summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java
blob: f9dff2d6a649ab1a85a9046e08218c35f7122132 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;

/**
 * The default implementation of {@link HypergeometricDistribution}.
 *
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
        implements HypergeometricDistribution, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -436928820673516179L;

    /** The number of successes in the population. */
    private int numberOfSuccesses;

    /** The population size. */
    private int populationSize;

    /** The sample size. */
    private int sampleSize;

    /**
     * Construct a new hypergeometric distribution with the given the population
     * size, the number of successes in the population, and the sample size.
     *
     * @param populationSize the population size.
     * @param numberOfSuccesses number of successes in the population.
     * @param sampleSize the sample size.
     */
    public HypergeometricDistributionImpl(int populationSize,
            int numberOfSuccesses, int sampleSize) {
        super();
        if (numberOfSuccesses > populationSize) {
            throw MathRuntimeException
                    .createIllegalArgumentException(
                            LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE,
                            numberOfSuccesses, populationSize);
        }
        if (sampleSize > populationSize) {
            throw MathRuntimeException
                    .createIllegalArgumentException(
                            LocalizedFormats.SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE,
                            sampleSize, populationSize);
        }

        setPopulationSizeInternal(populationSize);
        setSampleSizeInternal(sampleSize);
        setNumberOfSuccessesInternal(numberOfSuccesses);
    }

    /**
     * For this distribution, X, this method returns P(X ≤ x).
     *
     * @param x the value at which the PDF is evaluated.
     * @return PDF for this distribution.
     */
    @Override
    public double cumulativeProbability(int x) {
        double ret;

        int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x < domain[0]) {
            ret = 0.0;
        } else if (x >= domain[1]) {
            ret = 1.0;
        } else {
            ret = innerCumulativeProbability(domain[0], x, 1, populationSize,
                                             numberOfSuccesses, sampleSize);
        }

        return ret;
    }

    /**
     * Return the domain for the given hypergeometric distribution parameters.
     *
     * @param n the population size.
     * @param m number of successes in the population.
     * @param k the sample size.
     * @return a two element array containing the lower and upper bounds of the
     *         hypergeometric distribution.
     */
    private int[] getDomain(int n, int m, int k) {
        return new int[] { getLowerDomain(n, m, k), getUpperDomain(m, k) };
    }

    /**
     * Access the domain value lower bound, based on <code>p</code>, used to
     * bracket a PDF root.
     *
     * @param p the desired probability for the critical value
     * @return domain value lower bound, i.e. P(X &lt; <i>lower bound</i>) &lt;
     *         <code>p</code>
     */
    @Override
    protected int getDomainLowerBound(double p) {
        return getLowerDomain(populationSize, numberOfSuccesses, sampleSize);
    }

    /**
     * Access the domain value upper bound, based on <code>p</code>, used to
     * bracket a PDF root.
     *
     * @param p the desired probability for the critical value
     * @return domain value upper bound, i.e. P(X &lt; <i>upper bound</i>) &gt;
     *         <code>p</code>
     */
    @Override
    protected int getDomainUpperBound(double p) {
        return getUpperDomain(sampleSize, numberOfSuccesses);
    }

    /**
     * Return the lowest domain value for the given hypergeometric distribution
     * parameters.
     *
     * @param n the population size.
     * @param m number of successes in the population.
     * @param k the sample size.
     * @return the lowest domain value of the hypergeometric distribution.
     */
    private int getLowerDomain(int n, int m, int k) {
        return FastMath.max(0, m - (n - k));
    }

    /**
     * Access the number of successes.
     *
     * @return the number of successes.
     */
    public int getNumberOfSuccesses() {
        return numberOfSuccesses;
    }

    /**
     * Access the population size.
     *
     * @return the population size.
     */
    public int getPopulationSize() {
        return populationSize;
    }

    /**
     * Access the sample size.
     *
     * @return the sample size.
     */
    public int getSampleSize() {
        return sampleSize;
    }

    /**
     * Return the highest domain value for the given hypergeometric distribution
     * parameters.
     *
     * @param m number of successes in the population.
     * @param k the sample size.
     * @return the highest domain value of the hypergeometric distribution.
     */
    private int getUpperDomain(int m, int k) {
        return FastMath.min(k, m);
    }

    /**
     * For this distribution, X, this method returns P(X = x).
     *
     * @param x the value at which the PMF is evaluated.
     * @return PMF for this distribution.
     */
    public double probability(int x) {
        double ret;

        int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x < domain[0] || x > domain[1]) {
            ret = 0.0;
        } else {
            double p = (double) sampleSize / (double) populationSize;
            double q = (double) (populationSize - sampleSize) / (double) populationSize;
            double p1 = SaddlePointExpansion.logBinomialProbability(x,
                    numberOfSuccesses, p, q);
            double p2 =
                SaddlePointExpansion.logBinomialProbability(sampleSize - x,
                    populationSize - numberOfSuccesses, p, q);
            double p3 =
                SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q);
            ret = FastMath.exp(p1 + p2 - p3);
        }

        return ret;
    }

    /**
     * For the distribution, X, defined by the given hypergeometric distribution
     * parameters, this method returns P(X = x).
     *
     * @param n the population size.
     * @param m number of successes in the population.
     * @param k the sample size.
     * @param x the value at which the PMF is evaluated.
     * @return PMF for the distribution.
     */
    private double probability(int n, int m, int k, int x) {
        return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) +
               MathUtils.binomialCoefficientLog(n - m, k - x) -
               MathUtils.binomialCoefficientLog(n, k));
    }

