summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/distribution/WeibullDistributionImpl.java
blob: c52caac3e4865206ade5c4f74f9d4006beca20d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.util.FastMath;

/**
 * Default implementation of
 * {@link org.apache.commons.math.distribution.WeibullDistribution}.
 *
 * @since 1.1
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class WeibullDistributionImpl extends AbstractContinuousDistribution
        implements WeibullDistribution, Serializable {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = 8589540077390120676L;

    /** The shape parameter. */
    private double shape;

    /** The scale parameter. */
    private double scale;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /** Cached numerical mean */
    private double numericalMean = Double.NaN;

    /** Whether or not the numerical mean has been calculated */
    private boolean numericalMeanIsCalculated = false;

    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;

    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Creates weibull distribution with the given shape and scale and a
     * location equal to zero.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     */
    public WeibullDistributionImpl(double alpha, double beta){
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates weibull distribution with the given shape, scale and inverse
     * cumulative probability accuracy and a location equal to zero.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){
        super();
        setShapeInternal(alpha);
        setScaleInternal(beta);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * For this distribution, X, this method returns P(X &lt; <code>x</code>).
     * @param x the value at which the CDF is evaluated.
     * @return CDF evaluated at <code>x</code>.
     */
    public double cumulativeProbability(double x) {
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
        }
        return ret;
    }

    /**
     * Access the shape parameter.
     * @return the shape parameter.
     */
    public double getShape() {
        return shape;
    }

    /**
     * Access the scale parameter.
     * @return the scale parameter.
     */
    public double getScale() {
        return scale;
    }

    /**
     * Returns the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        if (x < 0) {
            return 0;
        }

        final double xscale = x / scale;
        final double xscalepow = FastMath.pow(xscale, shape - 1);

        /*
         * FastMath.pow(x / scale, shape) =
         * FastMath.pow(xscale, shape) =
         * FastMath.pow(xscale, shape - 1) * xscale
         */
        final double xscalepowshape = xscalepow * xscale;

        return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X &lt; x) = <code>p</code>.
     * <p>
     * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
     * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
     *
     * @param p the desired probability
     * @return x, such that P(X &lt; x) = <code>p</code>
     * @throws IllegalArgumentException if <code>p</code> is not a valid
     *         probability.
     */
    @Override
    public double inverseCumulativeProbability(double p) {
        double ret;
        if (p < 0.0 || p > 1.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
        } else if (p == 0) {
            ret = 0.0;
        } else  if (p == 1) {
            ret = Double.POSITIVE_INFINITY;
        } else {
            ret = scale * FastMath.pow(-FastMath.log(1.0 - p), 1.0 / shape);
        }
        return ret;
    }

    /**
     * Modify the shape parameter.
     * @param alpha the new shape parameter value.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setShape(double alpha) {
        setShapeInternal(alpha);
        invalidateParameterDependentMoments();
    }
    /**
     * Modify the shape parameter.
     * @param alpha the new shape parameter value.
     */
    private void setShapeInternal(double alpha) {
        if (alpha <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_SHAPE,
                  alpha);
        }
        this.shape = alpha;
    }

    /**
     * Modify the scale parameter.
     * @param beta the new scale parameter value.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setScale(double beta) {
        setScaleInternal(beta);
        invalidateParameterDependentMoments();
    }
    /**
     * Modify the scale parameter.
     * @param beta the new scale parameter value.
     */
    private void setScaleInternal(double beta) {
        if (beta <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_SCALE,
                  beta);
        }
        this.scale = beta;
    }

    /**
     * Access the domain value lower bound, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return domain value lower bound, i.e.
     *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
     */
    @Override
    protected double getDomainLowerBound(double p) {
        return 0.0;
    }

    /**
     * Access the domain value upper bound, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return domain value upper bound, i.e.
     *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
     */
    @Override
    protected double getDomainUpperBound(double p) {
        return Double.MAX_VALUE;
    }

    /**
     * Access the initial domain value, based on <code>p</code>, used to
     * bracket a CDF root.  This method is used by
     * {@link #inverseCumulativeProbability(double)} to find critical values.
     *
     * @param p the desired probability for the critical value
     * @return initial domain value
     */
    @Override
    protected double getInitialDomain(double p) {
        // use median
        return FastMath.pow(scale * FastMath.log(2.0), 1.0 / shape);
    }

    /**
     * Return the absolute accuracy setting of the solver used to estimate
     * inverse cumulative probabilities.
     *
     * @return the solver absolute accuracy
     * @since 2.1
     */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * Returns the lower bound of the support for the distribution.
     *
     * The lower bound of the support is always 0 no matter the parameters.
     *
     * @return lower bound of the support (always 0)
     * @since 2.2
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * Returns the upper bound of the support for the distribution.
     *
     * The upper bound of the support is always positive infinity
     * no matter the parameters.
     *
     * @return upper bound of the support (always Double.POSITIVE_INFINITY)
     * @since 2.2
     */
    public double getSupportUpperBound() {
        return Double.POSITIVE_INFINITY;
    }

    /**
     * Calculates the mean.
     *
     * The mean is <code>scale * Gamma(1 + (1 / shape))</code>
     * where <code>Gamma(...)</code> is the Gamma-function
     *
     * @return the mean
     * @since 2.2
     */
    protected double calculateNumericalMean() {
        final double sh = getShape();
        final double sc = getScale();

        return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh)));
    }

    /**
     * Calculates the variance.
     *
     * The variance is
     * <code>scale^2 * Gamma(1 + (2 / shape)) - mean^2</code>
     * where <code>Gamma(...)</code> is the Gamma-function
     *
     * @return the variance
     * @since 2.2
     */
    private double calculateNumericalVariance() {
        final double sh = getShape();
        final double sc = getScale();
        final double mn = getNumericalMean();

        return (sc * sc) *
            FastMath.exp(Gamma.logGamma(1 + (2 / sh))) -
            (mn * mn);
    }

    /**
     * Returns the mean of the distribution.
     *
     * @return the mean or Double.NaN if it's not defined
     * @since 2.2
     */
    public double getNumericalMean() {
        if (!numericalMeanIsCalculated) {
            numericalMean = calculateNumericalMean();
            numericalMeanIsCalculated = true;
        }

        return numericalMean;
    }

    /**
     * Returns the variance of the distribution.
     *
     * @return the variance (possibly Double.POSITIVE_INFINITY as
     * for certain cases in {@link TDistributionImpl}) or
     * Double.NaN if it's not defined
     * @since 2.2
     */
    public double getNumericalVariance() {
        if (!numericalVarianceIsCalculated) {
            numericalVariance = calculateNumericalVariance();
            numericalVarianceIsCalculated = true;
        }

        return numericalVariance;
    }

    /**
     * Invalidates the cached mean and variance.
     */
    private void invalidateParameterDependentMoments() {
        numericalMeanIsCalculated = false;
        numericalVarianceIsCalculated = false;
    }
}