summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/geometry/Rotation.java
blob: ee3f4b79e73686e502c7904583f637ebb741391d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.geometry;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * This class implements rotations in a three-dimensional space.
 *
 * <p>Rotations can be represented by several different mathematical
 * entities (matrices, axe and angle, Cardan or Euler angles,
 * quaternions). This class presents an higher level abstraction, more
 * user-oriented and hiding this implementation details. Well, for the
 * curious, we use quaternions for the internal representation. The
 * user can build a rotation from any of these representations, and
 * any of these representations can be retrieved from a
 * <code>Rotation</code> instance (see the various constructors and
 * getters). In addition, a rotation can also be built implicitly
 * from a set of vectors and their image.</p>
 * <p>This implies that this class can be used to convert from one
 * representation to another one. For example, converting a rotation
 * matrix into a set of Cardan angles from can be done using the
 * following single line of code:</p>
 * <pre>
 * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
 * </pre>
 * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
 * underlying representation. Once it has been built, and regardless of its
 * internal representation, a rotation is an <em>operator</em> which basically
 * transforms three dimensional {@link Vector3D vectors} into other three
 * dimensional {@link Vector3D vectors}. Depending on the application, the
 * meaning of these vectors may vary and the semantics of the rotation also.</p>
 * <p>For example in an spacecraft attitude simulation tool, users will often
 * consider the vectors are fixed (say the Earth direction for example) and the
 * frames change. The rotation transforms the coordinates of the vector in inertial
 * frame into the coordinates of the same vector in satellite frame. In this
 * case, the rotation implicitly defines the relation between the two frames.</p>
 * <p>Another example could be a telescope control application, where the rotation
 * would transform the sighting direction at rest into the desired observing
 * direction when the telescope is pointed towards an object of interest. In this
 * case the rotation transforms the direction at rest in a topocentric frame
 * into the sighting direction in the same topocentric frame. This implies in this
 * case the frame is fixed and the vector moves.</p>
 * <p>In many case, both approaches will be combined. In our telescope example,
 * we will probably also need to transform the observing direction in the topocentric
 * frame into the observing direction in inertial frame taking into account the observatory
 * location and the Earth rotation, which would essentially be an application of the
 * first approach.</p>
 *
 * <p>These examples show that a rotation is what the user wants it to be. This
 * class does not push the user towards one specific definition and hence does not
 * provide methods like <code>projectVectorIntoDestinationFrame</code> or
 * <code>computeTransformedDirection</code>. It provides simpler and more generic
 * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
 * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
 *
 * <p>Since a rotation is basically a vectorial operator, several rotations can be
 * composed together and the composite operation <code>r = r<sub>1</sub> o
 * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
 * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
 * we can consider that in addition to vectors, a rotation can be applied to other
 * rotations as well (or to itself). With our previous notations, we would say we
 * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
 * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
 * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
 * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
 *
 * <p>Rotations are guaranteed to be immutable objects.</p>
 *
 * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
 * @see Vector3D
 * @see RotationOrder
 * @since 1.2
 */

public class Rotation implements Serializable {

  /** Identity rotation. */
  public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);

  /** Serializable version identifier */
  private static final long serialVersionUID = -2153622329907944313L;

  /** Scalar coordinate of the quaternion. */
  private final double q0;

  /** First coordinate of the vectorial part of the quaternion. */
  private final double q1;

  /** Second coordinate of the vectorial part of the quaternion. */
  private final double q2;

  /** Third coordinate of the vectorial part of the quaternion. */
  private final double q3;

  /** Build a rotation from the quaternion coordinates.
   * <p>A rotation can be built from a <em>normalized</em> quaternion,
   * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
   * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
   * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
   * the constructor can normalize it in a preprocessing step.</p>
   * <p>Note that some conventions put the scalar part of the quaternion
   * as the 4<sup>th</sup> component and the vector part as the first three
   * components. This is <em>not</em> our convention. We put the scalar part
   * as the first component.</p>
   * @param q0 scalar part of the quaternion
   * @param q1 first coordinate of the vectorial part of the quaternion
   * @param q2 second coordinate of the vectorial part of the quaternion
   * @param q3 third coordinate of the vectorial part of the quaternion
   * @param needsNormalization if true, the coordinates are considered
   * not to be normalized, a normalization preprocessing step is performed
   * before using them
   */
  public Rotation(double q0, double q1, double q2, double q3,
                  boolean needsNormalization) {

    if (needsNormalization) {
      // normalization preprocessing
      double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
      q0 *= inv;
      q1 *= inv;
      q2 *= inv;
      q3 *= inv;
    }

    this.q0 = q0;
    this.q1 = q1;
    this.q2 = q2;
    this.q3 = q3;

