summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java274
1 files changed, 274 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java b/src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java
new file mode 100644
index 0000000..b2f8d33
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/linear/TriDiagonalTransformer.java
@@ -0,0 +1,274 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.linear;
+
+import org.apache.commons.math3.util.FastMath;
+
+import java.util.Arrays;
+
+/**
+ * Class transforming a symmetrical matrix to tridiagonal shape.
+ *
+ * <p>A symmetrical m &times; m matrix A can be written as the product of three matrices: A = Q
+ * &times; T &times; Q<sup>T</sup> with Q an orthogonal matrix and T a symmetrical tridiagonal
+ * matrix. Both Q and T are m &times; m matrices.
+ *
+ * <p>This implementation only uses the upper part of the matrix, the part below the diagonal is not
+ * accessed at all.
+ *
+ * <p>Transformation to tridiagonal shape is often not a goal by itself, but it is an intermediate
+ * step in more general decomposition algorithms like {@link EigenDecomposition eigen
+ * decomposition}. This class is therefore intended for internal use by the library and is not
+ * public. As a consequence of this explicitly limited scope, many methods directly returns
+ * references to internal arrays, not copies.
+ *
+ * @since 2.0
+ */
+class TriDiagonalTransformer {
+ /** Householder vectors. */
+ private final double householderVectors[][];
+
+ /** Main diagonal. */
+ private final double[] main;
+
+ /** Secondary diagonal. */
+ private final double[] secondary;
+
+ /** Cached value of Q. */
+ private RealMatrix cachedQ;
+
+ /** Cached value of Qt. */
+ private RealMatrix cachedQt;
+
+ /** Cached value of T. */
+ private RealMatrix cachedT;
+
+ /**
+ * Build the transformation to tridiagonal shape of a symmetrical matrix.
+ *
+ * <p>The specified matrix is assumed to be symmetrical without any check. Only the upper
+ * triangular part of the matrix is used.
+ *
+ * @param matrix Symmetrical matrix to transform.
+ * @throws NonSquareMatrixException if the matrix is not square.
+ */
+ TriDiagonalTransformer(RealMatrix matrix) {
+ if (!matrix.isSquare()) {
+ throw new NonSquareMatrixException(
+ matrix.getRowDimension(), matrix.getColumnDimension());
+ }
+
+ final int m = matrix.getRowDimension();
+ householderVectors = matrix.getData();
+ main = new double[m];
+ secondary = new double[m - 1];
+ cachedQ = null;
+ cachedQt = null;
+ cachedT = null;
+
+ // transform matrix
+ transform();
+ }
+
+ /**
+ * Returns the matrix Q of the transform.
+ *
+ * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.
+ *
+ * @return the Q matrix
+ */
+ public RealMatrix getQ() {
+ if (cachedQ == null) {
+ cachedQ = getQT().transpose();
+ }
+ return cachedQ;
+ }
+
+ /**
+ * Returns the transpose of the matrix Q of the transform.
+ *
+ * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.
+ *
+ * @return the Q matrix
+ */
+ public RealMatrix getQT() {
+ if (cachedQt == null) {
+ final int m = householderVectors.length;
+ double[][] qta = new double[m][m];
+
+ // build up first part of the matrix by applying Householder transforms
+ for (int k = m - 1; k >= 1; --k) {
+ final double[] hK = householderVectors[k - 1];
+ qta[k][k] = 1;
+ if (hK[k] != 0.0) {
+ final double inv = 1.0 / (secondary[k - 1] * hK[k]);
+ double beta = 1.0 / secondary[k - 1];
+ qta[k][k] = 1 + beta * hK[k];
+ for (int i = k + 1; i < m; ++i) {
+ qta[k][i] = beta * hK[i];
+ }
+ for (int j = k + 1; j < m; ++j) {
+ beta = 0;
+ for (int i = k + 1; i < m; ++i) {
+ beta += qta[j][i] * hK[i];
+ }
+ beta *= inv;
+ qta[j][k] = beta * hK[k];
+ for (int i = k + 1; i < m; ++i) {
+ qta[j][i] += beta * hK[i];
+ }
+ }
+ }
+ }
+ qta[0][0] = 1;
+ cachedQt = MatrixUtils.createRealMatrix(qta);
+ }
+
+ // return the cached matrix
+ return cachedQt;
+ }
+
+ /**
+ * Returns the tridiagonal matrix T of the transform.
