summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/analysis/solvers/SecantSolver.java
blob: 325b6627e4512a6e9ab461f4fa7a335158071bf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis.solvers;

import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;


/**
 * Implements a modified version of the
 * <a href="http://mathworld.wolfram.com/SecantMethod.html">secant method</a>
 * for approximating a zero of a real univariate function.
 * <p>
 * The algorithm is modified to maintain bracketing of a root by successive
 * approximations. Because of forced bracketing, convergence may be slower than
 * the unrestricted secant algorithm. However, this implementation should in
 * general outperform the
 * <a href="http://mathworld.wolfram.com/MethodofFalsePosition.html">
 * regula falsi method.</a></p>
 * <p>
 * The function is assumed to be continuous but not necessarily smooth.</p>
 *
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
 */
public class SecantSolver extends UnivariateRealSolverImpl {

    /**
     * Construct a solver for the given function.
     * @param f function to solve.
     * @deprecated as of 2.0 the function to solve is passed as an argument
     * to the {@link #solve(UnivariateRealFunction, double, double)} or
     * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
     * method.
     */
    @Deprecated
    public SecantSolver(UnivariateRealFunction f) {
        super(f, 100, 1E-6);
    }

    /**
     * Construct a solver.
     * @deprecated in 2.2 (to be removed in 3.0).
     */
    @Deprecated
    public SecantSolver() {
        super(100, 1E-6);
    }

    /** {@inheritDoc} */
    @Deprecated
    public double solve(final double min, final double max)
        throws ConvergenceException, FunctionEvaluationException {
        return solve(f, min, max);
    }

    /** {@inheritDoc} */
    @Deprecated
    public double solve(final double min, final double max, final double initial)
        throws ConvergenceException, FunctionEvaluationException {
        return solve(f, min, max, initial);
    }

    /**
     * Find a zero in the given interval.
     *
     * @param f the function to solve
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param initial the start value to use (ignored)
     * @param maxEval Maximum number of evaluations.
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating the function
     * @throws IllegalArgumentException if min is not less than max or the
     * signs of the values of the function at the endpoints are not opposites
     */
    @Override
    public double solve(int maxEval, final UnivariateRealFunction f,
                        final double min, final double max, final double initial)
        throws MaxIterationsExceededException, FunctionEvaluationException {
        setMaximalIterationCount(maxEval);
        return solve(f, min, max, initial);
    }

    /**
     * Find a zero in the given interval.
     *
     * @param f the function to solve
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param initial the start value to use (ignored)
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating the function
     * @throws IllegalArgumentException if min is not less than max or the
     * signs of the values of the function at the endpoints are not opposites
     * @deprecated in 2.2 (to be removed in 3.0).
     */
    @Deprecated
    public double solve(final UnivariateRealFunction f,
                        final double min, final double max, final double initial)
        throws MaxIterationsExceededException, FunctionEvaluationException {
        return solve(f, min, max);
    }

    /**
     * Find a zero in the given interval.
     * @param f the function to solve
     * @param min the lower bound for the interval.
     * @param max the upper bound for the interval.
     * @param maxEval Maximum number of evaluations.
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException  if the maximum iteration count is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating the function
     * @throws IllegalArgumentException if min is not less than max or the
     * signs of the values of the function at the endpoints are not opposites
     */
    @Override
    public double solve(int maxEval, final UnivariateRealFunction f,
                        final double min, final double max)
        throws MaxIterationsExceededException, FunctionEvaluationException {
        setMaximalIterationCount(maxEval);
        return solve(f, min, max);
    }

    /**
     * Find a zero in the given interval.
     * @param f the function to solve
     * @param min the lower bound for the interval.
     * @param max the upper bound for the interval.
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException  if the maximum iteration count is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating the function
     * @throws IllegalArgumentException if min is not less than max or the
     * signs of the values of the function at the endpoints are not opposites
     * @deprecated in 2.2 (to be removed in 3.0).
     */
    @Deprecated
    public double solve(final UnivariateRealFunction f,
                        final double min, final double max)
        throws MaxIterationsExceededException, FunctionEvaluationException {

        clearResult();
        verifyInterval(min, max);

        // Index 0 is the old approximation for the root.
        // Index 1 is the last calculated approximation  for the root.
        // Index 2 is a bracket for the root with respect to x0.
        // OldDelta is the length of the bracketing interval of the last
        // iteration.
        double x0 = min;
        double x1 = max;
        double y0 = f.value(x0);
        double y1 = f.value(x1);

        // Verify bracketing
        if (y0 * y1 >= 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.SAME_SIGN_AT_ENDPOINTS, min, max, y0, y1);
        }

        double x2 = x0;
        double y2 = y0;
        double oldDelta = x2 - x1;
        int i = 0;
        while (i < maximalIterationCount) {
            if (FastMath.abs(y2) < FastMath.abs(y1)) {
                x0 = x1;
                x1 = x2;
                x2 = x0;
                y0 = y1;
                y1 = y2;
                y2 = y0;
            }
            if (FastMath.abs(y1) <= functionValueAccuracy) {
                setResult(x1, i);
                return result;
            }
            if (FastMath.abs(oldDelta) <
                FastMath.max(relativeAccuracy * FastMath.abs(x1), absoluteAccuracy)) {
                setResult(x1, i);
                return result;
            }
            double delta;
            if (FastMath.abs(y1) > FastMath.abs(y0)) {
                // Function value increased in last iteration. Force bisection.
                delta = 0.5 * oldDelta;
            } else {
                delta = (x0 - x1) / (1 - y0 / y1);
                if (delta / oldDelta > 1) {
                    // New approximation falls outside bracket.
                    // Fall back to bisection.
                    delta = 0.5 * oldDelta;
                }
            }
            x0 = x1;
            y0 = y1;
            x1 = x1 + delta;
            y1 = f.value(x1);
            if ((y1 > 0) == (y2 > 0)) {
                // New bracket is (x0,x1).
                x2 = x0;
                y2 = y0;
            }
            oldDelta = x2 - x1;
            i++;
        }
        throw new MaxIterationsExceededException(maximalIterationCount);
    }

}