summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/GammaDistributionImpl.java
blob: a18789277b99b2e92f27b0b9719ffa7caa3de980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.util.FastMath;

/**
 * The default implementation of {@link GammaDistribution}.
 *
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class GammaDistributionImpl extends AbstractContinuousDistribution
    implements GammaDistribution, Serializable  {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = -3239549463135430361L;

    /** The shape parameter. */
    private double alpha;

    /** The scale parameter. */
    private double beta;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a new gamma distribution with the given alpha and beta values.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     */
    public GammaDistributionImpl(double alpha, double beta) {
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a new gamma distribution with the given alpha and beta values.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
        super();
        setAlphaInternal(alpha);
        setBetaInternal(beta);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     *
     * The implementation of this method is based on:
     * <ul>
     * <li>
     * <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
     * Chi-Squared Distribution</a>, equation (9).</li>
     * <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
     * Belmont, CA: Duxbury Press.</li>
     * </ul>
     *
     * @param x the value at which the CDF is evaluated.
     * @return CDF for this distribution.
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    public double cumulativeProbability(double x) throws MathException{
        double ret;

        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = Gamma.regularizedGammaP(alpha, x / beta);
        }

        return ret;
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X &lt; x) = <code>p</code>.
     * <p>
     * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
     *
     * @param p the desired probability
     * @return x, such that P(X &lt; x) = <code>p</code>
     * @throws MathException if the inverse cumulative probability can not be
     *         computed due to convergence or other numerical errors.
     * @throws IllegalArgumentException if <code>p</code> is not a valid
     *         probability.
     */
    @Override
    public double inverseCumulativeProbability(final double p)
    throws MathException {
        if (p == 0) {
            return 0d;
        }
        if (p == 1) {
            return Double.POSITIVE_INFINITY;
        }
        return super.inverseCumulativeProbability(p);
    }

    /**
     * Modify the shape parameter, alpha.
     * @param alpha the new shape parameter.
     * @throws IllegalArgumentException if <code>alpha</code> is not positive.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setAlpha(double alpha) {
        setAlphaInternal(alpha);
    }

    /**
     * Modify the shape parameter, alpha.
     * @param newAlpha the new shape parameter.
     * @throws IllegalArgumentException if <code>newAlpha</code> is not positive.
     */
    private void setAlphaInternal(double newAlpha) {
        if (newAlpha <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_ALPHA,
                  newAlpha);
        }
        this.alpha = newAlpha;
    }

    /**
     * Access the shape parameter, alpha
     * @return alpha.
     */
    public double getAlpha() {
        return alpha;
    }

    /**
     * Modify the scale parameter, beta.
     * @param newBeta the new scale parameter.
     * @throws IllegalArgumentException if <code>newBeta</code> is not positive.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setBeta(double newBeta) {
        setBetaInternal(newBeta);
    }

    /**
     * Modify the scale parameter, beta.
     * @param newBeta the new scale parameter.
     * @throws IllegalArgumentException if <code>newBeta</code> is not positive.
     */
    private void setBetaInternal(double newBeta) {
        if (newBeta <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_BETA,
                  newBeta);
        }
        this.beta = newBeta;
    }

    /**
     * Access the scale parameter, beta
     * @return beta.
     */
    public double getBeta() {
        return beta;
    }

    /**
     * Returns the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     */
    @Override
    public double density(double x) {
        if (x < 0) return 0;
        return FastMath.pow(x / beta, alpha - 1) / beta * FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha));
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @deprecated
     */
    @Deprecated
    public double density(Double x) {
        return density(x.doubleValue());
    }

    /**
     * Access the domain value lower bound, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return domain value lower bound, i.e.
     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
     */
    @Override
    protected double getDomainLowerBound(double p) {
        // TODO: try to improve on this estimate
        return Double.MIN_VALUE;
    }

    /**
     * Access the domain value upper bound, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return domain value upper bound, i.e.
     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
     */
    @Override
    protected double getDomainUpperBound(double p) {
        // TODO: try to improve on this estimate
        // NOTE: gamma is skewed to the left
        // NOTE: therefore, P(X < &mu;) > .5

        double ret;

        if (p < .5) {
            // use mean
            ret = alpha * beta;
        } else {
            // use max value
            ret = Double.MAX_VALUE;
        }

        return ret;
    }

    /**
     * Access the initial domain value, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return initial domain value
     */
    @Override
    protected double getInitialDomain(double p) {
        // TODO: try to improve on this estimate
        // Gamma is skewed to the left, therefore, P(X < &mu;) > .5

        double ret;

        if (p < .5) {
            // use 1/2 mean
            ret = alpha * beta * .5;
        } else {
            // use mean
            ret = alpha * beta;
        }

        return ret;
    }

    /**
     * Return the absolute accuracy setting of the solver used to estimate
     * inverse cumulative probabilities.
     *
     * @return the solver absolute accuracy
     * @since 2.1
     */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * Returns the upper bound of the support for the distribution.
     *
     * The lower bound of the support is always 0, regardless of the parameters.
     *
     * @return lower bound of the support (always 0)
     * @since 2.2
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * Returns the upper bound of the support for the distribution.
     *
     * The upper bound of the support is always positive infinity,
     * regardless of the parameters.
     *
     * @return upper bound of the support (always Double.POSITIVE_INFINITY)
     * @since 2.2
     */
    public double getSupportUpperBound() {
        return Double.POSITIVE_INFINITY;
    }

    /**
     * Returns the mean.
     *
     * For shape parameter <code>alpha</code> and scale
     * parameter <code>beta</code>, the mean is
     * <code>alpha * beta</code>
     *
     * @return the mean
     * @since 2.2
     */
    public double getNumericalMean() {
        return getAlpha() * getBeta();
    }

    /**
     * Returns the variance.
     *
     * For shape parameter <code>alpha</code> and scale
     * parameter <code>beta</code>, the variance is
     * <code>alpha * beta^2</code>
     *
     * @return the variance
     * @since 2.2
     */
    public double getNumericalVariance() {
        final double b = getBeta();
        return getAlpha() * b * b;
    }
}