottom</sub> you can understand best with the example for N=8 above.
+ * <li>The output vector y is now in the last column of <b>hadm</b></li>
+ * <li><i>Algorithm from: http://www.archive.chipcenter.com/dsp/DSP000517F1.html</i></li>
+ * </ol>
+ * <br>
+ * <b><u>Visually</u></b>
+ * <pre>
+ * +--------+---+---+---+-----+---+
+ * | 0 | 1 | 2 | 3 | ... |n+1|
+ * +------+--------+---+---+---+-----+---+
+ * |0 | x<sub>0</sub> | /\ |
+ * |1 | x<sub>1</sub> | || |
+ * |2 | x<sub>2</sub> | <= D<sub>top</sub> => |
+ * |... | ... | || |
+ * |N/2-1 | x<sub>N/2-1</sub> | \/ |
+ * +------+--------+---+---+---+-----+---+
+ * |N/2 | x<sub>N/2</sub> | /\ |
+ * |N/2+1 | x<sub>N/2+1</sub> | || |
+ * |N/2+2 | x<sub>N/2+2</sub> | <= D<sub>bottom</sub> => | which is in the last column of the matrix
+ * |... | ... | || |
+ * |N | x<sub>N/2</sub> | \/ |
+ * +------+--------+---+---+---+-----+---+
+ * </pre>
+ *
+ * @param x input vector
+ * @return y output vector
+ * @exception IllegalArgumentException if input array is not a power of 2
+ */
+ protected double[] fht(double x[]) throws IllegalArgumentException {
+
+ // n is the row count of the input vector x
+ final int n = x.length;
+ final int halfN = n / 2;
+
+ // n has to be of the form n = 2^p !!
+ if (!FastFourierTransformer.isPowerOf2(n)) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POWER_OF_TWO,
+ n);
+ }
+
+ // Instead of creating a matrix with p+1 columns and n rows
+ // we will use two single dimension arrays which we will use in an alternating way.
+ double[] yPrevious = new double[n];
+ double[] yCurrent = x.clone();
+
+ // iterate from left to right (column)
+ for (int j = 1; j < n; j <<= 1) {
+
+ // switch columns
+ final double[] yTmp = yCurrent;
+ yCurrent = yPrevious;
+ yPrevious = yTmp;
+
+ // iterate from top to bottom (row)
+ for (int i = 0; i < halfN; ++i) {
+ // D<sub>top</sub>
+ // The top part works with addition
+ final int twoI = 2 * i;
+ yCurrent[i] = yPrevious[twoI] + yPrevious[twoI + 1];
+ }
+ for (int i = halfN; i < n; ++i) {
+ // D<sub>bottom</sub>
+ // The bottom part works with subtraction
+ final int twoI = 2 * i;
+ yCurrent[i] = yPrevious[twoI - n] - yPrevious[twoI - n + 1];
+ }
+ }
+
+ // return the last computed output vector y
+ return yCurrent;
+
+ }
+ /**
+ * The FHT (Fast Hadamard Transformation) which uses only subtraction and addition.
+ * @param x input vector
+ * @return y output vector
+ * @exception IllegalArgumentException if input array is not a power of 2
+ */
+ protected int[] fht(int x[]) throws IllegalArgumentException {
+
+ // n is the row count of the input vector x
+ final int n = x.length;
+ final int halfN = n / 2;
+
+ // n has to be of the form n = 2^p !!
+ if (!FastFourierTransformer.isPowerOf2(n)) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.NOT_POWER_OF_TWO,
+ n);
+ }
+
+ // Instead of creating a matrix with p+1 columns and n rows
+ // we will use two single dimension arrays which we will use in an alternating way.
+ int[] yPrevious = new int[n];
+ int[] yCurrent = x.clone();
+
+ // iterate from left to right (column)
+ for (int j = 1; j < n; j <<= 1) {
+
+ // switch columns
+ final int[] yTmp = yCurrent;
+ yCurrent = yPrevious;
+ yPrevious = yTmp;
+
+ // iterate from top to bottom (row)
+ for (int i = 0; i < halfN; ++i) {
+ // D<sub>top</sub>
+ // The top part works with addition
+ final int twoI = 2 * i;
+ yCurrent[i] = yPrevious[twoI] + yPrevious[twoI + 1];
+ }
+ for (int i = halfN; i < n; ++i) {
+ // D<sub>bottom</sub>
+ // The bottom part works with subtraction
+ final int twoI = 2 * i;
+ yCurrent[i] = yPrevious[twoI - n] - yPrevious[twoI - n + 1];
+ }
+ }
+
+ // return the last computed output vector y
+ return yCurrent;
+
+ }
+
+}