summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java407
1 files changed, 407 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java b/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java
new file mode 100644
index 0000000..e95b657
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java
@@ -0,0 +1,407 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.linear;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.exception.TooManyIterationsException;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.Precision;
+
+/**
+ * Solves a linear problem using the "Two-Phase Simplex" method.
+ * <p>
+ * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided
+ * as arguments to {@link #optimize(OptimizationData...)}:
+ * <ul>
+ * <li>objective function: {@link LinearObjectiveFunction} - mandatory</li>
+ * <li>linear constraints {@link LinearConstraintSet} - mandatory</li>
+ * <li>type of optimization: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType GoalType}
+ * - optional, default: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li>
+ * <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li>
+ * <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li>
+ * <li>callback for the best solution: {@link SolutionCallback} - optional</li>
+ * <li>maximum number of iterations: {@link org.apache.commons.math3.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li>
+ * </ul>
+ * <p>
+ * <b>Note:</b> Depending on the problem definition, the default convergence criteria
+ * may be too strict, resulting in {@link NoFeasibleSolutionException} or
+ * {@link TooManyIterationsException}. In such a case it is advised to adjust these
+ * criteria with more appropriate values, e.g. relaxing the epsilon value.
+ * <p>
+ * Default convergence criteria:
+ * <ul>
+ * <li>Algorithm convergence: 1e-6</li>
+ * <li>Floating-point comparisons: 10 ulp</li>
+ * <li>Cut-Off value: 1e-10</li>
+ * </ul>
+ * <p>
+ * The cut-off value has been introduced to handle the case of very small pivot elements
+ * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy.
+ * Potential pivot elements smaller than this value will be treated as if they were zero
+ * and are thus not considered by the pivot selection mechanism. The default value is safe
+ * for many problems, but may need to be adjusted in case of very small coefficients
+ * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}.
+ *
+ * @since 2.0
+ */
+public class SimplexSolver extends LinearOptimizer {
+ /** Default amount of error to accept in floating point comparisons (as ulps). */
+ static final int DEFAULT_ULPS = 10;
+
+ /** Default cut-off value. */
+ static final double DEFAULT_CUT_OFF = 1e-10;
+
+ /** Default amount of error to accept for algorithm convergence. */
+ private static final double DEFAULT_EPSILON = 1.0e-6;
+
+ /** Amount of error to accept for algorithm convergence. */
+ private final double epsilon;
+
+ /** Amount of error to accept in floating point comparisons (as ulps). */
+ private final int maxUlps;
+
+ /**
+ * Cut-off value for entries in the tableau: values smaller than the cut-off
+ * are treated as zero to improve numerical stability.
+ */
+ private final double cutOff;
+
+ /** The pivot selection method to use. */
+ private PivotSelectionRule pivotSelection;
+
+ /**
+ * The solution callback to access the best solution found so far in case
+ * the optimizer fails to find an optimal solution within the iteration limits.
+ */
+ private SolutionCallback solutionCallback;
+
+ /**
+ * Builds a simplex solver with default settings.
+ */
+ public SimplexSolver() {
+ this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF);
+ }
+
+ /**
+ * Builds a simplex solver with a specified accepted amount of error.
+ *
+ * @param epsilon Amount of error to accept for algorithm convergence.
+ */
+ public SimplexSolver(final double epsilon) {
+ this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF);
+ }
+
+ /**
+ * Builds a simplex solver with a specified accepted amount of error.
+ *
+ * @param epsilon Amount of error to accept for algorithm convergence.
+ * @param maxUlps Amount of error to accept in floating point comparisons.
+ */
+ public SimplexSolver(final double epsilon, final int maxUlps) {
+ this(epsilon, maxUlps, DEFAULT_CUT_OFF);
+ }
+
+ /**
+ * Builds a simplex solver with a specified accepted amount of error.
+ *
+ * @param epsilon Amount of error to accept for algorithm convergence.
