summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java')
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java588
1 files changed, 588 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java
new file mode 100644
index 0000000..3eaea3a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.java
@@ -0,0 +1,588 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.geometry.euclidean.threed;
+
+import java.io.Serializable;
+import java.text.NumberFormat;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathArithmeticException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.Vector;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * This class implements vectors in a three-dimensional space.
+ * <p>Instance of this class are guaranteed to be immutable.</p>
+ * @since 1.2
+ */
+public class Vector3D implements Serializable, Vector<Euclidean3D> {
+
+ /** Null vector (coordinates: 0, 0, 0). */
+ public static final Vector3D ZERO = new Vector3D(0, 0, 0);
+
+ /** First canonical vector (coordinates: 1, 0, 0). */
+ public static final Vector3D PLUS_I = new Vector3D(1, 0, 0);
+
+ /** Opposite of the first canonical vector (coordinates: -1, 0, 0). */
+ public static final Vector3D MINUS_I = new Vector3D(-1, 0, 0);
+
+ /** Second canonical vector (coordinates: 0, 1, 0). */
+ public static final Vector3D PLUS_J = new Vector3D(0, 1, 0);
+
+ /** Opposite of the second canonical vector (coordinates: 0, -1, 0). */
+ public static final Vector3D MINUS_J = new Vector3D(0, -1, 0);
+
+ /** Third canonical vector (coordinates: 0, 0, 1). */
+ public static final Vector3D PLUS_K = new Vector3D(0, 0, 1);
+
+ /** Opposite of the third canonical vector (coordinates: 0, 0, -1). */
+ public static final Vector3D MINUS_K = new Vector3D(0, 0, -1);
+
+ // CHECKSTYLE: stop ConstantName
+ /** A vector with all coordinates set to NaN. */
+ public static final Vector3D NaN = new Vector3D(Double.NaN, Double.NaN, Double.NaN);
+ // CHECKSTYLE: resume ConstantName
+
+ /** A vector with all coordinates set to positive infinity. */
+ public static final Vector3D POSITIVE_INFINITY =
+ new Vector3D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
+
+ /** A vector with all coordinates set to negative infinity. */
+ public static final Vector3D NEGATIVE_INFINITY =
+ new Vector3D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY);
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 1313493323784566947L;
+
+ /** Abscissa. */
+ private final double x;
+
+ /** Ordinate. */
+ private final double y;
+
+ /** Height. */
+ private final double z;
+
+ /** Simple constructor.
+ * Build a vector from its coordinates
+ * @param x abscissa
+ * @param y ordinate
+ * @param z height
+ * @see #getX()
+ * @see #getY()
+ * @see #getZ()
+ */
+ public Vector3D(double x, double y, double z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ /** Simple constructor.
+ * Build a vector from its coordinates
+ * @param v coordinates array
+ * @exception DimensionMismatchException if array does not have 3 elements
+ * @see #toArray()
+ */
+ public Vector3D(double[] v) throws DimensionMismatchException {
+ if (v.length != 3) {
+ throw new DimensionMismatchException(v.length, 3);
+ }
+ this.x = v[0];
+ this.y = v[1];
+ this.z = v[2];
+ }
+
+ /** Simple constructor.
+ * Build a vector from its azimuthal coordinates
+ * @param alpha azimuth (&alpha;) around Z
+ * (0 is +X, &pi;/2 is +Y, &pi; is -X and 3&pi;/2 is -Y)
+ * @param delta elevation (&delta;) above (XY) plane, from -&pi;/2 to +&pi;/2
+ * @see #getAlpha()
+ * @see #getDelta()
+ */
+ public Vector3D(double alpha, double delta) {
+ double cosDelta = FastMath.cos(delta);
+ this.x = FastMath.cos(alpha) * cosDelta;
+ this.y = FastMath.sin(alpha) * cosDelta;
+ this.z = FastMath.sin(delta);
+ }
+
+ /** Multiplicative constructor
+ * Build a vector from another one and a scale factor.
