summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/estimation/LevenbergMarquardtEstimator.java
blob: 78a4661b4324760335bec6bfb422002c7c0938c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.estimation;

import java.io.Serializable;
import java.util.Arrays;

import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;


/**
 * This class solves a least squares problem.
 *
 * <p>This implementation <em>should</em> work even for over-determined systems
 * (i.e. systems having more variables than equations). Over-determined systems
 * are solved by ignoring the variables which have the smallest impact according
 * to their jacobian column norm. Only the rank of the matrix and some loop bounds
 * are changed to implement this.</p>
 *
 * <p>The resolution engine is a simple translation of the MINPACK <a
 * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
 * changes. The changes include the over-determined resolution and the Q.R.
 * decomposition which has been rewritten following the algorithm described in the
 * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
 * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
 * <p>The authors of the original fortran version are:
 * <ul>
 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
 * <li>Burton S. Garbow</li>
 * <li>Kenneth E. Hillstrom</li>
 * <li>Jorge J. More</li>
 * </ul>
 * The redistribution policy for MINPACK is available <a
 * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
 * is reproduced below.</p>
 *
 * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
 * <tr><td>
 *    Minpack Copyright Notice (1999) University of Chicago.
 *    All rights reserved
 * </td></tr>
 * <tr><td>
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * <ol>
 *  <li>Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.</li>
 * <li>Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.</li>
 * <li>The end-user documentation included with the redistribution, if any,
 *     must include the following acknowledgment:
 *     <code>This product includes software developed by the University of
 *           Chicago, as Operator of Argonne National Laboratory.</code>
 *     Alternately, this acknowledgment may appear in the software itself,
 *     if and wherever such third-party acknowledgments normally appear.</li>
 * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
 *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
 *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
 *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
 *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
 *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
 *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
 *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
 *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
 *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
 *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
 *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
 *     BE CORRECTED.</strong></li>
 * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
 *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
 *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
 *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
 *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
 *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
 *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
 *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
 *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
 *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
 * <ol></td></tr>
 * </table>

 * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
 * @since 1.2
 * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has
 * been deprecated and replaced by package org.apache.commons.math.optimization.general
 *
 */
@Deprecated
public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -5705952631533171019L;

    /** Number of solved variables. */
    private int solvedCols;

    /** Diagonal elements of the R matrix in the Q.R. decomposition. */
    private double[] diagR;

    /** Norms of the columns of the jacobian matrix. */
    private double[] jacNorm;

    /** Coefficients of the Householder transforms vectors. */
    private double[] beta;

    /** Columns permutation array. */
    private int[] permutation;

    /** Rank of the jacobian matrix. */
    private int rank;

    /** Levenberg-Marquardt parameter. */
    private double lmPar;

    /** Parameters evolution direction associated with lmPar. */
    private double[] lmDir;

    /** Positive input variable used in determining the initial step bound. */
    private double initialStepBoundFactor;

    /** Desired relative error in the sum of squares. */
    private double costRelativeTolerance;

    /**  Desired relative error in the approximate solution parameters. */
    private double parRelativeTolerance;

    /** Desired max cosine on the orthogonality between the function vector
     * and the columns of the jacobian. */
    private double orthoTolerance;

  /**
   * Build an estimator for least squares problems.
   * <p>The default values for the algorithm settings are:
   *   <ul>
   *    <li>{@link #setInitialStepBoundFactor initial step bound factor}: 100.0</li>
   *    <li>{@link #setMaxCostEval maximal cost evaluations}: 1000</li>
   *    <li>{@link #setCostRelativeTolerance cost relative tolerance}: 1.0e-10</li>
   *    <li>{@link #setParRelativeTolerance parameters relative tolerance}: 1.0e-10</li>
   *    <li>{@link #setOrthoTolerance orthogonality tolerance}: 1.0e-10</li>
   *   </ul>
   * </p>
   */
  public LevenbergMarquardtEstimator() {