+ * @param maxUlps Amount of error to accept in floating point comparisons.
+ * @param cutOff Values smaller than the cutOff are treated as zero.
+ */
+ public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) {
+ this.epsilon = epsilon;
+ this.maxUlps = maxUlps;
+ this.cutOff = cutOff;
+ this.pivotSelection = PivotSelectionRule.DANTZIG;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data. In addition to those documented in
+ * {@link LinearOptimizer#optimize(OptimizationData...)
+ * LinearOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link SolutionCallback}</li>
+ * <li>{@link PivotSelectionRule}</li>
+ * </ul>
+ *
+ * @return {@inheritDoc}
+ * @throws TooManyIterationsException if the maximal number of iterations is exceeded.
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData)
+ throws TooManyIterationsException {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data.
+ * In addition to those documented in
+ * {@link LinearOptimizer#parseOptimizationData(OptimizationData[])
+ * LinearOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link SolutionCallback}</li>
+ * <li>{@link PivotSelectionRule}</li>
+ * </ul>
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ // reset the callback before parsing
+ solutionCallback = null;
+
+ for (OptimizationData data : optData) {
+ if (data instanceof SolutionCallback) {
+ solutionCallback = (SolutionCallback) data;
+ continue;
+ }
+ if (data instanceof PivotSelectionRule) {
+ pivotSelection = (PivotSelectionRule) data;
+ continue;
+ }
+ }
+ }
+
+ /**
+ * Returns the column with the most negative coefficient in the objective function row.
+ *
+ * @param tableau Simple tableau for the problem.
+ * @return the column with the most negative coefficient.
+ */
+ private Integer getPivotColumn(SimplexTableau tableau) {
+ double minValue = 0;
+ Integer minPos = null;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
+ final double entry = tableau.getEntry(0, i);
+ // check if the entry is strictly smaller than the current minimum
+ // do not use a ulp/epsilon check
+ if (entry < minValue) {
+ minValue = entry;
+ minPos = i;
+
+ // Bland's rule: chose the entering column with the lowest index
+ if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) {
+ break;
+ }
+ }
+ }
+ return minPos;
+ }
+
+ /**
+ * Checks whether the given column is valid pivot column, i.e. will result
+ * in a valid pivot row.
+ * <p>
+ * When applying Bland's rule to select the pivot column, it may happen that
+ * there is no corresponding pivot row. This method will check if the selected
+ * pivot column will return a valid pivot row.
+ *
+ * @param tableau simplex tableau for the problem
+ * @param col the column to test
+ * @return {@code true} if the pivot column is valid, {@code false} otherwise
+ */
+ private boolean isValidPivotColumn(SimplexTableau tableau, int col) {
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
+ final double entry = tableau.getEntry(i, col);
+
+ // do the same check as in getPivotRow
+ if (Precision.compareTo(entry, 0d, cutOff) > 0) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
+ *
+ * @param tableau Simplex tableau for the problem.
+ * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}).
+ * @return the row with the minimum ratio.