  }

  /** Build a rotation from an axis and an angle.
   * <p>We use the convention that angles are oriented according to
   * the effect of the rotation on vectors around the axis. That means
   * that if (i, j, k) is a direct frame and if we first provide +k as
   * the axis and &pi;/2 as the angle to this constructor, and then
   * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
   * +j.</p>
   * <p>Another way to represent our convention is to say that a rotation
   * of angle &theta; about the unit vector (x, y, z) is the same as the
   * rotation build from quaternion components { cos(-&theta;/2),
   * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
   * Note the minus sign on the angle!</p>
   * <p>On the one hand this convention is consistent with a vectorial
   * perspective (moving vectors in fixed frames), on the other hand it
   * is different from conventions with a frame perspective (fixed vectors
   * viewed from different frames) like the ones used for example in spacecraft
   * attitude community or in the graphics community.</p>
   * @param axis axis around which to rotate
   * @param angle rotation angle.
   * @exception ArithmeticException if the axis norm is zero
   */
  public Rotation(Vector3D axis, double angle) {

    double norm = axis.getNorm();
    if (norm == 0) {
      throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
    }

    double halfAngle = -0.5 * angle;
    double coeff = FastMath.sin(halfAngle) / norm;

    q0 = FastMath.cos (halfAngle);
    q1 = coeff * axis.getX();
    q2 = coeff * axis.getY();
    q3 = coeff * axis.getZ();

  }

  /** Build a rotation from a 3X3 matrix.

   * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
   * (which are matrices for which m.m<sup>T</sup> = I) with real
   * coefficients. The module of the determinant of unit matrices is
   * 1, among the orthogonal 3X3 matrices, only the ones having a
   * positive determinant (+1) are rotation matrices.</p>
   *
   * <p>When a rotation is defined by a matrix with truncated values
   * (typically when it is extracted from a technical sheet where only
   * four to five significant digits are available), the matrix is not
   * orthogonal anymore. This constructor handles this case
   * transparently by using a copy of the given matrix and applying a
   * correction to the copy in order to perfect its orthogonality. If
   * the Frobenius norm of the correction needed is above the given
   * threshold, then the matrix is considered to be too far from a
   * true rotation matrix and an exception is thrown.<p>
   *
   * @param m rotation matrix
   * @param threshold convergence threshold for the iterative
   * orthogonality correction (convergence is reached when the
   * difference between two steps of the Frobenius norm of the
   * correction is below this threshold)
   *
   * @exception NotARotationMatrixException if the matrix is not a 3X3
   * matrix, or if it cannot be transformed into an orthogonal matrix
   * with the given threshold, or if the determinant of the resulting
   * orthogonal matrix is negative
   *
   */
  public Rotation(double[][] m, double threshold)
    throws NotARotationMatrixException {

    // dimension check
    if ((m.length != 3) || (m[0].length != 3) ||
        (m[1].length != 3) || (m[2].length != 3)) {
      throw new NotARotationMatrixException(
              LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
              m.length, m[0].length);
    }

    // compute a "close" orthogonal matrix
    double[][] ort = orthogonalizeMatrix(m, threshold);

    // check the sign of the determinant
    double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
                 ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
                 ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
    if (det < 0.0) {
      throw new NotARotationMatrixException(
              LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
              det);
    }