    // set up the superclass with a default  max cost evaluations setting
    setMaxCostEval(1000);

    // default values for the tuning parameters
    setInitialStepBoundFactor(100.0);
    setCostRelativeTolerance(1.0e-10);
    setParRelativeTolerance(1.0e-10);
    setOrthoTolerance(1.0e-10);

  }

  /**
   * Set the positive input variable used in determining the initial step bound.
   * This bound is set to the product of initialStepBoundFactor and the euclidean norm of diag*x if nonzero,
   * or else to initialStepBoundFactor itself. In most cases factor should lie
   * in the interval (0.1, 100.0). 100.0 is a generally recommended value
   *
   * @param initialStepBoundFactor initial step bound factor
   * @see #estimate
   */
  public void setInitialStepBoundFactor(double initialStepBoundFactor) {
    this.initialStepBoundFactor = initialStepBoundFactor;
  }

  /**
   * Set the desired relative error in the sum of squares.
   *
   * @param costRelativeTolerance desired relative error in the sum of squares
   * @see #estimate
   */
  public void setCostRelativeTolerance(double costRelativeTolerance) {
    this.costRelativeTolerance = costRelativeTolerance;
  }

  /**
   * Set the desired relative error in the approximate solution parameters.
   *
   * @param parRelativeTolerance desired relative error
   * in the approximate solution parameters
   * @see #estimate
   */
  public void setParRelativeTolerance(double parRelativeTolerance) {
    this.parRelativeTolerance = parRelativeTolerance;
  }

  /**
   * Set the desired max cosine on the orthogonality.
   *
   * @param orthoTolerance desired max cosine on the orthogonality
   * between the function vector and the columns of the jacobian
   * @see #estimate
   */
  public void setOrthoTolerance(double orthoTolerance) {
    this.orthoTolerance = orthoTolerance;
  }

  /**
   * Solve an estimation problem using the Levenberg-Marquardt algorithm.
   * <p>The algorithm used is a modified Levenberg-Marquardt one, based
   * on the MINPACK <a href="http://www.netlib.org/minpack/lmder.f">lmder</a>
   * routine. The algorithm settings must have been set up before this method
   * is called with the {@link #setInitialStepBoundFactor},
   * {@link #setMaxCostEval}, {@link #setCostRelativeTolerance},
   * {@link #setParRelativeTolerance} and {@link #setOrthoTolerance} methods.
   * If these methods have not been called, the default values set up by the
   * {@link #LevenbergMarquardtEstimator() constructor} will be used.</p>
   * <p>The authors of the original fortran function are:</p>
   * <ul>
   *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
   *   <li>Burton  S. Garbow</li>
   *   <li>Kenneth E. Hillstrom</li>
   *   <li>Jorge   J. More</li>
   *   </ul>
   * <p>Luc Maisonobe did the Java translation.</p>
   *
   * @param problem estimation problem to solve
   * @exception EstimationException if convergence cannot be
   * reached with the specified algorithm settings or if there are more variables
   * than equations
   * @see #setInitialStepBoundFactor
   * @see #setCostRelativeTolerance
   * @see #setParRelativeTolerance
   * @see #setOrthoTolerance
   */
  @Override
  public void estimate(EstimationProblem problem)
    throws EstimationException {

    initializeEstimate(problem);

    // arrays shared with the other private methods
    solvedCols  = FastMath.min(rows, cols);
    diagR       = new double[cols];
    jacNorm     = new double[cols];
    beta        = new double[cols];
    permutation = new int[cols];
    lmDir       = new double[cols];

    // local variables
    double   delta   = 0;
    double   xNorm = 0;
    double[] diag    = new double[cols];
    double[] oldX    = new double[cols];
    double[] oldRes  = new double[rows];
    double[] work1   = new double[cols];
    double[] work2   = new double[cols];
    double[] work3   = new double[cols];