+ */
+ private Integer getPivotRow(SimplexTableau tableau, final int col) {
+ // create a list of all the rows that tie for the lowest score in the minimum ratio test
+ List<Integer> minRatioPositions = new ArrayList<Integer>();
+ double minRatio = Double.MAX_VALUE;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
+ final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
+ final double entry = tableau.getEntry(i, col);
+
+ // only consider pivot elements larger than the cutOff threshold
+ // selecting others may lead to degeneracy or numerical instabilities
+ if (Precision.compareTo(entry, 0d, cutOff) > 0) {
+ final double ratio = FastMath.abs(rhs / entry);
+ // check if the entry is strictly equal to the current min ratio
+ // do not use a ulp/epsilon check
+ final int cmp = Double.compare(ratio, minRatio);
+ if (cmp == 0) {
+ minRatioPositions.add(i);
+ } else if (cmp < 0) {
+ minRatio = ratio;
+ minRatioPositions.clear();
+ minRatioPositions.add(i);
+ }
+ }
+ }
+
+ if (minRatioPositions.size() == 0) {
+ return null;
+ } else if (minRatioPositions.size() > 1) {
+ // there's a degeneracy as indicated by a tie in the minimum ratio test
+
+ // 1. check if there's an artificial variable that can be forced out of the basis
+ if (tableau.getNumArtificialVariables() > 0) {
+ for (Integer row : minRatioPositions) {
+ for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
+ int column = i + tableau.getArtificialVariableOffset();
+ final double entry = tableau.getEntry(row, column);
+ if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
+ return row;
+ }
+ }
+ }
+ }
+
+ // 2. apply Bland's rule to prevent cycling:
+ // take the row for which the corresponding basic variable has the smallest index
+ //
+ // see http://www.stanford.edu/class/msande310/blandrule.pdf
+ // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
+
+ Integer minRow = null;
+ int minIndex = tableau.getWidth();
+ for (Integer row : minRatioPositions) {
+ final int basicVar = tableau.getBasicVariable(row);
+ if (basicVar < minIndex) {
+ minIndex = basicVar;
+ minRow = row;
+ }
+ }
+ return minRow;
+ }
+ return minRatioPositions.get(0);
+ }
+
+ /**
+ * Runs one iteration of the Simplex method on the given model.
+ *
+ * @param tableau Simple tableau for the problem.
+ * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
+ */
+ protected void doIteration(final SimplexTableau tableau)
+ throws TooManyIterationsException,
+ UnboundedSolutionException {
+
+ incrementIterationCount();
+
+ Integer pivotCol = getPivotColumn(tableau);
+ Integer pivotRow = getPivotRow(tableau, pivotCol);
+ if (pivotRow == null) {
+ throw new UnboundedSolutionException();
+ }
+
+ tableau.performRowOperations(pivotCol, pivotRow);
+ }
+
+ /**
+ * Solves Phase 1 of the Simplex method.
+ *
+ * @param tableau Simple tableau for the problem.
+ * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
+ * @throws NoFeasibleSolutionException if there is no feasible solution?
+ */
+ protected void solvePhase1(final SimplexTableau tableau)
+ throws TooManyIterationsException,
+ UnboundedSolutionException,
+ NoFeasibleSolutionException {
+
+ // make sure we're in Phase 1
+ if (tableau.getNumArtificialVariables() == 0) {
+ return;
+ }
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+
+ // if W is not zero then we have no feasible solution
+ if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
+ throw new NoFeasibleSolutionException();
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public PointValuePair doOptimize()
+ throws TooManyIterationsException,
+ UnboundedSolutionException,
+ NoFeasibleSolutionException {
+
+ // reset the tableau to indicate a non-feasible solution in case
+ // we do not pass phase 1 successfully
+ if (solutionCallback != null) {
+ solutionCallback.setTableau(null);
+ }
+
+ final SimplexTableau tableau =
+ new SimplexTableau(getFunction(),
+ getConstraints(),
+ getGoalType(),
+ isRestrictedToNonNegative(),
+ epsilon,
+ maxUlps);
+
+ solvePhase1(tableau);
+ tableau.dropPhase1Objective();
+
+ // after phase 1, we are sure to have a feasible solution
+ if (solutionCallback != null) {
+ solutionCallback.setTableau(tableau);
+ }
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+
+ // check that the solution respects the nonNegative restriction in case
+ // the epsilon/cutOff values are too large for the actual linear problem
+ // (e.g. with very small constraint coefficients), the solver might actually
+ // find a non-valid solution (with negative coefficients).
+ final PointValuePair solution = tableau.getSolution();
+ if (isRestrictedToNonNegative()) {
+ final double[] coeff = solution.getPoint();
+ for (int i = 0; i < coeff.length; i++) {
+ if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
+ throw new NoFeasibleSolutionException();
+ }
+ }
+ }
+ return solution;
+ }
+}