    // There are different ways to compute the quaternions elements
    // from the matrix. They all involve computing one element from
    // the diagonal of the matrix, and computing the three other ones
    // using a formula involving a division by the first element,
    // which unfortunately can be zero. Since the norm of the
    // quaternion is 1, we know at least one element has an absolute
    // value greater or equal to 0.5, so it is always possible to
    // select the right formula and avoid division by zero and even
    // numerical inaccuracy. Checking the elements in turn and using
    // the first one greater than 0.45 is safe (this leads to a simple
    // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
    double s = ort[0][0] + ort[1][1] + ort[2][2];
    if (s > -0.19) {
      // compute q0 and deduce q1, q2 and q3
      q0 = 0.5 * FastMath.sqrt(s + 1.0);
      double inv = 0.25 / q0;
      q1 = inv * (ort[1][2] - ort[2][1]);
      q2 = inv * (ort[2][0] - ort[0][2]);
      q3 = inv * (ort[0][1] - ort[1][0]);
    } else {
      s = ort[0][0] - ort[1][1] - ort[2][2];
      if (s > -0.19) {
        // compute q1 and deduce q0, q2 and q3
        q1 = 0.5 * FastMath.sqrt(s + 1.0);
        double inv = 0.25 / q1;
        q0 = inv * (ort[1][2] - ort[2][1]);
        q2 = inv * (ort[0][1] + ort[1][0]);
        q3 = inv * (ort[0][2] + ort[2][0]);
      } else {
        s = ort[1][1] - ort[0][0] - ort[2][2];
        if (s > -0.19) {
          // compute q2 and deduce q0, q1 and q3
          q2 = 0.5 * FastMath.sqrt(s + 1.0);
          double inv = 0.25 / q2;
          q0 = inv * (ort[2][0] - ort[0][2]);
          q1 = inv * (ort[0][1] + ort[1][0]);
          q3 = inv * (ort[2][1] + ort[1][2]);
        } else {
          // compute q3 and deduce q0, q1 and q2
          s = ort[2][2] - ort[0][0] - ort[1][1];
          q3 = 0.5 * FastMath.sqrt(s + 1.0);
          double inv = 0.25 / q3;
          q0 = inv * (ort[0][1] - ort[1][0]);
          q1 = inv * (ort[0][2] + ort[2][0]);
          q2 = inv * (ort[2][1] + ort[1][2]);
        }
      }
    }

  }

  /** Build the rotation that transforms a pair of vector into another pair.

   * <p>Except for possible scale factors, if the instance were applied to
   * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
   * (v<sub>1</sub>, v<sub>2</sub>).</p>
   *
   * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
   * not the same as the angular separation between v<sub>1</sub> and
   * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
   * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
   * v<sub>2</sub>) plane.</p>
   *
   * @param u1 first vector of the origin pair
   * @param u2 second vector of the origin pair
   * @param v1 desired image of u1 by the rotation
   * @param v2 desired image of u2 by the rotation
   * @exception IllegalArgumentException if the norm of one of the vectors is zero
   */
  public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {

  // norms computation
  double u1u1 = Vector3D.dotProduct(u1, u1);
  double u2u2 = Vector3D.dotProduct(u2, u2);
  double v1v1 = Vector3D.dotProduct(v1, v1);
  double v2v2 = Vector3D.dotProduct(v2, v2);
  if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
    throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
  }

  double u1x = u1.getX();
  double u1y = u1.getY();
  double u1z = u1.getZ();

  double u2x = u2.getX();
  double u2y = u2.getY();
  double u2z = u2.getZ();

  // normalize v1 in order to have (v1'|v1') = (u1|u1)
  double coeff = FastMath.sqrt (u1u1 / v1v1);
  double v1x   = coeff * v1.getX();
  double v1y   = coeff * v1.getY();
  double v1z   = coeff * v1.getZ();
  v1 = new Vector3D(v1x, v1y, v1z);

  // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
  double u1u2   = Vector3D.dotProduct(u1, u2);
  double v1v2   = Vector3D.dotProduct(v1, v2);
  double coeffU = u1u2 / u1u1;
  double coeffV = v1v2 / u1u1;
  double beta   = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
  double alpha  = coeffU - beta * coeffV;
  double v2x    = alpha * v1x + beta * v2.getX();
  double v2y    = alpha * v1y + beta * v2.getY();
  double v2z    = alpha * v1z + beta * v2.getZ();
  v2 = new Vector3D(v2x, v2y, v2z);