    // evaluate the function at the starting point and calculate its norm
    updateResidualsAndCost();

    // outer loop
    lmPar = 0;
    boolean firstIteration = true;
    while (true) {

      // compute the Q.R. decomposition of the jacobian matrix
      updateJacobian();
      qrDecomposition();

      // compute Qt.res
      qTy(residuals);

      // now we don't need Q anymore,
      // so let jacobian contain the R matrix with its diagonal elements
      for (int k = 0; k < solvedCols; ++k) {
        int pk = permutation[k];
        jacobian[k * cols + pk] = diagR[pk];
      }

      if (firstIteration) {

        // scale the variables according to the norms of the columns
        // of the initial jacobian
        xNorm = 0;
        for (int k = 0; k < cols; ++k) {
          double dk = jacNorm[k];
          if (dk == 0) {
            dk = 1.0;
          }
          double xk = dk * parameters[k].getEstimate();
          xNorm  += xk * xk;
          diag[k] = dk;
        }
        xNorm = FastMath.sqrt(xNorm);

        // initialize the step bound delta
        delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);

      }

      // check orthogonality between function vector and jacobian columns
      double maxCosine = 0;
      if (cost != 0) {
        for (int j = 0; j < solvedCols; ++j) {
          int    pj = permutation[j];
          double s  = jacNorm[pj];
          if (s != 0) {
            double sum = 0;
            int index = pj;
            for (int i = 0; i <= j; ++i) {
              sum += jacobian[index] * residuals[i];
              index += cols;
            }
            maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * cost));
          }
        }
      }
      if (maxCosine <= orthoTolerance) {
        return;
      }

      // rescale if necessary
      for (int j = 0; j < cols; ++j) {
        diag[j] = FastMath.max(diag[j], jacNorm[j]);
      }

      // inner loop
      for (double ratio = 0; ratio < 1.0e-4;) {

        // save the state
        for (int j = 0; j < solvedCols; ++j) {
          int pj = permutation[j];
          oldX[pj] = parameters[pj].getEstimate();
        }
        double previousCost = cost;
        double[] tmpVec = residuals;
        residuals = oldRes;
        oldRes    = tmpVec;

        // determine the Levenberg-Marquardt parameter
        determineLMParameter(oldRes, delta, diag, work1, work2, work3);

        // compute the new point and the norm of the evolution direction
        double lmNorm = 0;
        for (int j = 0; j < solvedCols; ++j) {
          int pj = permutation[j];
          lmDir[pj] = -lmDir[pj];
          parameters[pj].setEstimate(oldX[pj] + lmDir[pj]);
          double s = diag[pj] * lmDir[pj];
          lmNorm  += s * s;
        }
        lmNorm = FastMath.sqrt(lmNorm);

        // on the first iteration, adjust the initial step bound.
        if (firstIteration) {
          delta = FastMath.min(delta, lmNorm);
        }

        // evaluate the function at x + p and calculate its norm
        updateResidualsAndCost();

        // compute the scaled actual reduction
        double actRed = -1.0;
        if (0.1 * cost < previousCost) {
          double r = cost / previousCost;
          actRed = 1.0 - r * r;
        }

        // compute the scaled predicted reduction
        // and the scaled directional derivative
        for (int j = 0; j < solvedCols; ++j) {
          int pj = permutation[j];
          double dirJ = lmDir[pj];
          work1[j] = 0;
          int index = pj;
          for (int i = 0; i <= j; ++i) {
            work1[i] += jacobian[index] * dirJ;
            index += cols;
          }
        }
        double coeff1 = 0;
        for (int j = 0; j < solvedCols; ++j) {
         coeff1 += work1[j] * work1[j];
        }
        double pc2 = previousCost * previousCost;
        coeff1 = coeff1 / pc2;
        double coeff2 = lmPar * lmNorm * lmNorm / pc2;
        double preRed = coeff1 + 2 * coeff2;
        double dirDer = -(coeff1 + coeff2);