    /**
     * Modify the number of successes.
     *
     * @param num the new number of successes.
     * @throws IllegalArgumentException if <code>num</code> is negative.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setNumberOfSuccesses(int num) {
        setNumberOfSuccessesInternal(num);
    }

    /**
     * Modify the number of successes.
     *
     * @param num the new number of successes.
     * @throws IllegalArgumentException if <code>num</code> is negative.
     */
    private void setNumberOfSuccessesInternal(int num) {
        if (num < 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                    LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES, num);
        }
        numberOfSuccesses = num;
    }

    /**
     * Modify the population size.
     *
     * @param size the new population size.
     * @throws IllegalArgumentException if <code>size</code> is not positive.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setPopulationSize(int size) {
        setPopulationSizeInternal(size);
    }

    /**
     * Modify the population size.
     *
     * @param size the new population size.
     * @throws IllegalArgumentException if <code>size</code> is not positive.
     */
    private void setPopulationSizeInternal(int size) {
        if (size <= 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                    LocalizedFormats.NOT_POSITIVE_POPULATION_SIZE, size);
        }
        populationSize = size;
    }

    /**
     * Modify the sample size.
     *
     * @param size the new sample size.
     * @throws IllegalArgumentException if <code>size</code> is negative.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setSampleSize(int size) {
        setSampleSizeInternal(size);
    }
    /**
     * Modify the sample size.
     *
     * @param size the new sample size.
     * @throws IllegalArgumentException if <code>size</code> is negative.
     */
    private void setSampleSizeInternal(int size) {
        if (size < 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                    LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, size);
        }
        sampleSize = size;
    }

    /**
     * For this distribution, X, this method returns P(X &ge; x).
     *
     * @param x the value at which the CDF is evaluated.
     * @return upper tail CDF for this distribution.
     * @since 1.1
     */
    public double upperCumulativeProbability(int x) {
        double ret;

        final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x < domain[0]) {
            ret = 1.0;
        } else if (x > domain[1]) {
            ret = 0.0;
        } else {
            ret = innerCumulativeProbability(domain[1], x, -1, populationSize, numberOfSuccesses, sampleSize);
        }

        return ret;
    }

    /**
     * For this distribution, X, this method returns P(x0 &le; X &le; x1). This
     * probability is computed by summing the point probabilities for the values
     * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx.
     *
     * @param x0 the inclusive, lower bound
     * @param x1 the inclusive, upper bound
     * @param dx the direction of summation. 1 indicates summing from x0 to x1.
     *            0 indicates summing from x1 to x0.
     * @param n the population size.
     * @param m number of successes in the population.
     * @param k the sample size.
     * @return P(x0 &le; X &le; x1).
     */
    private double innerCumulativeProbability(int x0, int x1, int dx, int n,
            int m, int k) {
        double ret = probability(n, m, k, x0);
        while (x0 != x1) {
            x0 += dx;
            ret += probability(n, m, k, x0);
        }
        return ret;
    }

    /**
     * Returns the lower bound for the support for the distribution.
     *
     * For population size <code>N</code>,
     * number of successes <code>m</code>, and
     * sample size <code>n</code>,
     * the lower bound of the support is
     * <code>max(0, n + m - N)</code>
     *
     * @return lower bound of the support
     * @since 2.2
     */
    public int getSupportLowerBound() {
        return FastMath.max(0,
                getSampleSize() + getNumberOfSuccesses() - getPopulationSize());
    }

    /**
     * Returns the upper bound for the support of the distribution.
     *
     * For number of successes <code>m</code> and
     * sample size <code>n</code>,
     * the upper bound of the support is
     * <code>min(m, n)</code>
     *
     * @return upper bound of the support
     * @since 2.2
     */
    public int getSupportUpperBound() {
        return FastMath.min(getNumberOfSuccesses(), getSampleSize());
    }

    /**
     * Returns the mean.
     *
     * For population size <code>N</code>,
     * number of successes <code>m</code>, and
     * sample size <code>n</code>, the mean is
     * <code>n * m / N</code>
     *
     * @return the mean
     * @since 2.2
     */
    protected double getNumericalMean() {
        return (double)(getSampleSize() * getNumberOfSuccesses()) / (double)getPopulationSize();
    }

    /**
     * Returns the variance.
     *
     * For population size <code>N</code>,
     * number of successes <code>m</code>, and
     * sample size <code>n</code>, the variance is
     * <code>[ n * m * (N - n) * (N - m) ] / [ N^2 * (N - 1) ]</code>
     *
     * @return the variance
     * @since 2.2
     */
    public double getNumericalVariance() {
        final double N = getPopulationSize();
        final double m = getNumberOfSuccesses();
        final double n = getSampleSize();
        return ( n * m * (N - n) * (N - m) ) / ( (N*N * (N - 1)) );
    }
}