  // preliminary computation (we use explicit formulation instead
  // of relying on the Vector3D class in order to avoid building lots
  // of temporary objects)
  Vector3D uRef = u1;
  Vector3D vRef = v1;
  double dx1 = v1x - u1.getX();
  double dy1 = v1y - u1.getY();
  double dz1 = v1z - u1.getZ();
  double dx2 = v2x - u2.getX();
  double dy2 = v2y - u2.getY();
  double dz2 = v2z - u2.getZ();
  Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
                            dz1 * dx2 - dx1 * dz2,
                            dx1 * dy2 - dy1 * dx2);
  double c = k.getX() * (u1y * u2z - u1z * u2y) +
             k.getY() * (u1z * u2x - u1x * u2z) +
             k.getZ() * (u1x * u2y - u1y * u2x);

  if (c == 0) {
    // the (q1, q2, q3) vector is in the (u1, u2) plane
    // we try other vectors
    Vector3D u3 = Vector3D.crossProduct(u1, u2);
    Vector3D v3 = Vector3D.crossProduct(v1, v2);
    double u3x  = u3.getX();
    double u3y  = u3.getY();
    double u3z  = u3.getZ();
    double v3x  = v3.getX();
    double v3y  = v3.getY();
    double v3z  = v3.getZ();

    double dx3 = v3x - u3x;
    double dy3 = v3y - u3y;
    double dz3 = v3z - u3z;
    k = new Vector3D(dy1 * dz3 - dz1 * dy3,
                     dz1 * dx3 - dx1 * dz3,
                     dx1 * dy3 - dy1 * dx3);
    c = k.getX() * (u1y * u3z - u1z * u3y) +
        k.getY() * (u1z * u3x - u1x * u3z) +
        k.getZ() * (u1x * u3y - u1y * u3x);

    if (c == 0) {
      // the (q1, q2, q3) vector is aligned with u1:
      // we try (u2, u3) and (v2, v3)
      k = new Vector3D(dy2 * dz3 - dz2 * dy3,
                       dz2 * dx3 - dx2 * dz3,
                       dx2 * dy3 - dy2 * dx3);
      c = k.getX() * (u2y * u3z - u2z * u3y) +
          k.getY() * (u2z * u3x - u2x * u3z) +
          k.getZ() * (u2x * u3y - u2y * u3x);

      if (c == 0) {
        // the (q1, q2, q3) vector is aligned with everything
        // this is really the identity rotation
        q0 = 1.0;
        q1 = 0.0;
        q2 = 0.0;
        q3 = 0.0;
        return;
      }

      // we will have to use u2 and v2 to compute the scalar part
      uRef = u2;
      vRef = v2;

    }

  }

  // compute the vectorial part
  c = FastMath.sqrt(c);
  double inv = 1.0 / (c + c);
  q1 = inv * k.getX();
  q2 = inv * k.getY();
  q3 = inv * k.getZ();

  // compute the scalar part
   k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
                    uRef.getZ() * q1 - uRef.getX() * q3,
                    uRef.getX() * q2 - uRef.getY() * q1);
   c = Vector3D.dotProduct(k, k);
  q0 = Vector3D.dotProduct(vRef, k) / (c + c);

  }

  /** Build one of the rotations that transform one vector into another one.

   * <p>Except for a possible scale factor, if the instance were
   * applied to the vector u it will produce the vector v. There is an
   * infinite number of such rotations, this constructor choose the
   * one with the smallest associated angle (i.e. the one whose axis
   * is orthogonal to the (u, v) plane). If u and v are colinear, an
   * arbitrary rotation axis is chosen.</p>
   *
   * @param u origin vector
   * @param v desired image of u by the rotation
   * @exception IllegalArgumentException if the norm of one of the vectors is zero
   */
  public Rotation(Vector3D u, Vector3D v) {

    double normProduct = u.getNorm() * v.getNorm();
    if (normProduct == 0) {
        throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
    }

    double dot = Vector3D.dotProduct(u, v);

    if (dot < ((2.0e-15 - 1.0) * normProduct)) {
      // special case u = -v: we select a PI angle rotation around
      // an arbitrary vector orthogonal to u
      Vector3D w = u.orthogonal();
      q0 = 0.0;
      q1 = -w.getX();
      q2 = -w.getY();
      q3 = -w.getZ();
    } else {
      // general case: (u, v) defines a plane, we select
      // the shortest possible rotation: axis orthogonal to this plane
      q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
      double coeff = 1.0 / (2.0 * q0 * normProduct);
      q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
      q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
      q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
    }

  }

  /** Build a rotation from three Cardan or Euler elementary rotations.