        // ratio of the actual to the predicted reduction
        ratio = (preRed == 0) ? 0 : (actRed / preRed);

        // update the step bound
        if (ratio <= 0.25) {
          double tmp =
            (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
          if ((0.1 * cost >= previousCost) || (tmp < 0.1)) {
            tmp = 0.1;
          }
          delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
          lmPar /= tmp;
        } else if ((lmPar == 0) || (ratio >= 0.75)) {
          delta = 2 * lmNorm;
          lmPar *= 0.5;
        }

        // test for successful iteration.
        if (ratio >= 1.0e-4) {
          // successful iteration, update the norm
          firstIteration = false;
          xNorm = 0;
          for (int k = 0; k < cols; ++k) {
            double xK = diag[k] * parameters[k].getEstimate();
            xNorm    += xK * xK;
          }
          xNorm = FastMath.sqrt(xNorm);
        } else {
          // failed iteration, reset the previous values
          cost = previousCost;
          for (int j = 0; j < solvedCols; ++j) {
            int pj = permutation[j];
            parameters[pj].setEstimate(oldX[pj]);
          }
          tmpVec    = residuals;
          residuals = oldRes;
          oldRes    = tmpVec;
        }

        // tests for convergence.
        if (((FastMath.abs(actRed) <= costRelativeTolerance) &&
             (preRed <= costRelativeTolerance) &&
             (ratio <= 2.0)) ||
             (delta <= parRelativeTolerance * xNorm)) {
          return;
        }

        // tests for termination and stringent tolerances
        // (2.2204e-16 is the machine epsilon for IEEE754)
        if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
          throw new EstimationException("cost relative tolerance is too small ({0})," +
                                        " no further reduction in the" +
                                        " sum of squares is possible",
                                        costRelativeTolerance);
        } else if (delta <= 2.2204e-16 * xNorm) {
          throw new EstimationException("parameters relative tolerance is too small" +
                                        " ({0}), no further improvement in" +
                                        " the approximate solution is possible",
                                        parRelativeTolerance);
        } else if (maxCosine <= 2.2204e-16)  {
          throw new EstimationException("orthogonality tolerance is too small ({0})," +
                                        " solution is orthogonal to the jacobian",
                                        orthoTolerance);
        }

      }

    }

  }

  /**
   * Determine the Levenberg-Marquardt parameter.
   * <p>This implementation is a translation in Java of the MINPACK
   * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
   * routine.</p>
   * <p>This method sets the lmPar and lmDir attributes.</p>
   * <p>The authors of the original fortran function are:</p>
   * <ul>
   *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
   *   <li>Burton  S. Garbow</li>
   *   <li>Kenneth E. Hillstrom</li>
   *   <li>Jorge   J. More</li>
   * </ul>
   * <p>Luc Maisonobe did the Java translation.</p>
   *
   * @param qy array containing qTy
   * @param delta upper bound on the euclidean norm of diagR * lmDir
   * @param diag diagonal matrix
   * @param work1 work array
   * @param work2 work array
   * @param work3 work array
   */
  private void determineLMParameter(double[] qy, double delta, double[] diag,
                                    double[] work1, double[] work2, double[] work3) {

    // compute and store in x the gauss-newton direction, if the
    // jacobian is rank-deficient, obtain a least squares solution
    for (int j = 0; j < rank; ++j) {
      lmDir[permutation[j]] = qy[j];
    }
    for (int j = rank; j < cols; ++j) {
      lmDir[permutation[j]] = 0;
    }
    for (int k = rank - 1; k >= 0; --k) {
      int pk = permutation[k];
      double ypk = lmDir[pk] / diagR[pk];
      int index = pk;
      for (int i = 0; i < k; ++i) {
        lmDir[permutation[i]] -= ypk * jacobian[index];
        index += cols;
      }
      lmDir[pk] = ypk;
    }