+ * The vector built will be a * u
+ * @param a scale factor
+ * @param u base (unscaled) vector
+ */
+ public Vector3D(double a, Vector3D u) {
+ this.x = a * u.x;
+ this.y = a * u.y;
+ this.z = a * u.z;
+ }
+
+ /** Linear constructor
+ * Build a vector from two other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) {
+ this.x = MathArrays.linearCombination(a1, u1.x, a2, u2.x);
+ this.y = MathArrays.linearCombination(a1, u1.y, a2, u2.y);
+ this.z = MathArrays.linearCombination(a1, u1.z, a2, u2.z);
+ }
+
+ /** Linear constructor
+ * Build a vector from three other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
+ double a3, Vector3D u3) {
+ this.x = MathArrays.linearCombination(a1, u1.x, a2, u2.x, a3, u3.x);
+ this.y = MathArrays.linearCombination(a1, u1.y, a2, u2.y, a3, u3.y);
+ this.z = MathArrays.linearCombination(a1, u1.z, a2, u2.z, a3, u3.z);
+ }
+
+ /** Linear constructor
+ * Build a vector from four other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ * @param a4 fourth scale factor
+ * @param u4 fourth base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
+ double a3, Vector3D u3, double a4, Vector3D u4) {
+ this.x = MathArrays.linearCombination(a1, u1.x, a2, u2.x, a3, u3.x, a4, u4.x);
+ this.y = MathArrays.linearCombination(a1, u1.y, a2, u2.y, a3, u3.y, a4, u4.y);
+ this.z = MathArrays.linearCombination(a1, u1.z, a2, u2.z, a3, u3.z, a4, u4.z);
+ }
+
+ /** Get the abscissa of the vector.
+ * @return abscissa of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getX() {
+ return x;
+ }
+
+ /** Get the ordinate of the vector.
+ * @return ordinate of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getY() {
+ return y;
+ }
+
+ /** Get the height of the vector.
+ * @return height of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getZ() {
+ return z;
+ }
+
+ /** Get the vector coordinates as a dimension 3 array.
+ * @return vector coordinates
+ * @see #Vector3D(double[])
+ */
+ public double[] toArray() {
+ return new double[] { x, y, z };
+ }
+
+ /** {@inheritDoc} */
+ public Space getSpace() {
+ return Euclidean3D.getInstance();
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D getZero() {
+ return ZERO;
+ }
+
+ /** {@inheritDoc} */
+ public double getNorm1() {
+ return FastMath.abs(x) + FastMath.abs(y) + FastMath.abs(z);
+ }
+
+ /** {@inheritDoc} */
+ public double getNorm() {
+ // there are no cancellation problems here, so we use the straightforward formula
+ return FastMath.sqrt (x * x + y * y + z * z);
+ }
+
+ /** {@inheritDoc} */
+ public double getNormSq() {
+ // there are no cancellation problems here, so we use the straightforward formula
+ return x * x + y * y + z * z;
+ }
+
+ /** {@inheritDoc} */
+ public double getNormInf() {
+ return FastMath.max(FastMath.max(FastMath.abs(x), FastMath.abs(y)), FastMath.abs(z));
+ }
+
+ /** Get the azimuth of the vector.
+ * @return azimuth (&alpha;) of the vector, between -&pi; and +&pi;
+ * @see #Vector3D(double, double)
+ */
+ public double getAlpha() {
+ return FastMath.atan2(y, x);
+ }
+
+ /** Get the elevation of the vector.
+ * @return elevation (&delta;) of the vector, between -&pi;/2 and +&pi;/2
+ * @see #Vector3D(double, double)
+ */
+ public double getDelta() {
+ return FastMath.asin(z / getNorm());
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D add(final Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ return new Vector3D(x + v3.x, y + v3.y, z + v3.z);
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D add(double factor, final Vector<Euclidean3D> v) {
+ return new Vector3D(1, this, factor, (Vector3D) v);
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D subtract(final Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ return new Vector3D(x - v3.x, y - v3.y, z - v3.z);
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D subtract(final double factor, final Vector<Euclidean3D> v) {
+ return new Vector3D(1, this, -factor, (Vector3D) v);
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D normalize() throws MathArithmeticException {
+ double s = getNorm();
+ if (s == 0) {
+ throw new MathArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
+ }
+ return scalarMultiply(1 / s);
+ }
+
+ /** Get a vector orthogonal to the instance.