   * <p>Cardan rotations are three successive rotations around the
   * canonical axes X, Y and Z, each axis being used once. There are
   * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
   * rotations are three successive rotations around the canonical
   * axes X, Y and Z, the first and last rotations being around the
   * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
   * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
   * <p>Beware that many people routinely use the term Euler angles even
   * for what really are Cardan angles (this confusion is especially
   * widespread in the aerospace business where Roll, Pitch and Yaw angles
   * are often wrongly tagged as Euler angles).</p>
   *
   * @param order order of rotations to use
   * @param alpha1 angle of the first elementary rotation
   * @param alpha2 angle of the second elementary rotation
   * @param alpha3 angle of the third elementary rotation
   */
  public Rotation(RotationOrder order,
                  double alpha1, double alpha2, double alpha3) {
    Rotation r1 = new Rotation(order.getA1(), alpha1);
    Rotation r2 = new Rotation(order.getA2(), alpha2);
    Rotation r3 = new Rotation(order.getA3(), alpha3);
    Rotation composed = r1.applyTo(r2.applyTo(r3));
    q0 = composed.q0;
    q1 = composed.q1;
    q2 = composed.q2;
    q3 = composed.q3;
  }

  /** Revert a rotation.
   * Build a rotation which reverse the effect of another
   * rotation. This means that if r(u) = v, then r.revert(v) = u. The
   * instance is not changed.
   * @return a new rotation whose effect is the reverse of the effect
   * of the instance
   */
  public Rotation revert() {
    return new Rotation(-q0, q1, q2, q3, false);
  }

  /** Get the scalar coordinate of the quaternion.
   * @return scalar coordinate of the quaternion
   */
  public double getQ0() {
    return q0;
  }

  /** Get the first coordinate of the vectorial part of the quaternion.
   * @return first coordinate of the vectorial part of the quaternion
   */
  public double getQ1() {
    return q1;
  }

  /** Get the second coordinate of the vectorial part of the quaternion.
   * @return second coordinate of the vectorial part of the quaternion
   */
  public double getQ2() {
    return q2;
  }

  /** Get the third coordinate of the vectorial part of the quaternion.
   * @return third coordinate of the vectorial part of the quaternion
   */
  public double getQ3() {
    return q3;
  }

  /** Get the normalized axis of the rotation.
   * @return normalized axis of the rotation
   * @see #Rotation(Vector3D, double)
   */
  public Vector3D getAxis() {
    double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
    if (squaredSine == 0) {
      return new Vector3D(1, 0, 0);
    } else if (q0 < 0) {
      double inverse = 1 / FastMath.sqrt(squaredSine);
      return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
    }
    double inverse = -1 / FastMath.sqrt(squaredSine);
    return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
  }

  /** Get the angle of the rotation.
   * @return angle of the rotation (between 0 and &pi;)
   * @see #Rotation(Vector3D, double)
   */
  public double getAngle() {
    if ((q0 < -0.1) || (q0 > 0.1)) {
      return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
    } else if (q0 < 0) {
      return 2 * FastMath.acos(-q0);
    }
    return 2 * FastMath.acos(q0);
  }

  /** Get the Cardan or Euler angles corresponding to the instance.