    // evaluate the function at the origin, and test
    // for acceptance of the Gauss-Newton direction
    double dxNorm = 0;
    for (int j = 0; j < solvedCols; ++j) {
      int pj = permutation[j];
      double s = diag[pj] * lmDir[pj];
      work1[pj] = s;
      dxNorm += s * s;
    }
    dxNorm = FastMath.sqrt(dxNorm);
    double fp = dxNorm - delta;
    if (fp <= 0.1 * delta) {
      lmPar = 0;
      return;
    }

    // if the jacobian is not rank deficient, the Newton step provides
    // a lower bound, parl, for the zero of the function,
    // otherwise set this bound to zero
    double sum2;
    double parl = 0;
    if (rank == solvedCols) {
      for (int j = 0; j < solvedCols; ++j) {
        int pj = permutation[j];
        work1[pj] *= diag[pj] / dxNorm;
      }
      sum2 = 0;
      for (int j = 0; j < solvedCols; ++j) {
        int pj = permutation[j];
        double sum = 0;
        int index = pj;
        for (int i = 0; i < j; ++i) {
          sum += jacobian[index] * work1[permutation[i]];
          index += cols;
        }
        double s = (work1[pj] - sum) / diagR[pj];
        work1[pj] = s;
        sum2 += s * s;
      }
      parl = fp / (delta * sum2);
    }

    // calculate an upper bound, paru, for the zero of the function
    sum2 = 0;
    for (int j = 0; j < solvedCols; ++j) {
      int pj = permutation[j];
      double sum = 0;
      int index = pj;
      for (int i = 0; i <= j; ++i) {
        sum += jacobian[index] * qy[i];
        index += cols;
      }
      sum /= diag[pj];
      sum2 += sum * sum;
    }
    double gNorm = FastMath.sqrt(sum2);
    double paru = gNorm / delta;
    if (paru == 0) {
      // 2.2251e-308 is the smallest positive real for IEE754
      paru = 2.2251e-308 / FastMath.min(delta, 0.1);
    }

    // if the input par lies outside of the interval (parl,paru),
    // set par to the closer endpoint
    lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
    if (lmPar == 0) {
      lmPar = gNorm / dxNorm;
    }

    for (int countdown = 10; countdown >= 0; --countdown) {

      // evaluate the function at the current value of lmPar
      if (lmPar == 0) {
        lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
      }
      double sPar = FastMath.sqrt(lmPar);
      for (int j = 0; j < solvedCols; ++j) {
        int pj = permutation[j];
        work1[pj] = sPar * diag[pj];
      }
      determineLMDirection(qy, work1, work2, work3);

      dxNorm = 0;
      for (int j = 0; j < solvedCols; ++j) {
        int pj = permutation[j];
        double s = diag[pj] * lmDir[pj];
        work3[pj] = s;
        dxNorm += s * s;
      }
      dxNorm = FastMath.sqrt(dxNorm);
      double previousFP = fp;
      fp = dxNorm - delta;

      // if the function is small enough, accept the current value
      // of lmPar, also test for the exceptional cases where parl is zero
      if ((FastMath.abs(fp) <= 0.1 * delta) ||
          ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
        return;
      }

      // compute the Newton correction
      for (int j = 0; j < solvedCols; ++j) {
       int pj = permutation[j];
        work1[pj] = work3[pj] * diag[pj] / dxNorm;
      }
      for (int j = 0; j < solvedCols; ++j) {
        int pj = permutation[j];
        work1[pj] /= work2[j];
        double tmp = work1[pj];
        for (int i = j + 1; i < solvedCols; ++i) {
          work1[permutation[i]] -= jacobian[i * cols + pj] * tmp;
        }
      }
      sum2 = 0;
      for (int j = 0; j < solvedCols; ++j) {
        double s = work1[permutation[j]];
        sum2 += s * s;
      }
      double correction = fp / (delta * sum2);