+ * <p>There are an infinite number of normalized vectors orthogonal
+ * to the instance. This method picks up one of them almost
+ * arbitrarily. It is useful when one needs to compute a reference
+ * frame with one of the axes in a predefined direction. The
+ * following example shows how to build a frame having the k axis
+ * aligned with the known vector u :
+ * <pre><code>
+ * Vector3D k = u.normalize();
+ * Vector3D i = k.orthogonal();
+ * Vector3D j = Vector3D.crossProduct(k, i);
+ * </code></pre></p>
+ * @return a new normalized vector orthogonal to the instance
+ * @exception MathArithmeticException if the norm of the instance is null
+ */
+ public Vector3D orthogonal() throws MathArithmeticException {
+
+ double threshold = 0.6 * getNorm();
+ if (threshold == 0) {
+ throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ if (FastMath.abs(x) <= threshold) {
+ double inverse = 1 / FastMath.sqrt(y * y + z * z);
+ return new Vector3D(0, inverse * z, -inverse * y);
+ } else if (FastMath.abs(y) <= threshold) {
+ double inverse = 1 / FastMath.sqrt(x * x + z * z);
+ return new Vector3D(-inverse * z, 0, inverse * x);
+ }
+ double inverse = 1 / FastMath.sqrt(x * x + y * y);
+ return new Vector3D(inverse * y, -inverse * x, 0);
+
+ }
+
+ /** Compute the angular separation between two vectors.
+ * <p>This method computes the angular separation between two
+ * vectors using the dot product for well separated vectors and the
+ * cross product for almost aligned vectors. This allows to have a
+ * good accuracy in all cases, even for vectors very close to each
+ * other.</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return angular separation between v1 and v2
+ * @exception MathArithmeticException if either vector has a null norm
+ */
+ public static double angle(Vector3D v1, Vector3D v2) throws MathArithmeticException {
+
+ double normProduct = v1.getNorm() * v2.getNorm();
+ if (normProduct == 0) {
+ throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ double dot = v1.dotProduct(v2);
+ double threshold = normProduct * 0.9999;
+ if ((dot < -threshold) || (dot > threshold)) {
+ // the vectors are almost aligned, compute using the sine
+ Vector3D v3 = crossProduct(v1, v2);
+ if (dot >= 0) {
+ return FastMath.asin(v3.getNorm() / normProduct);
+ }
+ return FastMath.PI - FastMath.asin(v3.getNorm() / normProduct);
+ }
+
+ // the vectors are sufficiently separated to use the cosine
+ return FastMath.acos(dot / normProduct);
+
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D negate() {
+ return new Vector3D(-x, -y, -z);
+ }
+
+ /** {@inheritDoc} */
+ public Vector3D scalarMultiply(double a) {
+ return new Vector3D(a * x, a * y, a * z);
+ }
+
+ /** {@inheritDoc} */
+ public boolean isNaN() {
+ return Double.isNaN(x) || Double.isNaN(y) || Double.isNaN(z);
+ }
+
+ /** {@inheritDoc} */
+ public boolean isInfinite() {
+ return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y) || Double.isInfinite(z));
+ }
+
+ /**
+ * Test for the equality of two 3D vectors.
+ * <p>
+ * If all coordinates of two 3D vectors are exactly the same, and none are
+ * <code>Double.NaN</code>, the two 3D vectors are considered to be equal.
+ * </p>
+ * <p>
+ * <code>NaN</code> coordinates are considered to affect globally the vector
+ * and be equals to each other - i.e, if either (or all) coordinates of the
+ * 3D vector are equal to <code>Double.NaN</code>, the 3D vector is equal to
+ * {@link #NaN}.
+ * </p>
+ *
+ * @param other Object to test for equality to this
+ * @return true if two 3D vector objects are equal, false if
+ * object is null, not an instance of Vector3D, or
+ * not equal to this Vector3D instance
+ *
+ */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof Vector3D) {
+ final Vector3D rhs = (Vector3D)other;
+ if (rhs.isNaN()) {
+ return this.isNaN();
+ }
+
+ return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
+ }
+ return false;
+ }
+
+ /**
+ * Get a hashCode for the 3D vector.