   * <p>The equations show that each rotation can be defined by two
   * different values of the Cardan or Euler angles set. For example
   * if Cardan angles are used, the rotation defined by the angles
   * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
   * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
   * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
   * the following arbitrary choices:</p>
   * <ul>
   *   <li>for Cardan angles, the chosen set is the one for which the
   *   second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
   *   positive),</li>
   *   <li>for Euler angles, the chosen set is the one for which the
   *   second angle is between 0 and &pi; (i.e its sine is positive).</li>
   * </ul>
   *
   * <p>Cardan and Euler angle have a very disappointing drawback: all
   * of them have singularities. This means that if the instance is
   * too close to the singularities corresponding to the given
   * rotation order, it will be impossible to retrieve the angles. For
   * Cardan angles, this is often called gimbal lock. There is
   * <em>nothing</em> to do to prevent this, it is an intrinsic problem
   * with Cardan and Euler representation (but not a problem with the
   * rotation itself, which is perfectly well defined). For Cardan
   * angles, singularities occur when the second angle is close to
   * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
   * second angle is close to 0 or &pi;, this implies that the identity
   * rotation is always singular for Euler angles!</p>
   *
   * @param order rotation order to use
   * @return an array of three angles, in the order specified by the set
   * @exception CardanEulerSingularityException if the rotation is
   * singular with respect to the angles set specified
   */
  public double[] getAngles(RotationOrder order)
    throws CardanEulerSingularityException {

    if (order == RotationOrder.XYZ) {

      // r (Vector3D.plusK) coordinates are :
      //  sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
      // (-r) (Vector3D.plusI) coordinates are :
      // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_K);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
      if  ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(-(v1.getY()), v1.getZ()),
        FastMath.asin(v2.getZ()),
        FastMath.atan2(-(v2.getY()), v2.getX())
      };

    } else if (order == RotationOrder.XZY) {

      // r (Vector3D.plusJ) coordinates are :
      // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
      // (-r) (Vector3D.plusI) coordinates are :
      // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_J);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(v1.getZ(), v1.getY()),
       -FastMath.asin(v2.getY()),
        FastMath.atan2(v2.getZ(), v2.getX())
      };

    } else if (order == RotationOrder.YXZ) {

      // r (Vector3D.plusK) coordinates are :
      //  cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
      // (-r) (Vector3D.plusJ) coordinates are :
      // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_K);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(v1.getX(), v1.getZ()),
       -FastMath.asin(v2.getZ()),
        FastMath.atan2(v2.getX(), v2.getY())
      };

    } else if (order == RotationOrder.YZX) {

      // r (Vector3D.plusI) coordinates are :
      // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
      // (-r) (Vector3D.plusJ) coordinates are :
      // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_I);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(-(v1.getZ()), v1.getX()),
        FastMath.asin(v2.getX()),
        FastMath.atan2(-(v2.getZ()), v2.getY())
      };

    } else if (order == RotationOrder.ZXY) {

      // r (Vector3D.plusJ) coordinates are :
      // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
      // (-r) (Vector3D.plusK) coordinates are :
      // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_J);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(-(v1.getX()), v1.getY()),
        FastMath.asin(v2.getY()),
        FastMath.atan2(-(v2.getX()), v2.getZ())
      };

    } else if (order == RotationOrder.ZYX) {

      // r (Vector3D.plusI) coordinates are :
      //  cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
      // (-r) (Vector3D.plusK) coordinates are :
      // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
      Vector3D v1 = applyTo(Vector3D.PLUS_I);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
        throw new CardanEulerSingularityException(true);
      }
      return new double[] {
        FastMath.atan2(v1.getY(), v1.getX()),
       -FastMath.asin(v2.getX()),
        FastMath.atan2(v2.getY(), v2.getZ())
      };

    } else if (order == RotationOrder.XYX) {

      // r (Vector3D.plusI) coordinates are :
      //  cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
      // (-r) (Vector3D.plusI) coordinates are :
      // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
      // and we can choose to have theta in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_I);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getY(), -v1.getZ()),
        FastMath.acos(v2.getX()),
        FastMath.atan2(v2.getY(), v2.getZ())
      };

    } else if (order == RotationOrder.XZX) {

      // r (Vector3D.plusI) coordinates are :
      //  cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
      // (-r) (Vector3D.plusI) coordinates are :
      // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
      // and we can choose to have psi in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_I);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getZ(), v1.getY()),
        FastMath.acos(v2.getX()),
        FastMath.atan2(v2.getZ(), -v2.getY())
      };