      // depending on the sign of the function, update parl or paru.
      if (fp > 0) {
        parl = FastMath.max(parl, lmPar);
      } else if (fp < 0) {
        paru = FastMath.min(paru, lmPar);
      }

      // compute an improved estimate for lmPar
      lmPar = FastMath.max(parl, lmPar + correction);

    }
  }

  /**
   * Solve a*x = b and d*x = 0 in the least squares sense.
   * <p>This implementation is a translation in Java of the MINPACK
   * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
   * routine.</p>
   * <p>This method sets the lmDir and lmDiag attributes.</p>
   * <p>The authors of the original fortran function are:</p>
   * <ul>
   *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
   *   <li>Burton  S. Garbow</li>
   *   <li>Kenneth E. Hillstrom</li>
   *   <li>Jorge   J. More</li>
   * </ul>
   * <p>Luc Maisonobe did the Java translation.</p>
   *
   * @param qy array containing qTy
   * @param diag diagonal matrix
   * @param lmDiag diagonal elements associated with lmDir
   * @param work work array
   */
  private void determineLMDirection(double[] qy, double[] diag,
                                    double[] lmDiag, double[] work) {

    // copy R and Qty to preserve input and initialize s
    //  in particular, save the diagonal elements of R in lmDir
    for (int j = 0; j < solvedCols; ++j) {
      int pj = permutation[j];
      for (int i = j + 1; i < solvedCols; ++i) {
        jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]];
      }
      lmDir[j] = diagR[pj];
      work[j]  = qy[j];
    }

    // eliminate the diagonal matrix d using a Givens rotation
    for (int j = 0; j < solvedCols; ++j) {

      // prepare the row of d to be eliminated, locating the
      // diagonal element using p from the Q.R. factorization
      int pj = permutation[j];
      double dpj = diag[pj];
      if (dpj != 0) {
        Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
      }
      lmDiag[j] = dpj;

      //  the transformations to eliminate the row of d
      // modify only a single element of Qty
      // beyond the first n, which is initially zero.
      double qtbpj = 0;
      for (int k = j; k < solvedCols; ++k) {
        int pk = permutation[k];

        // determine a Givens rotation which eliminates the
        // appropriate element in the current row of d
        if (lmDiag[k] != 0) {

          final double sin;
          final double cos;
          double rkk = jacobian[k * cols + pk];
          if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
            final double cotan = rkk / lmDiag[k];
            sin   = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
            cos   = sin * cotan;
          } else {
            final double tan = lmDiag[k] / rkk;
            cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
            sin = cos * tan;
          }

          // compute the modified diagonal element of R and
          // the modified element of (Qty,0)
          jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k];
          final double temp = cos * work[k] + sin * qtbpj;
          qtbpj = -sin * work[k] + cos * qtbpj;
          work[k] = temp;

          // accumulate the tranformation in the row of s
          for (int i = k + 1; i < solvedCols; ++i) {
            double rik = jacobian[i * cols + pk];
            final double temp2 = cos * rik + sin * lmDiag[i];
            lmDiag[i] = -sin * rik + cos * lmDiag[i];
            jacobian[i * cols + pk] = temp2;
          }

        }
      }

      // store the diagonal element of s and restore
      // the corresponding diagonal element of R
      int index = j * cols + permutation[j];
      lmDiag[j]       = jacobian[index];
      jacobian[index] = lmDir[j];

    }

    // solve the triangular system for z, if the system is
    // singular, then obtain a least squares solution
    int nSing = solvedCols;
    for (int j = 0; j < solvedCols; ++j) {
      if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
        nSing = j;
      }
      if (nSing < solvedCols) {
        work[j] = 0;
      }
    }
    if (nSing > 0) {
      for (int j = nSing - 1; j >= 0; --j) {
        int pj = permutation[j];
        double sum = 0;
        for (int i = j + 1; i < nSing; ++i) {
          sum += jacobian[i * cols + pj] * work[i];
        }
        work[j] = (work[j] - sum) / lmDiag[j];
      }
    }