+ * <p>
+ * All NaN values have the same hash code.</p>
+ *
+ * @return a hash code value for this object
+ */
+ @Override
+ public int hashCode() {
+ if (isNaN()) {
+ return 642;
+ }
+ return 643 * (164 * MathUtils.hash(x) + 3 * MathUtils.hash(y) + MathUtils.hash(z));
+ }
+
+ /** {@inheritDoc}
+ * <p>
+ * The implementation uses specific multiplication and addition
+ * algorithms to preserve accuracy and reduce cancellation effects.
+ * It should be very accurate even for nearly orthogonal vectors.
+ * </p>
+ * @see MathArrays#linearCombination(double, double, double, double, double, double)
+ */
+ public double dotProduct(final Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ return MathArrays.linearCombination(x, v3.x, y, v3.y, z, v3.z);
+ }
+
+ /** Compute the cross-product of the instance with another vector.
+ * @param v other vector
+ * @return the cross product this ^ v as a new Vector3D
+ */
+ public Vector3D crossProduct(final Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ return new Vector3D(MathArrays.linearCombination(y, v3.z, -z, v3.y),
+ MathArrays.linearCombination(z, v3.x, -x, v3.z),
+ MathArrays.linearCombination(x, v3.y, -y, v3.x));
+ }
+
+ /** {@inheritDoc} */
+ public double distance1(Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ final double dx = FastMath.abs(v3.x - x);
+ final double dy = FastMath.abs(v3.y - y);
+ final double dz = FastMath.abs(v3.z - z);
+ return dx + dy + dz;
+ }
+
+ /** {@inheritDoc} */
+ public double distance(Vector<Euclidean3D> v) {
+ return distance((Point<Euclidean3D>) v);
+ }
+
+ /** {@inheritDoc} */
+ public double distance(Point<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ final double dx = v3.x - x;
+ final double dy = v3.y - y;
+ final double dz = v3.z - z;
+ return FastMath.sqrt(dx * dx + dy * dy + dz * dz);
+ }
+
+ /** {@inheritDoc} */
+ public double distanceInf(Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ final double dx = FastMath.abs(v3.x - x);
+ final double dy = FastMath.abs(v3.y - y);
+ final double dz = FastMath.abs(v3.z - z);
+ return FastMath.max(FastMath.max(dx, dy), dz);
+ }
+
+ /** {@inheritDoc} */
+ public double distanceSq(Vector<Euclidean3D> v) {
+ final Vector3D v3 = (Vector3D) v;
+ final double dx = v3.x - x;
+ final double dy = v3.y - y;
+ final double dz = v3.z - z;
+ return dx * dx + dy * dy + dz * dz;
+ }
+
+ /** Compute the dot-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the dot product v1.v2
+ */
+ public static double dotProduct(Vector3D v1, Vector3D v2) {
+ return v1.dotProduct(v2);
+ }
+
+ /** Compute the cross-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the cross product v1 ^ v2 as a new Vector
+ */
+ public static Vector3D crossProduct(final Vector3D v1, final Vector3D v2) {
+ return v1.crossProduct(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
+ */
+ public static double distance1(Vector3D v1, Vector3D v2) {
+ return v1.distance1(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
+ */
+ public static double distance(Vector3D v1, Vector3D v2) {
+ return v1.distance(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
+ */
+ public static double distanceInf(Vector3D v1, Vector3D v2) {
+ return v1.distanceInf(v2);
+ }
+
+ /** Compute the square of the distance between two vectors.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the square of the distance between v1 and v2
+ */
+ public static double distanceSq(Vector3D v1, Vector3D v2) {
+ return v1.distanceSq(v2);
+ }
+
+ /** Get a string representation of this vector.
+ * @return a string representation of this vector
+ */
+ @Override
+ public String toString() {
+ return Vector3DFormat.getInstance().format(this);
+ }
+
+ /** {@inheritDoc} */
+ public String toString(final NumberFormat format) {
+ return new Vector3DFormat(format).format(this);
+ }
+
+}