    } else if (order == RotationOrder.YXY) {

      // r (Vector3D.plusJ) coordinates are :
      //  sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
      // (-r) (Vector3D.plusJ) coordinates are :
      // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
      // and we can choose to have phi in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_J);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getX(), v1.getZ()),
        FastMath.acos(v2.getY()),
        FastMath.atan2(v2.getX(), -v2.getZ())
      };

    } else if (order == RotationOrder.YZY) {

      // r (Vector3D.plusJ) coordinates are :
      //  -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
      // (-r) (Vector3D.plusJ) coordinates are :
      // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
      // and we can choose to have psi in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_J);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getZ(), -v1.getX()),
        FastMath.acos(v2.getY()),
        FastMath.atan2(v2.getZ(), v2.getX())
      };

    } else if (order == RotationOrder.ZXZ) {

      // r (Vector3D.plusK) coordinates are :
      //  sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
      // (-r) (Vector3D.plusK) coordinates are :
      // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
      // and we can choose to have phi in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_K);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getX(), -v1.getY()),
        FastMath.acos(v2.getZ()),
        FastMath.atan2(v2.getX(), v2.getY())
      };

    } else { // last possibility is ZYZ

      // r (Vector3D.plusK) coordinates are :
      //  cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
      // (-r) (Vector3D.plusK) coordinates are :
      // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
      // and we can choose to have theta in the interval [0 ; PI]
      Vector3D v1 = applyTo(Vector3D.PLUS_K);
      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
        throw new CardanEulerSingularityException(false);
      }
      return new double[] {
        FastMath.atan2(v1.getY(), v1.getX()),
        FastMath.acos(v2.getZ()),
        FastMath.atan2(v2.getY(), -v2.getX())
      };

    }

  }

  /** Get the 3X3 matrix corresponding to the instance
   * @return the matrix corresponding to the instance
   */
  public double[][] getMatrix() {

    // products
    double q0q0  = q0 * q0;
    double q0q1  = q0 * q1;
    double q0q2  = q0 * q2;
    double q0q3  = q0 * q3;
    double q1q1  = q1 * q1;
    double q1q2  = q1 * q2;
    double q1q3  = q1 * q3;
    double q2q2  = q2 * q2;
    double q2q3  = q2 * q3;
    double q3q3  = q3 * q3;

    // create the matrix
    double[][] m = new double[3][];
    m[0] = new double[3];
    m[1] = new double[3];
    m[2] = new double[3];

    m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
    m [1][0] = 2.0 * (q1q2 - q0q3);
    m [2][0] = 2.0 * (q1q3 + q0q2);

    m [0][1] = 2.0 * (q1q2 + q0q3);
    m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
    m [2][1] = 2.0 * (q2q3 - q0q1);

    m [0][2] = 2.0 * (q1q3 - q0q2);
    m [1][2] = 2.0 * (q2q3 + q0q1);
    m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;

    return m;

  }

  /** Apply the rotation to a vector.
   * @param u vector to apply the rotation to
   * @return a new vector which is the image of u by the rotation
   */
  public Vector3D applyTo(Vector3D u) {

    double x = u.getX();
    double y = u.getY();
    double z = u.getZ();

    double s = q1 * x + q2 * y + q3 * z;

    return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
                        2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
                        2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);

  }

  /** Apply the inverse of the rotation to a vector.
   * @param u vector to apply the inverse of the rotation to
   * @return a new vector which such that u is its image by the rotation
   */
  public Vector3D applyInverseTo(Vector3D u) {

    double x = u.getX();
    double y = u.getY();
    double z = u.getZ();

    double s = q1 * x + q2 * y + q3 * z;
    double m0 = -q0;

    return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
                        2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
                        2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);

  }

  /** Apply the instance to another rotation.
   * Applying the instance to a rotation is computing the composition
   * in an order compliant with the following rule : let u be any
   * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
   * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
   * where comp = applyTo(r).
   * @param r rotation to apply the rotation to
   * @return a new rotation which is the composition of r by the instance
   */
  public Rotation applyTo(Rotation r) {
    return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
                        r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
                        r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
                        r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
                        false);
  }