    // permute the components of z back to components of lmDir
    for (int j = 0; j < lmDir.length; ++j) {
      lmDir[permutation[j]] = work[j];
    }

  }

  /**
   * Decompose a matrix A as A.P = Q.R using Householder transforms.
   * <p>As suggested in the P. Lascaux and R. Theodor book
   * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
   * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
   * the Householder transforms with u<sub>k</sub> unit vectors such that:
   * <pre>
   * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
   * </pre>
   * we use <sub>k</sub> non-unit vectors such that:
   * <pre>
   * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
   * </pre>
   * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
   * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
   * them from the v<sub>k</sub> vectors would be costly.</p>
   * <p>This decomposition handles rank deficient cases since the tranformations
   * are performed in non-increasing columns norms order thanks to columns
   * pivoting. The diagonal elements of the R matrix are therefore also in
   * non-increasing absolute values order.</p>
   * @exception EstimationException if the decomposition cannot be performed
   */
  private void qrDecomposition() throws EstimationException {

    // initializations
    for (int k = 0; k < cols; ++k) {
      permutation[k] = k;
      double norm2 = 0;
      for (int index = k; index < jacobian.length; index += cols) {
        double akk = jacobian[index];
        norm2 += akk * akk;
      }
      jacNorm[k] = FastMath.sqrt(norm2);
    }

    // transform the matrix column after column
    for (int k = 0; k < cols; ++k) {

      // select the column with the greatest norm on active components
      int nextColumn = -1;
      double ak2 = Double.NEGATIVE_INFINITY;
      for (int i = k; i < cols; ++i) {
        double norm2 = 0;
        int iDiag = k * cols + permutation[i];
        for (int index = iDiag; index < jacobian.length; index += cols) {
          double aki = jacobian[index];
          norm2 += aki * aki;
        }
        if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
            throw new EstimationException(
                    LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                    rows, cols);
        }
        if (norm2 > ak2) {
          nextColumn = i;
          ak2        = norm2;
        }
      }
      if (ak2 == 0) {
        rank = k;
        return;
      }
      int pk                  = permutation[nextColumn];
      permutation[nextColumn] = permutation[k];
      permutation[k]          = pk;

      // choose alpha such that Hk.u = alpha ek
      int    kDiag = k * cols + pk;
      double akk   = jacobian[kDiag];
      double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
      double betak = 1.0 / (ak2 - akk * alpha);
      beta[pk]     = betak;

      // transform the current column
      diagR[pk]        = alpha;
      jacobian[kDiag] -= alpha;

      // transform the remaining columns
      for (int dk = cols - 1 - k; dk > 0; --dk) {
        int dkp = permutation[k + dk] - pk;
        double gamma = 0;
        for (int index = kDiag; index < jacobian.length; index += cols) {
          gamma += jacobian[index] * jacobian[index + dkp];
        }
        gamma *= betak;
        for (int index = kDiag; index < jacobian.length; index += cols) {
          jacobian[index + dkp] -= gamma * jacobian[index];
        }
      }

    }

    rank = solvedCols;

  }

  /**
   * Compute the product Qt.y for some Q.R. decomposition.
   *
   * @param y vector to multiply (will be overwritten with the result)
   */
  private void qTy(double[] y) {
    for (int k = 0; k < cols; ++k) {
      int pk = permutation[k];
      int kDiag = k * cols + pk;
      double gamma = 0;
      int index = kDiag;
      for (int i = k; i < rows; ++i) {
        gamma += jacobian[index] * y[i];
        index += cols;
      }
      gamma *= beta[pk];
      index = kDiag;
      for (int i = k; i < rows; ++i) {
        y[i] -= gamma * jacobian[index];
        index += cols;
      }
    }
  }

}