+ *
+ * @return the T matrix
+ */
+ public RealMatrix getT() {
+ if (cachedT == null) {
+ final int m = main.length;
+ double[][] ta = new double[m][m];
+ for (int i = 0; i < m; ++i) {
+ ta[i][i] = main[i];
+ if (i > 0) {
+ ta[i][i - 1] = secondary[i - 1];
+ }
+ if (i < main.length - 1) {
+ ta[i][i + 1] = secondary[i];
+ }
+ }
+ cachedT = MatrixUtils.createRealMatrix(ta);
+ }
+
+ // return the cached matrix
+ return cachedT;
+ }
+
+ /**
+ * Get the Householder vectors of the transform.
+ *
+ * <p>Note that since this class is only intended for internal use, it returns directly a
+ * reference to its internal arrays, not a copy.
+ *
+ * @return the main diagonal elements of the B matrix
+ */
+ double[][] getHouseholderVectorsRef() {
+ return householderVectors;
+ }
+
+ /**
+ * Get the main diagonal elements of the matrix T of the transform.
+ *
+ * <p>Note that since this class is only intended for internal use, it returns directly a
+ * reference to its internal arrays, not a copy.
+ *
+ * @return the main diagonal elements of the T matrix
+ */
+ double[] getMainDiagonalRef() {
+ return main;
+ }
+
+ /**
+ * Get the secondary diagonal elements of the matrix T of the transform.
+ *
+ * <p>Note that since this class is only intended for internal use, it returns directly a
+ * reference to its internal arrays, not a copy.
+ *
+ * @return the secondary diagonal elements of the T matrix
+ */
+ double[] getSecondaryDiagonalRef() {
+ return secondary;
+ }
+
+ /**
+ * Transform original matrix to tridiagonal form.
+ *
+ * <p>Transformation is done using Householder transforms.
+ */
+ private void transform() {
+ final int m = householderVectors.length;
+ final double[] z = new double[m];
+ for (int k = 0; k < m - 1; k++) {
+
+ // zero-out a row and a column simultaneously
+ final double[] hK = householderVectors[k];
+ main[k] = hK[k];
+ double xNormSqr = 0;
+ for (int j = k + 1; j < m; ++j) {
+ final double c = hK[j];
+ xNormSqr += c * c;
+ }
+ final double a = (hK[k + 1] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
+ secondary[k] = a;
+ if (a != 0.0) {
+ // apply Householder transform from left and right simultaneously
+
+ hK[k + 1] -= a;
+ final double beta = -1 / (a * hK[k + 1]);
+
+ // compute a = beta A v, where v is the Householder vector
+ // this loop is written in such a way
+ // 1) only the upper triangular part of the matrix is accessed
+ // 2) access is cache-friendly for a matrix stored in rows
+ Arrays.fill(z, k + 1, m, 0);
+ for (int i = k + 1; i < m; ++i) {
+ final double[] hI = householderVectors[i];
+ final double hKI = hK[i];
+ double zI = hI[i] * hKI;
+ for (int j = i + 1; j < m; ++j) {
+ final double hIJ = hI[j];
+ zI += hIJ * hK[j];
+ z[j] += hIJ * hKI;
+ }
+ z[i] = beta * (z[i] + zI);
+ }
+
+ // compute gamma = beta vT z / 2
+ double gamma = 0;
+ for (int i = k + 1; i < m; ++i) {
+ gamma += z[i] * hK[i];
+ }
+ gamma *= beta / 2;
+
+ // compute z = z - gamma v
+ for (int i = k + 1; i < m; ++i) {
+ z[i] -= gamma * hK[i];
+ }
+
+ // update matrix: A = A - v zT - z vT
+ // only the upper triangular part of the matrix is updated
+ for (int i = k + 1; i < m; ++i) {
+ final double[] hI = householderVectors[i];
+ for (int j = i; j < m; ++j) {
+ hI[j] -= hK[i] * z[j] + z[i] * hK[j];
+ }
+ }
+ }
+ }
+ main[m - 1] = householderVectors[m - 1][m - 1];
+ }
+}