  /** Apply the inverse of the instance to another rotation.
   * Applying the inverse of the instance to a rotation is computing
   * the composition in an order compliant with the following rule :
   * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
   * let w be the inverse image of v by the instance
   * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
   * comp = applyInverseTo(r).
   * @param r rotation to apply the rotation to
   * @return a new rotation which is the composition of r by the inverse
   * of the instance
   */
  public Rotation applyInverseTo(Rotation r) {
    return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
                        -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
                        -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
                        -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
                        false);
  }

  /** Perfect orthogonality on a 3X3 matrix.
   * @param m initial matrix (not exactly orthogonal)
   * @param threshold convergence threshold for the iterative
   * orthogonality correction (convergence is reached when the
   * difference between two steps of the Frobenius norm of the
   * correction is below this threshold)
   * @return an orthogonal matrix close to m
   * @exception NotARotationMatrixException if the matrix cannot be
   * orthogonalized with the given threshold after 10 iterations
   */
  private double[][] orthogonalizeMatrix(double[][] m, double threshold)
    throws NotARotationMatrixException {
    double[] m0 = m[0];
    double[] m1 = m[1];
    double[] m2 = m[2];
    double x00 = m0[0];
    double x01 = m0[1];
    double x02 = m0[2];
    double x10 = m1[0];
    double x11 = m1[1];
    double x12 = m1[2];
    double x20 = m2[0];
    double x21 = m2[1];
    double x22 = m2[2];
    double fn = 0;
    double fn1;

    double[][] o = new double[3][3];
    double[] o0 = o[0];
    double[] o1 = o[1];
    double[] o2 = o[2];

    // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
    int i = 0;
    while (++i < 11) {

      // Mt.Xn
      double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
      double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
      double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
      double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
      double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
      double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
      double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
      double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
      double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;

      // Xn+1
      o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
      o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
      o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
      o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
      o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
      o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
      o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
      o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
      o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);

      // correction on each elements
      double corr00 = o0[0] - m0[0];
      double corr01 = o0[1] - m0[1];
      double corr02 = o0[2] - m0[2];
      double corr10 = o1[0] - m1[0];
      double corr11 = o1[1] - m1[1];
      double corr12 = o1[2] - m1[2];
      double corr20 = o2[0] - m2[0];
      double corr21 = o2[1] - m2[1];
      double corr22 = o2[2] - m2[2];

      // Frobenius norm of the correction
      fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
            corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
            corr20 * corr20 + corr21 * corr21 + corr22 * corr22;

      // convergence test
      if (FastMath.abs(fn1 - fn) <= threshold)
        return o;

      // prepare next iteration
      x00 = o0[0];
      x01 = o0[1];
      x02 = o0[2];
      x10 = o1[0];
      x11 = o1[1];
      x12 = o1[2];
      x20 = o2[0];
      x21 = o2[1];
      x22 = o2[2];
      fn  = fn1;

    }

    // the algorithm did not converge after 10 iterations
    throw new NotARotationMatrixException(
            LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
            i - 1);
  }

  /** Compute the <i>distance</i> between two rotations.
   * <p>The <i>distance</i> is intended here as a way to check if two
   * rotations are almost similar (i.e. they transform vectors the same way)
   * or very different. It is mathematically defined as the angle of
   * the rotation r that prepended to one of the rotations gives the other
   * one:</p>
   * <pre>
   *        r<sub>1</sub>(r) = r<sub>2</sub>
   * </pre>
   * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
   * possible upper bound of the angle in radians between r<sub>1</sub>(v)
   * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
   * reached for some v. The distance is equal to 0 if and only if the two
   * rotations are identical.</p>
   * <p>Comparing two rotations should always be done using this value rather
   * than for example comparing the components of the quaternions. It is much
   * more stable, and has a geometric meaning. Also comparing quaternions
   * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
   * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
   * their components are different (they are exact opposites).</p>
   * @param r1 first rotation
   * @param r2 second rotation
   * @return <i>distance</i> between r1 and r2
   */
  public static double distance(Rotation r1, Rotation r2) {
      return r1.applyInverseTo(r2).getAngle();
  }

}