/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.dfp; import org.apache.commons.math3.analysis.RealFieldUnivariateFunction; import org.apache.commons.math3.analysis.solvers.AllowedSolution; import org.apache.commons.math3.analysis.solvers.FieldBracketingNthOrderBrentSolver; import org.apache.commons.math3.exception.NoBracketingException; import org.apache.commons.math3.exception.NullArgumentException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import org.apache.commons.math3.util.MathUtils; /** * This class implements a modification of the Brent algorithm. * *

The changes with respect to the original Brent algorithm are: * *

* * The given interval must bracket the root. * * @deprecated as of 3.6 replaced with {@link FieldBracketingNthOrderBrentSolver} */ @Deprecated public class BracketingNthOrderBrentSolverDFP extends FieldBracketingNthOrderBrentSolver { /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param functionValueAccuracy Function value accuracy. * @param maximalOrder maximal order. * @exception NumberIsTooSmallException if maximal order is lower than 2 */ public BracketingNthOrderBrentSolverDFP( final Dfp relativeAccuracy, final Dfp absoluteAccuracy, final Dfp functionValueAccuracy, final int maximalOrder) throws NumberIsTooSmallException { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, maximalOrder); } /** * Get the absolute accuracy. * * @return absolute accuracy */ @Override public Dfp getAbsoluteAccuracy() { return super.getAbsoluteAccuracy(); } /** * Get the relative accuracy. * * @return relative accuracy */ @Override public Dfp getRelativeAccuracy() { return super.getRelativeAccuracy(); } /** * Get the function accuracy. * * @return function accuracy */ @Override public Dfp getFunctionValueAccuracy() { return super.getFunctionValueAccuracy(); } /** * Solve for a zero in the given interval. A solver may require that the interval brackets a * single zero root. Solvers that do require bracketing should be able to handle the case where * one of the endpoints is itself a root. * * @param maxEval Maximum number of evaluations. * @param f Function to solve. * @param min Lower bound for the interval. * @param max Upper bound for the interval. * @param allowedSolution The kind of solutions that the root-finding algorithm may accept as * solutions. * @return a value where the function is zero. * @exception NullArgumentException if f is null. * @exception NoBracketingException if root cannot be bracketed */ public Dfp solve( final int maxEval, final UnivariateDfpFunction f, final Dfp min, final Dfp max, final AllowedSolution allowedSolution) throws NullArgumentException, NoBracketingException { return solve(maxEval, f, min, max, min.add(max).divide(2), allowedSolution); } /** * Solve for a zero in the given interval, start at {@code startValue}. A solver may require * that the interval brackets a single zero root. Solvers that do require bracketing should be * able to handle the case where one of the endpoints is itself a root. * * @param maxEval Maximum number of evaluations. * @param f Function to solve. * @param min Lower bound for the interval. * @param max Upper bound for the interval. * @param startValue Start value to use. * @param allowedSolution The kind of solutions that the root-finding algorithm may accept as * solutions. * @return a value where the function is zero. * @exception NullArgumentException if f is null. * @exception NoBracketingException if root cannot be bracketed */ public Dfp solve( final int maxEval, final UnivariateDfpFunction f, final Dfp min, final Dfp max, final Dfp startValue, final AllowedSolution allowedSolution) throws NullArgumentException, NoBracketingException { // checks MathUtils.checkNotNull(f); // wrap the function RealFieldUnivariateFunction fieldF = new RealFieldUnivariateFunction() { /** {@inheritDoc} */ public Dfp value(final Dfp x) { return f.value(x); } }; // delegate to general field solver return solve(maxEval, fieldF, min, max, startValue, allowedSolution); } }